JPH0450471A - Fuel jet device - Google Patents

Fuel jet device

Info

Publication number
JPH0450471A
JPH0450471A JP2157060A JP15706090A JPH0450471A JP H0450471 A JPH0450471 A JP H0450471A JP 2157060 A JP2157060 A JP 2157060A JP 15706090 A JP15706090 A JP 15706090A JP H0450471 A JPH0450471 A JP H0450471A
Authority
JP
Japan
Prior art keywords
fuel
fuel pressure
valve
pressure
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2157060A
Other languages
Japanese (ja)
Inventor
Mitsuru Sekiya
満 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2157060A priority Critical patent/JPH0450471A/en
Publication of JPH0450471A publication Critical patent/JPH0450471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To supply mixed gas of the optimum air-fuel ratio to every cylinder by disposing a third fuel pressure regulator and a solenoid valve at each fuel jet valve, and providing a means to synchronize the action timing of each solenoid valve with an engine rotation signal. CONSTITUTION:While an engine is operating, a valve opening timing of a suction valve of each cylinder is detected based on an engine rotation signal. Each solenoid valve 31 is operated according to ignition procedures corresponding to the detected signal, and fuel is jetted from fuel jet valves 18-1 to 18-4 in order. At this time, the fuel jet quantity at each fuel jet valve 18-1 to 18-4 is controlled based on a regulated fuel pressure at a third fuel pressure regulator 14. It is thus decided by the engine rotation number and intake manifold pressure at each jet timing separately, and the optimum fuel jet quantity can be obtained for each cylinder to be controlled to achieve the optimum air-fuel ratio.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインテークマニホールド圧力とエンジン回転数
に応じた燃圧に基づいて燃料噴射量を制御するようにし
た圧力バランス型の燃料噴射装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure-balanced fuel injection device that controls a fuel injection amount based on intake manifold pressure and fuel pressure depending on engine speed.

〔従来の技術〕[Conventional technology]

この種の燃料噴射装置の一例として、本出願人が特願平
2−77286号を以て提案したものがある。
An example of this type of fuel injection device is one proposed by the present applicant in Japanese Patent Application No. 2-77286.

この装置を第3図に基づいて説明すると、1は燃料供給
源2からの燃料を加圧して送り出す燃料ポンプ、3はイ
ンテークマニホールド圧力を燃圧P1に変換する(第4
図参照)第一燃圧レギュレータであって、スロットルバ
ルブ下流側のインテークマニホールド圧力が印加される
負圧室4と燃料ポンプlから燃料が供給される燃料室5
とがダイアフラム6によって仕切られ、又燃料室5には
燃料をリターンさせる出口5aが設けられている。
This device will be explained based on FIG. 3. 1 is a fuel pump that pressurizes fuel from a fuel supply source 2 and sends it out; 3 is a fuel pump that converts intake manifold pressure into fuel pressure P1 (4th pump);
(See figure) The first fuel pressure regulator is a negative pressure chamber 4 to which the intake manifold pressure on the downstream side of the throttle valve is applied, and a fuel chamber 5 to which fuel is supplied from the fuel pump l.
The fuel chamber 5 is partitioned by a diaphragm 6, and the fuel chamber 5 is provided with an outlet 5a for returning fuel.

7は燃料通路8を介して燃料室5に接続されていてその
上流側を一定燃圧Pl  (<Pl)に制御する第二燃
圧レギュレータであり、第一燃圧レギュレータ3から流
入する燃料は燃料供給源2ヘリターンされる。
A second fuel pressure regulator 7 is connected to the fuel chamber 5 via a fuel passage 8 and controls its upstream side to a constant fuel pressure Pl (<Pl), and the fuel flowing from the first fuel pressure regulator 3 is supplied to the fuel supply source. 2 will be returned.

10は燃料通路8に配設されてこの通路8の開口面積を
エンジン回転数に応じて制御する第一ソレノイドバルブ
、11は第一ソレノイドバルブ10の下流側に配設され
ていて燃料通路8の開口面積をエンジン回転数に応じて
制御する第二ソレノイドバルブ、12は両ソレノイドバ
ルブ10.11に電気的に接続されていてエンジン回転
数信号に応じて両ソレノイドバルブ10.11の開弁率
を変化させる電子制御ユニッ) (ECU)であり、両
ソレノイドバルブ10.11へ出力されるパルス信号は
同一であるが、第5図に示すように、このパルス信号が
HIGHの時に第一ソレノイドバルブ10は閉で、第二
ソレノイドバルブ11は開となり、又LOWの時には第
一ソレノイドバルブIOは開で、第二ソレノイドバルブ
11は閉となり、互いに逆に開閉作動せしめられるよう
になっている。そして同図に示すように、エンジン回転
数に応して両ソレノイドバルブ10.11のデユーティ
比が決定され、両ソレノイドバルブ間の燃料通路8の燃
圧か、インテークマニホールド圧力とエンジン回転数と
に応じた燃圧P3として取り出されることになる。
10 is a first solenoid valve disposed in the fuel passage 8 and controls the opening area of the passage 8 according to the engine speed; 11 is disposed downstream of the first solenoid valve 10 and controls the opening area of the passage 8 in accordance with the engine speed; A second solenoid valve 12 that controls the opening area according to the engine speed is electrically connected to both solenoid valves 10.11 and controls the opening rate of both solenoid valves 10.11 according to the engine speed signal. The pulse signal output to both solenoid valves 10 and 11 is the same, but as shown in FIG. 5, when this pulse signal is HIGH, the first solenoid valve 10 is closed, the second solenoid valve 11 is open, and when it is LOW, the first solenoid valve IO is open and the second solenoid valve 11 is closed, so that the opening and closing operations are reversed. As shown in the figure, the duty ratio of both solenoid valves 10 and 11 is determined according to the engine speed, and depending on the fuel pressure in the fuel passage 8 between the two solenoid valves, the intake manifold pressure and the engine speed. The resulting fuel pressure is taken out as the fuel pressure P3.

14は燃圧P、を調整燃圧Pi(<P3)に変換する第
三燃圧レキュレータであって、第一及び第二ソレノイド
バルブ10.11間の燃料通路8に連通して燃圧P3が
印加される第一燃圧室15と、後述の各燃料噴射弁から
戻されるリターン流量が導入され且つ調整燃圧P4に制
御される第二燃圧室16とが、ダイアフラム17によっ
て仕切られており、ダイアフラム17にかかる二つのス
プリングの差の荷重によって燃圧P、に対する調整燃圧
P4の変化割合を設定して低減化(分圧)することがで
きる。
Reference numeral 14 denotes a third fuel pressure regulator that converts the fuel pressure P into an adjusted fuel pressure Pi (<P3), and the third fuel pressure regulator 14 communicates with the fuel passage 8 between the first and second solenoid valves 10.11 to which the fuel pressure P3 is applied. A diaphragm 17 separates the first fuel pressure chamber 15 and a second fuel pressure chamber 16 into which a return flow rate from each fuel injection valve (described later) is introduced and which is controlled to an adjusted fuel pressure P4. The rate of change in the adjusted fuel pressure P4 relative to the fuel pressure P can be set and reduced (partial pressure) by the differential load of the springs.

18は例えば四つの気筒に夫々配設されていてインテー
クマニホールドへの燃料噴射量が制御される燃料噴射弁
、19は第一燃圧レギュレータ3の上流側の通路から各
燃料噴射弁18へ供給される燃圧P1の燃料流量Q1を
夫々計量する計量ジェットである。燃料噴射弁18にお
いて、21は計量ジェット19から燃料流量Q1が供給
されていてマニホールドへ燃料流量Q2を噴射させ得る
吐出口21aを備えた上流室、22は第三燃圧レギュレ
ータ14の第二燃圧室16と連通していて調整燃圧P4
が印加される下流室、23は上流室21と下流室22を
仕切るダイアフラム、24は上流室21と下流室22を
連通ずる差圧ジェット、25はダイアフラム23に連動
して吐出口21aを開閉制御するバルブ、26.27は
夫々ダイアフラム23を弾圧するスプリングであって、
上流室21の燃圧P5は下流室22の調整燃圧P4とダ
イアフラム23にかかるスプリング26.27の差の荷
重との和とバランスするように制御される。
Numeral 18 is a fuel injection valve that is arranged in each of the four cylinders, for example, and controls the amount of fuel injected into the intake manifold. Numeral 19 is a fuel injection valve that is supplied to each fuel injection valve 18 from a passage on the upstream side of the first fuel pressure regulator 3. These are metering jets that measure the fuel flow rate Q1 at the fuel pressure P1. In the fuel injection valve 18, 21 is an upstream chamber provided with a discharge port 21a to which the fuel flow rate Q1 is supplied from the metering jet 19 and can inject the fuel flow rate Q2 to the manifold, and 22 is the second fuel pressure chamber of the third fuel pressure regulator 14. 16 and is in communication with the adjusted fuel pressure P4
23 is a diaphragm that partitions the upstream chamber 21 and the downstream chamber 22, 24 is a differential pressure jet that communicates the upstream chamber 21 and the downstream chamber 22, and 25 is a valve that controls opening and closing of the discharge port 21a in conjunction with the diaphragm 23. 26 and 27 are springs that press the diaphragm 23, respectively,
The fuel pressure P5 in the upstream chamber 21 is controlled to be balanced with the sum of the adjusted fuel pressure P4 in the downstream chamber 22 and the differential load of the springs 26 and 27 applied to the diaphragm 23.

そのため、上流室21と下流室22の差圧(P、−P、
)は一定に制御され、差圧ジェット24の圧力損失も一
定に制御されるから、差圧ジェット24の流量即ち下流
室22から第二燃圧室16へ戻される燃料流量Q3も一
定に制御される。
Therefore, the differential pressure between the upstream chamber 21 and the downstream chamber 22 (P, -P,
) is controlled to be constant, and the pressure loss of the differential pressure jet 24 is also controlled to be constant, so the flow rate of the differential pressure jet 24, that is, the fuel flow rate Q3 returned from the downstream chamber 22 to the second fuel pressure chamber 16 is also controlled to be constant. .

又、計量ジェット19を通過して上流室21へ流入する
燃料流量Q1は噴射量Q2と一定量のリターン流量Q3
との和になる。
Further, the fuel flow rate Q1 passing through the metering jet 19 and flowing into the upstream chamber 21 is equal to the injection amount Q2 and a constant return flow rate Q3.
It becomes a harmony with

又、29は各吐出口21aに吸引混入されるブリードエ
アのための絞りである。
Further, 29 is a throttle for bleed air that is sucked and mixed into each discharge port 21a.

上述のような構成のもとで、第一燃圧レギュレータ3ヘ
インテークマニホールド圧力が印加されると燃圧P1に
変換され(第4図参照)、燃料通路8を介して第二燃圧
レギュレータ7へ送り込まれるが、エンジン回転数に応
じて第−及び第二ソレノイドバルブ10.11のデユー
ティ比が決定され(第5図参照)、パルス信号のHIG
H又はLOWに応じて各ソレノイドバルブ10.11が
交互に開閉制御されると、第三燃圧レギュレータ14の
第一燃圧室15で発生する燃圧P、はエンジン回転数が
小さい時に大きく、そしてエンジン回転数が大きくなる
と小さくなる。
With the above-described configuration, when the intake manifold pressure is applied to the first fuel pressure regulator 3, it is converted to fuel pressure P1 (see FIG. 4) and sent to the second fuel pressure regulator 7 via the fuel passage 8. However, the duty ratio of the first and second solenoid valves 10.11 is determined according to the engine speed (see Fig. 5), and the pulse signal is set to HIGH.
When the solenoid valves 10, 11 are controlled to open and close alternately in accordance with H or LOW, the fuel pressure P generated in the first fuel pressure chamber 15 of the third fuel pressure regulator 14 is large when the engine speed is low, and when the engine speed is low. The larger the number, the smaller it becomes.

トコ口で、エンジンに要求される燃料流量は、エンジン
回転数とインテークマニホールドの空気密度との積に比
例するが、空気密度は圧力と代替えでき、圧力差(p、
−P2 )に置き換えることができるから、エンジン回
転数に応じてPlとP2の印加率(第−及び第二ソレノ
イドバルブ10.11のデユーティ比)を調整し、得ら
れた燃圧P、を第三燃圧レギュレータ14において調整
燃圧P、に変換することによって、第6図に示すように
、要求燃料流量に応じた調整燃圧P、を発生させること
ができる。この調整燃圧P4はインテークマニホールド
圧力の増減に応じて増減し、その変化率(傾き)はエン
ジン回転数の増減に応じて減少及び増大する。
The fuel flow rate required by the engine is proportional to the product of the engine speed and the air density of the intake manifold, but the air density can be replaced with pressure, and the pressure difference (p,
-P2), the application rate of Pl and P2 (the duty ratio of the first and second solenoid valves 10.11) can be adjusted according to the engine speed, and the obtained fuel pressure P, By converting the fuel pressure into the adjusted fuel pressure P in the fuel pressure regulator 14, it is possible to generate the adjusted fuel pressure P in accordance with the required fuel flow rate, as shown in FIG. The adjusted fuel pressure P4 increases or decreases according to the increase or decrease in the intake manifold pressure, and its rate of change (slope) decreases or increases according to the increase or decrease in the engine speed.

そして、調整燃圧P4は第二燃圧室16から各燃料噴射
弁18の下流室22へ印加され、第7図に示すようにこ
の燃圧P、に応じて上流室21の燃圧P、が変化する。
Then, the adjusted fuel pressure P4 is applied from the second fuel pressure chamber 16 to the downstream chamber 22 of each fuel injection valve 18, and as shown in FIG. 7, the fuel pressure P in the upstream chamber 21 changes in accordance with this fuel pressure P.

一方、計量ジェット19を通過する燃料流量Q1はその
前後差圧(PP、)によって決定されるから、調整燃圧
P、かΔP4減少すると、上流室21の燃圧P5もΔP
5減少し、差圧(P、 Ps)か増大する。
On the other hand, since the fuel flow rate Q1 passing through the metering jet 19 is determined by the differential pressure (PP, ) before and after the metering jet 19, when the adjusted fuel pressure P or ΔP4 decreases, the fuel pressure P5 in the upstream chamber 21 also decreases by ΔP.
5 decreases, and the differential pressure (P, Ps) increases.

すると、第8図に示すように計量シェツト19を経由し
て上流室21へ流入する流量Q1は増大するが、差圧シ
ェツト24の流量はQ3で一定であるから、上流室21
の燃圧P5か上昇して吐出口21aからの燃料噴射量Q
、(=Q、−Q、)が増大する。そして上流室21の燃
圧P、は調整燃圧P、及びスプリング26.27の差の
荷重の和とバランスする。
Then, as shown in FIG. 8, the flow rate Q1 flowing into the upstream chamber 21 via the metering shet 19 increases, but since the flow rate of the differential pressure shet 24 is constant at Q3, the upstream chamber 21
The fuel pressure P5 increases and the fuel injection amount Q from the discharge port 21a increases.
, (=Q, -Q,) increases. The fuel pressure P in the upstream chamber 21 is balanced with the sum of the adjusted fuel pressure P and the differential loads of the springs 26 and 27.

又、調整燃圧P4がΔP、増大した場合は、計量ジェッ
ト19の前後差圧(Pl  pi)が小さくなって燃料
流量Q1及び燃料噴射量Q2が減少する。
Further, when the adjusted fuel pressure P4 increases by ΔP, the differential pressure across the metering jet 19 (Pl pi) decreases, and the fuel flow rate Q1 and fuel injection amount Q2 decrease.

このように、燃料噴射量Q2は調整燃圧P4に対応する
から、上述の要求燃料流量と一致する。
In this way, the fuel injection amount Q2 corresponds to the adjusted fuel pressure P4, so it matches the above-mentioned required fuel flow rate.

又、計量ジェット19の燃料流量Q1は第8図に示すよ
うに前後差圧(P、−P5)の平方根に比例して変化す
るが、流量Q、とじて噴射流量Q2の他にリターンされ
る一定流量Q3を予め付加しておくことによって、噴射
流量Q2が差圧(P、−P5)に対して直線的に変化す
る部分を取り出すことができる。そのため、計量ジェッ
ト19の流量Q、と差圧(pi −P5 )に関し、自
動車用として十分な広範囲に亘るダイナミックレンジを
得ることができる。
Further, the fuel flow rate Q1 of the metering jet 19 changes in proportion to the square root of the differential pressure across the front and rear (P, -P5) as shown in FIG. 8, but the fuel flow rate Q is returned in addition to the injection flow rate Q2. By adding the constant flow rate Q3 in advance, it is possible to extract a portion where the injection flow rate Q2 changes linearly with respect to the differential pressure (P, -P5). Therefore, regarding the flow rate Q of the metering jet 19 and the differential pressure (pi - P5), it is possible to obtain a wide dynamic range sufficient for use in automobiles.

ところで、4サイクルエンジンにおいては、エンジンの
2回転に対し1回燃料噴射弁18から燃料Q2が噴射さ
れると、各シリンダーにとってはl吸気行程に1回噴射
が行われることになる。
By the way, in a four-cycle engine, if the fuel Q2 is injected from the fuel injection valve 18 once for every two rotations of the engine, the fuel Q2 will be injected once every 1 intake strokes for each cylinder.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述の燃料噴射装置は、一対のソレノイドバル
ブ10,11と−の第三燃圧レギュレータ14によって
全ての燃料噴射弁18の燃料噴射量Q2を設定し且つ同
時に噴射させるようになっている同時噴射方式であるが
、各シリンダーの吸気弁の開弁タイミングは夫々異なる
ため、噴射タイミングと一致しないことになる。
However, the above-mentioned fuel injection device uses a pair of solenoid valves 10 and 11 and a negative third fuel pressure regulator 14 to set the fuel injection amount Q2 of all the fuel injection valves 18 and perform simultaneous injection. However, since the opening timing of the intake valve of each cylinder is different, it does not match the injection timing.

又、例えば加速時に、加速信号によって両ソレノイドバ
ルブ10.11が作動制御され、調整燃圧P4が各燃料
噴射弁18へ入力されると、四つのシリンダーに供給さ
れる燃料Q2の増量は、始めの1サイクル即ち四つのシ
リンダーが夫々1回爆発するまでは等しく、又次のサイ
クルでは燃料Q2の増量を1回目とは変更できるが、各
シリンダーへ供給される燃料Q2自体は互いに等しいこ
とに変わりはない。このため、加速時に各気筒毎に最適
な噴射量を最適な噴射タイミングで供給しているとはい
えず、夫々の混合気の空燃比は最適なものにはならない
For example, during acceleration, when both solenoid valves 10.11 are operated and controlled by the acceleration signal and the adjusted fuel pressure P4 is inputted to each fuel injection valve 18, the increase in the amount of fuel Q2 supplied to the four cylinders is as follows: Until one cycle, that is, each of the four cylinders explodes once, they are equal, and in the next cycle, the amount of fuel Q2 can be increased from the first time, but the fuel Q2 itself supplied to each cylinder is still equal to each other. do not have. For this reason, it cannot be said that the optimum injection amount is supplied to each cylinder at the optimum injection timing during acceleration, and the air-fuel ratio of each air-fuel mixture is not optimal.

本発明はこのような課題に鑑みて、この種の燃料噴射装
置にシーケンシャル噴射方式を採用して各気筒毎に最適
の空燃比が得られるようにした燃料噴射装置を提供する
ことを目的とする。
In view of these problems, it is an object of the present invention to provide a fuel injection device of this type that employs a sequential injection method so that an optimal air-fuel ratio can be obtained for each cylinder. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明による燃料噴射装置は、インテークマニホールド
圧力に応じた燃圧を発生させる第一燃圧レギュレータと
、この燃圧より低い定圧を発生させる第二燃圧レギュレ
ータと接続する燃料通路内の上流側開口とを下流側開口
とを、交互に開閉制御するソレノイドバルブによってエ
ンジン回転数に応じて開閉制御させて両開口の間にイン
テークマニホールド圧力とエンジン回転数に応した燃圧
を発生させ、この燃圧を第三燃圧レキュレータによって
調整燃圧に変換し、この調整燃圧に応じた燃料流量を気
筒毎に夫々設けられた燃料噴射弁から夫々噴射させるよ
うにした燃料噴射装置において、 各燃料噴射弁にソレノイドバルブと第三燃圧レギュレー
タを夫々配設すると共に、各ソレノイドバルブの作動時
期をエンジン回転信号に同期させる手段を備えていて、
各燃料噴射弁の噴射タイミングと燃料噴射量を各気筒毎
に制御できるようにしたものである。
The fuel injection device according to the present invention has an upstream opening in a fuel passage connected to a first fuel pressure regulator that generates a fuel pressure according to intake manifold pressure and a second fuel pressure regulator that generates a constant pressure lower than this fuel pressure on the downstream side. A solenoid valve that alternately controls the opening and closing of the opening is controlled to open and close according to the engine speed, thereby generating fuel pressure between both openings that corresponds to the intake manifold pressure and the engine speed, and this fuel pressure is transferred to the third fuel pressure regulator. In a fuel injection device that converts fuel pressure into adjusted fuel pressure and injects a fuel flow rate corresponding to the adjusted fuel pressure from fuel injection valves provided in each cylinder, each fuel injection valve is equipped with a solenoid valve and a third fuel pressure regulator. and a means for synchronizing the operating timing of each solenoid valve with the engine rotation signal,
The injection timing and fuel injection amount of each fuel injection valve can be controlled for each cylinder.

〔作 用〕[For production]

エンジン作動時において、エンジン回転信号に基づいて
各気筒の吸気弁の開弁時期が検出されて、これに応じて
点火順序に従って各ソレノイドバルブが作動して各燃料
噴射弁から順次燃料が噴射され、しかも各燃料噴射弁で
の燃料噴射量は、夫々の第三燃圧レキュレータの調整燃
圧に応して制御されるから、夫々の噴射タイミングにお
けるエンジン回転数とインテークマニホールド圧力によ
って個別に決定され、各気筒毎に最適の燃料噴射量が得
られて最適の空燃比に制御することができる。
When the engine is operating, the opening timing of the intake valve of each cylinder is detected based on the engine rotation signal, and in response to this, each solenoid valve is operated according to the ignition order, and fuel is sequentially injected from each fuel injection valve. Furthermore, the amount of fuel injected by each fuel injection valve is controlled according to the adjusted fuel pressure of each third fuel pressure regulator, so it is individually determined by the engine speed and intake manifold pressure at each injection timing, and the amount of fuel injected into each cylinder is The optimal fuel injection amount can be obtained for each time, and the air-fuel ratio can be controlled to the optimal air-fuel ratio.

〔実施例〕〔Example〕

以下、本発明の好適な一実施例を第1図と第2図に基づ
いて説明するが、上述の先行技術と同様の部分には同一
の符号を用いてその説明を省略する。
Hereinafter, a preferred embodiment of the present invention will be described based on FIGS. 1 and 2, and the same reference numerals will be used for the same parts as in the above-mentioned prior art, and the explanation thereof will be omitted.

第1図において、四つの気筒に夫々配設された燃料噴射
弁18−1.18−2.18−3.18−4について、
夫々第三燃圧し羊ユレータ14が接続されていて、しか
も各第一燃圧室15には第一燃圧レギュレータ3と第二
燃圧レギュレータ7を接続する燃料通路8が分岐して夫
々連通せしめられていると同時に、エンジン回転数とイ
ンテークマニホールド圧力に応じた燃圧P、を第一燃圧
室15へ印加するための単一のソレノイドバルブ31が
夫々配設されている。
In FIG. 1, regarding the fuel injection valves 18-1.18-2.18-3.18-4 respectively arranged in the four cylinders,
A third fuel pressure regulator 14 is connected to each of the first fuel pressure regulators 14, and a fuel passage 8 connecting the first fuel pressure regulator 3 and the second fuel pressure regulator 7 is branched and communicated with each first fuel pressure chamber 15, respectively. At the same time, a single solenoid valve 31 for applying a fuel pressure P depending on the engine speed and intake manifold pressure to the first fuel pressure chamber 15 is provided.

第2図はソレノイドバルブ31の一例を示す要部断面図
であり、図中、32はバルブ本体31a内に形成されて
いる圧力調整室であり、第一燃圧レギュレータ3側の燃
料通路8に連通ずる上流開口32aと、第二燃圧レギュ
レータ7側の燃料通路8に連通ずる下流開口32bと、
第一燃圧室1゛5に連通する中間開口32cとが夫々形
成されている。尚、この圧力調整室32は燃料通路8自
体に形成されていてもよく、第1図はこれを示している
FIG. 2 is a sectional view of a main part of an example of the solenoid valve 31. In the figure, 32 is a pressure adjustment chamber formed in the valve body 31a, which is connected to the fuel passage 8 on the first fuel pressure regulator 3 side. An upstream opening 32a communicating with the fuel passage 8 on the second fuel pressure regulator 7 side, and a downstream opening 32b communicating with the fuel passage 8 on the second fuel pressure regulator 7 side.
Intermediate openings 32c communicating with the first fuel pressure chambers 1-5 are respectively formed. Note that this pressure adjustment chamber 32 may be formed in the fuel passage 8 itself, and FIG. 1 shows this.

33は励磁コイル、34はスプリング35によって圧力
調整室32側へ付勢されている摺動可能なプランジャ、
36は一端がプランジャ34の先端に当接し且つ下流開
口32bにゆるく挿通せしめられていて他端に圧力調整
室32内に位置する第−及び第二バルブ36a、36b
が対向して一体形成されている制御バルブ、37は上流
開口32a周囲に形成されていて第一バルブ36aが着
座し得る第一バルブシート、38は第一バルブシート3
7に対向する位置であって下流開口32b周囲に形成さ
れていて第二バルブ36bが着座し得る第二バルブシー
ト、39は制御バルブ36をプランジャ34方向へ弾圧
せしめていてスプリング35よりバネ荷重の小さいスプ
リングである。
33 is an excitation coil; 34 is a slidable plunger biased toward the pressure adjustment chamber 32 by a spring 35;
Reference numeral 36 designates first and second valves 36a and 36b whose one end abuts the tip of the plunger 34 and is loosely inserted into the downstream opening 32b, and whose other end is located within the pressure adjustment chamber 32.
37 is a first valve seat formed around the upstream opening 32a on which the first valve 36a can be seated; 38 is a first valve seat 3;
7, a second valve seat 39 is formed around the downstream opening 32b, and on which the second valve 36b can be seated; It's a small spring.

そして、励磁コイル33への通電が遮断状態では、制御
バルブ36は第一バルブ36aが第一バルブシート37
に着座して上流開口32aを閉塞させると同時に第二バ
ルブ36bが下流開口32bを開口させて中間開口32
cと連通状態になる(第2図の状態)。又、励磁コイル
33が通電状態では、プランジャ34が吸引されてスプ
リング39のバネ荷重によって制御バルブ36も同一方
向へ作動し、第二バルブ36bが第二バルブシート38
に着座して下流開口32bを閉塞させると同時に第一バ
ルブ36aが上流開口32aを開口させて中間開口32
cと連通状態になる。
When the excitation coil 33 is not energized, the control valve 36 is configured so that the first valve 36a is connected to the first valve seat 37.
The second valve 36b opens the downstream opening 32b and closes the upstream opening 32a, thereby closing the intermediate opening 32.
It becomes in communication with c (the state shown in Fig. 2). Further, when the excitation coil 33 is energized, the plunger 34 is attracted and the control valve 36 also operates in the same direction due to the spring load of the spring 39, so that the second valve 36b moves toward the second valve seat 38.
At the same time, the first valve 36a opens the upstream opening 32a and closes the downstream opening 32b.
It becomes in communication with c.

しかも、電子制御ユニット12から出力される第5図に
示すパルス信号がHIGHの時に励磁コイル33は遮断
状態に、又LOWの時には通電状態に夫々制御されるよ
うになっている。
Moreover, when the pulse signal shown in FIG. 5 outputted from the electronic control unit 12 is HIGH, the excitation coil 33 is controlled to be cut off, and when it is LOW, it is controlled to be energized.

又、電子制御ユニット12においては、クランク角セン
サ(或いはトリがコンタクトやリードスイッチ等)によ
るエンジン回転信号に基づいて公知の手法で気筒判別し
且つ各シリンダの吸気弁の開弁タイミングに応じて第5
図に示すパルス信号の印加時期即ちソレノイドバルブ3
1の作動開始タイミングを決定し、各ソレノイドバルブ
31へ出力せしめる手段が備えられている。
In addition, the electronic control unit 12 discriminates cylinders using a known method based on an engine rotation signal from a crank angle sensor (or a contact, a reed switch, etc.), and determines the timing according to the opening timing of the intake valve of each cylinder. 5
Application timing of the pulse signal shown in the figure, that is, solenoid valve 3
1 is provided with means for determining the operation start timing of each solenoid valve 31 and outputting the same to each solenoid valve 31.

本実施例は上述のように構成されているから、エンジン
作動時にはエンジン回転信号に基づいて電子制御ユニッ
ト12で各シリンダーの吸気弁の開弁タイミングが検出
され、そしてこの開弁タイミングに応じて点火順序に従
って、電子制御ユニット12から第5図に示すパルス信
号が各ソレノイドバルブ31へ順次出力せしめられる。
Since this embodiment is configured as described above, when the engine is operating, the electronic control unit 12 detects the opening timing of the intake valve of each cylinder based on the engine rotation signal, and the ignition is started according to this valve opening timing. According to the order, the electronic control unit 12 sequentially outputs the pulse signals shown in FIG. 5 to each solenoid valve 31.

パルス信号のデユーティ比は第5図に示すようにエンジ
ン回転数によって決定されており、ソレノイドバルブ3
1においては、パルス信号がHIGHの時に第一バルブ
36aによって燃料通路8の上流開口32aが閉で第二
バルブ36bによって下流開口32bが開となり、又L
OWの時に上流開口32aが開で下流開口32bが閉と
なって、設定されたデユーティ比に応じて上流開口32
aと下流開口32bとが交互に開閉するように制御バル
ブ36が反転作動せしめられる。そしてこれに応じて両
開口32a、32bの間でエンジン回転数とインテーク
マニホールド圧力に応じた燃圧P3が設定される。この
ようにして、第三燃圧レギュレータ14の第一燃圧室1
5へ印加される燃圧P、は、エンジン回転数が小さい時
に大きく、そしてエンジン回転数が大きくなると小さく
なる。
The duty ratio of the pulse signal is determined by the engine speed as shown in Figure 5, and the duty ratio of the solenoid valve 3 is determined by the engine speed.
1, when the pulse signal is HIGH, the first valve 36a closes the upstream opening 32a of the fuel passage 8, the second valve 36b opens the downstream opening 32b, and the L
At the time of OW, the upstream opening 32a is open and the downstream opening 32b is closed, and the upstream opening 32 is opened according to the set duty ratio.
The control valve 36 is reversely operated so that the downstream opening 32b and the downstream opening 32b are alternately opened and closed. Accordingly, a fuel pressure P3 is set between the openings 32a and 32b depending on the engine speed and the intake manifold pressure. In this way, the first fuel pressure chamber 1 of the third fuel pressure regulator 14
The fuel pressure P applied to the engine 5 is large when the engine speed is low, and becomes small when the engine speed is high.

この燃圧P、は第三燃圧レギュレータ14で調整燃圧P
4に変換され、上述の先行技術と同様に制御されて燃料
噴射弁18から第8図に示す燃料噴射量Q2が得られる
。しかも、各燃料噴射弁1B−1,18−2,18−3
,18−4は、夫々のシリンダの吸気弁の開弁タイミン
グに応じて順次燃料Q2を噴射させることになるから、
夫々の噴射時点におけるエンジン回転数とインテークマ
ニホールド圧力に応じて個別に最適の燃料噴射量Q2が
決定される。
This fuel pressure P is adjusted by the third fuel pressure regulator 14.
4 and is controlled in the same manner as in the prior art described above to obtain the fuel injection amount Q2 shown in FIG. 8 from the fuel injection valve 18. Moreover, each fuel injection valve 1B-1, 18-2, 18-3
, 18-4 sequentially injects the fuel Q2 according to the opening timing of the intake valve of each cylinder.
The optimal fuel injection amount Q2 is individually determined according to the engine rotation speed and intake manifold pressure at each injection time.

従って、例えば加速時には、最初に爆発する気筒から順
次爆発する気筒へと、夫々の燃料噴射弁からの燃料噴射
量を調整燃圧P4に応じて順次増量して供給してゆくこ
とができ、各気筒毎にきめ細かな燃料噴射量制御ができ
る。このため、各気筒毎に最適な空燃比の混合気が得ら
れ、排出ガス中の有害成分も減少させることができる。
Therefore, for example, during acceleration, the fuel injection amount from each fuel injection valve can be increased and supplied sequentially according to the adjusted fuel pressure P4 from the cylinder that explodes first to the cylinders that explode sequentially. Fine-grained fuel injection amount control is possible at each time. Therefore, an air-fuel mixture with an optimal air-fuel ratio can be obtained for each cylinder, and harmful components in exhaust gas can also be reduced.

上述のように本実施例によれば、シーケンシャル噴射方
式を採用して、各気筒毎に燃料噴射弁1B−1,18−
2,18−3,18−4の噴射タイミングと燃料噴射量
Q2を電子制御ユニット12により独立して適切に制御
でき、各気筒毎に最適な空燃比の混合気を供給すること
ができる。又、排出ガス成分も改良される。
As described above, according to this embodiment, the sequential injection method is adopted, and the fuel injection valves 1B-1, 18-
The injection timing and fuel injection amount Q2 of Nos. 2, 18-3, and 18-4 can be independently and appropriately controlled by the electronic control unit 12, and an air-fuel mixture with an optimal air-fuel ratio can be supplied to each cylinder. Also, exhaust gas components are improved.

尚、本実施例においては、単一のソレノイドバルブ31
によって制御するようにしたが、上述の先行技術と同様
に第−及び第二ソレノイドバルブ10.11によって制
御するようにしてもよい。
Note that in this embodiment, a single solenoid valve 31
However, it may be controlled by the first and second solenoid valves 10.11 as in the prior art described above.

又、上述の実施例は囲気筒エンジンに関するものである
が、気筒数はこれに限定されるものでないことは言うま
でもない。
Further, although the above-described embodiment relates to a closed-cylinder engine, it goes without saying that the number of cylinders is not limited to this.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明に係る燃料噴射装置は、各燃料噴射
弁毎に第三燃圧レギュレータとソレノイドバルブとを配
置し、又各ソレノイドバルブの作動時期をエンジン回転
信号に同期させる手段を設けたから、各気筒毎に燃料噴
射弁の燃料噴射タイミングと噴射量を個別に且つ適切に
制御でき、各気筒毎に最適な空燃比の混合気を供給する
ことができる。
As described above, in the fuel injection device according to the present invention, the third fuel pressure regulator and the solenoid valve are arranged for each fuel injection valve, and means for synchronizing the operating timing of each solenoid valve with the engine rotation signal is provided. The fuel injection timing and injection amount of the fuel injection valve can be individually and appropriately controlled for each cylinder, and a mixture with an optimal air-fuel ratio can be supplied to each cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料噴射装置の一実施例を示す概
略図、第2図はソレノイドバルブの要部断面図、第3図
は先行技術による燃料噴射装置の概略図、第4図は第一
燃圧レギュレータにおけるインテークマニホールド圧力
と燃圧P1との関係を示す図、第5図はエンジン回転数
に応じたパルス信号の周期を示す図、第6図はインテー
クマニホ−ルド圧力とエンジン回転数に応した調整燃圧
P4を示す図、第7図は調整燃圧P4と上流室の燃圧P
5との関係を示す図、第8図は差圧(P−Ps )と各
燃料流量との関係を示す図である。 3・・・・第一燃圧レギュレータ、7・・・・第二燃圧
レギュレータ、8・・・・燃料通路、14・・・・第三
燃圧レギュレータ、18.18−1.18−2.18−
3.18−4・・・・燃料噴射弁、31・・・・ソレノ
イドバルブ、32a・・・・上流開口、32b・・・・
下流開口。 第4 図 インテーク マ二ホールμ゛圧力 回転数 10レス中ニア (ms) 16図RnEpbo! オフ図 矛8図 tIl11督I−1斤P4 差圧(R−Ps)
FIG. 1 is a schematic diagram showing an embodiment of a fuel injection device according to the present invention, FIG. 2 is a sectional view of a main part of a solenoid valve, FIG. 3 is a schematic diagram of a fuel injection device according to the prior art, and FIG. Figure 5 is a diagram showing the relationship between intake manifold pressure and fuel pressure P1 in a fuel pressure regulator, Figure 5 is a diagram showing the period of a pulse signal according to engine speed, and Figure 6 is a diagram showing the relationship between intake manifold pressure and engine speed. Figure 7 shows the adjusted fuel pressure P4 and the fuel pressure P in the upstream chamber.
FIG. 8 is a diagram showing the relationship between the differential pressure (P-Ps) and each fuel flow rate. 3...First fuel pressure regulator, 7...Second fuel pressure regulator, 8...Fuel passage, 14...Third fuel pressure regulator, 18.18-1.18-2.18-
3.18-4... Fuel injection valve, 31... Solenoid valve, 32a... Upstream opening, 32b...
Downstream opening. Fig. 4 Intake manifold hole μ゛Pressure rotation speed 10 less medium near (ms) Fig. 16 RnEpbo! Off diagram 8 Figure tIl11 Director I-1 Catty P4 Differential pressure (R-Ps)

Claims (1)

【特許請求の範囲】  インテークマニホールド圧力に応じた燃圧を発生させ
る第一燃圧レギュレータと、一定の燃圧を発生させる第
二燃圧レギュレータとを接続する燃料通路内の上流側開
口と下流側開口とを、交互に開閉制御するソレノイドバ
ルブによってエンジン回転数に応じて開閉制御せしめて
該両開口の間にインテークマニホールド圧力とエンジン
回転数に応じた燃圧を発生させ、該燃圧を第三燃圧レギ
ュレータによって調整燃圧に変換し、該調整燃圧に応じ
た燃料流量を気筒毎に設けられた燃料噴射弁から夫々噴
射させるようにした燃料噴射装置において、 前記各燃料噴射弁にソレノイドバルブと第三燃圧レギュ
レータを夫々配設すると共に、該各ソレノイドバルブの
作動時期をエンジン回転信号に同期させる手段を備えて
いて、各燃料噴射弁の噴射タイミングと燃料噴射量を各
気筒毎に制御できるようにしたことを特徴とする燃料噴
射装置。
[Scope of Claims] An upstream opening and a downstream opening in a fuel passage that connect a first fuel pressure regulator that generates fuel pressure according to intake manifold pressure and a second fuel pressure regulator that generates a constant fuel pressure, A solenoid valve that alternately opens and closes is controlled to open and close according to the engine speed, and a fuel pressure corresponding to the intake manifold pressure and the engine speed is generated between the two openings, and the fuel pressure is adjusted to the fuel pressure by a third fuel pressure regulator. In a fuel injection device in which a fuel flow rate corresponding to the adjusted fuel pressure is injected from a fuel injection valve provided in each cylinder, each fuel injection valve is provided with a solenoid valve and a third fuel pressure regulator, respectively. In addition, the fuel is provided with means for synchronizing the operating timing of each solenoid valve with an engine rotation signal, so that the injection timing and fuel injection amount of each fuel injection valve can be controlled for each cylinder. Injection device.
JP2157060A 1990-06-15 1990-06-15 Fuel jet device Pending JPH0450471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2157060A JPH0450471A (en) 1990-06-15 1990-06-15 Fuel jet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2157060A JPH0450471A (en) 1990-06-15 1990-06-15 Fuel jet device

Publications (1)

Publication Number Publication Date
JPH0450471A true JPH0450471A (en) 1992-02-19

Family

ID=15641337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2157060A Pending JPH0450471A (en) 1990-06-15 1990-06-15 Fuel jet device

Country Status (1)

Country Link
JP (1) JPH0450471A (en)

Similar Documents

Publication Publication Date Title
JPH0571443A (en) Assist air supply device for cylinder direct injection type injection valve
US3683870A (en) Fuel injection systems
JPH02286871A (en) Fuel injection device
JPH0450471A (en) Fuel jet device
GB2027803A (en) Fuel injection carburettor
JPH01267328A (en) Fuel injection device for engine
GB2436593A (en) Internal combustion engine having a fuel injection system
JPH05215013A (en) Fuel supply device for gaseous fuel engine
GB2276206A (en) Fuel injected engine.
JPS58110855A (en) Fuel controlling apparatus for engine
JP2512145Y2 (en) Fuel supply device
JPH0634611Y2 (en) Fuel injection device for internal combustion engine
KR0161303B1 (en) Fuel injection apparatus of an internal combustion engine
JPH03119573U (en)
JPH01271658A (en) Fuel injection device for engine
JPH0612756U (en) Fuel injector
JPH1018898A (en) Cylinder pressure detection device of direct injection engine
JPH10220303A (en) Fuel gas injector for spark ignition type gas engine
JPH0347463A (en) Fuel injection device
JPH03279671A (en) Fuel injection device
JPH038662U (en)
JPS5965527A (en) Fuel injector for engine
JPH0363764U (en)
JPH0397574U (en)
JPH08284774A (en) Fuel injection device and internal combustion engine equipped with fuel injection device