JP2512145Y2 - Fuel supply device - Google Patents

Fuel supply device

Info

Publication number
JP2512145Y2
JP2512145Y2 JP1988071467U JP7146788U JP2512145Y2 JP 2512145 Y2 JP2512145 Y2 JP 2512145Y2 JP 1988071467 U JP1988071467 U JP 1988071467U JP 7146788 U JP7146788 U JP 7146788U JP 2512145 Y2 JP2512145 Y2 JP 2512145Y2
Authority
JP
Japan
Prior art keywords
flow rate
fuel
valve
chamber
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988071467U
Other languages
Japanese (ja)
Other versions
JPH01174572U (en
Inventor
哲朗 連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP1988071467U priority Critical patent/JP2512145Y2/en
Publication of JPH01174572U publication Critical patent/JPH01174572U/ja
Application granted granted Critical
Publication of JP2512145Y2 publication Critical patent/JP2512145Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、内燃機関用の燃料供給装置、特に吸気通路
内に生じる負圧と大気圧との間の圧力差と、燃料通路に
設けられたオリフィスの上流側と下流側との間の燃圧差
とをバランスさせることによって、混合気の空燃比を一
定にすべく燃料流量を計量し得るようにした吸気通路内
への燃料供給を行う燃料供給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is directed to a fuel supply device for an internal combustion engine, and more particularly to a pressure difference between a negative pressure and an atmospheric pressure generated in an intake passage, and a fuel passage provided in the fuel passage. By supplying the fuel pressure difference between the upstream side and the downstream side of the orifice, the fuel flow rate can be measured so that the air-fuel ratio of the air-fuel mixture becomes constant. The present invention relates to a supply device.

〔従来の技術及び考案が解決しようとする課題〕[Problems to be solved by conventional techniques and devices]

従来、固定ベンチュリ型気化器や実願昭62−169266号
における燃料噴射装置等のようにオリフィスを流れる燃
料の流量と圧力の関係により燃料流量を計量する装置で
は、エンジンに供給される燃料のみがオリフィスを流れ
るようになっており、これをオリフィスで計量すると第
9図で示されるように圧力が流量の2乗に比例するため
に、例えば装置の最小供給燃料流量の6倍の燃料流量が
オリフィスを流れたとすると圧力は36倍になってしま
い、実用上の限界となってしまうが、一般の自動車用エ
ンジンでは燃料流量の範囲が最小供給燃料流量の約40倍
必要であるという問題があった。このような問題は、特
公昭49−30962号の燃料供給装置でもかかえており、広
い範囲に亘る燃料流量の計量は一系統では困難であっ
た。このような問題を解決するために実願昭63−12254
号等のようにスロー系とメイン系の二系統以上を配設し
た構成を有する装置もあるが、これは構造が複雑になり
またスロー系とメイン系のつながりがスムーズでないと
いう問題があった。又、SU気化器やKジェトロのような
一系統の燃料供給装置では、空気流量に応じた燃料流路
の断面積の変化(流路抵抗の変化)により計量するため
に計量精度に問題があった。
Conventionally, in a device that measures the fuel flow rate based on the relationship between the flow rate and the pressure of the fuel flowing through the orifice, such as the fixed venturi type vaporizer and the fuel injection device in Japanese Patent Application No. 62-169266, only the fuel supplied to the engine is used. Since the pressure is proportional to the square of the flow rate as shown in FIG. 9 when it is metered by the orifice, a fuel flow rate which is, for example, 6 times the minimum supply fuel flow rate of the apparatus is If it flows, the pressure becomes 36 times, which is a practical limit, but there is a problem that the range of fuel flow rate is about 40 times the minimum supply fuel flow rate in general automobile engines. . Such a problem is also present in the fuel supply device of Japanese Patent Publication No. 49-30962, and it was difficult to measure the fuel flow rate over a wide range with one system. In order to solve such a problem, Japanese Patent Application No. 63-12254
There is also an apparatus having a configuration in which two or more systems of a slow system and a main system are arranged, such as No., but this has a problem that the structure is complicated and the connection between the slow system and the main system is not smooth. Further, in a single-system fuel supply device such as a SU vaporizer or K-JETRO, there is a problem in measurement accuracy because measurement is performed by a change in the cross-sectional area of the fuel flow passage (change in flow passage resistance) according to the air flow rate. It was

本考案はこのような問題点に鑑み、一系統の燃料系に
よって広範囲に亘る燃料流量の計量を高精度になし得る
燃料供給装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel supply device capable of highly accurately measuring a fuel flow rate over a wide range by a single fuel system.

〔課題を解決するための手段〕[Means for solving the problem]

本考案による燃料供給装置は、燃料供給源から一定流
量制御手段を介して所定流量の燃料を送り出して燃料制
御手段のオリフィスを経由してリターン流量の燃料を再
び燃料供給源に戻す流路と、一定流量制御手段とオリフ
ィスとの間でこの流路から分岐せしめられていて吐出流
量の燃料を吸気通路内へ噴射せしめ得る流路とを備える
と共に、空気流量検出手段で検出せしめた圧力差とオリ
フィスの前後における燃圧差とをバランスさせるように
吐出流量を計量することにより混合気の空燃比を一定に
維持せしめるようにした燃料制御手段とを備えている。
The fuel supply device according to the present invention comprises a flow path for sending out a predetermined flow rate of fuel from a fuel supply source through a constant flow rate control means and returning a return flow rate fuel to the fuel supply source again through an orifice of the fuel control means. A flow path is provided between the constant flow rate control means and the orifice so that the discharge flow rate of fuel can be injected into the intake passage, and the pressure difference and the orifice detected by the air flow rate detection means are provided. And a fuel control means for keeping the air-fuel ratio of the air-fuel mixture constant by measuring the discharge flow rate so as to balance the fuel pressure difference between before and after.

又、一定流量制御手段は、上流の室と下流の室を仕切
るダイアフラムと、このダイアフラムに連結されていて
上流の室を開弁させているバルブと、上流の室と下流の
室とを連通するオリフィス等から成っている。
The constant flow rate control means connects the diaphragm that separates the upstream chamber and the downstream chamber, the valve that is connected to the diaphragm and that opens the upstream chamber, and the upstream chamber and the downstream chamber that communicate with each other. It consists of an orifice.

空気流量検出手段は、可変ベンチュリ部を構成するピ
ストンバルブと、吸気通路のピストンバルブと対向する
位置に設けられた負圧通路と、空気通路とから成ってい
る。
The air flow rate detecting means includes a piston valve that constitutes a variable venturi portion, a negative pressure passage provided at a position facing the piston valve of the intake passage, and an air passage.

各燃料制御手段は、4室に仕切られていて空気流量検
出手段により検出された圧力差に応じて噴射すべき吐出
流量の燃料を制御するバルブを備えている。
Each fuel control means is provided with a valve which is divided into four chambers and controls the fuel of the discharge flow rate to be injected according to the pressure difference detected by the air flow rate detection means.

更に他の燃料制御手段は、負圧ダイアフラムと燃料ダ
イアフラムが対向して設けられ、空気流量検出手段によ
り検出された圧力差に応じて噴射すべき吐出流量の燃料
を制御するバルブを備えている。
Still another fuel control means is provided with a negative pressure diaphragm and a fuel diaphragm facing each other, and is provided with a valve for controlling the discharge flow rate of fuel to be injected according to the pressure difference detected by the air flow rate detection means.

上述のように、本考案の燃料供給装置は、燃料供給源
からの所定流量の燃料のうち、吸気通路内に吸引される
空気流量に応じて計量された吐出流量をオリフィスを経
由せずに噴射させ、残りのリターン流量をオリフィスを
経由して燃料供給源に戻すように構成することにより、
燃料の吐出流量と燃圧差との関係が、従来技術における
二次関数的な関係からほぼ一次関数的な関係になり、直
線状になった。その結果、本考案の燃料供給装置は、一
系統の燃料系によっても広範囲に亘り燃料における吐出
流量の高精度な計量が実現でき、又、スロー系からメイ
ン系へのつながりも、極めて円滑になる。
As described above, the fuel supply device of the present invention injects the discharge flow rate, which is measured according to the flow rate of the air sucked into the intake passage, out of the predetermined flow rate of fuel from the fuel supply source without passing through the orifice. And the remaining return flow rate is returned to the fuel supply source via the orifice,
The relationship between the fuel discharge flow rate and the fuel pressure difference has changed from a quadratic function relationship in the prior art to a substantially linear function relationship, and has a linear shape. As a result, the fuel supply device of the present invention can realize highly accurate measurement of the discharge flow rate of fuel over a wide range even with a single fuel system, and the connection from the slow system to the main system is extremely smooth. .

〔作用〕[Action]

従って、一定流量制御手段から送り出された所定流量
の燃料のうち、空気流量の圧力差に応じた吐出流量は分
岐されて噴射され、残りのリターン流量はオリフィスを
介して燃料供給源に戻される。
Therefore, of the fuel of a predetermined flow rate sent from the constant flow rate control means, the discharge flow rate according to the pressure difference of the air flow rate is branched and injected, and the remaining return flow rate is returned to the fuel supply source via the orifice.

又、一定流量制御手段には常に所定流量の燃料が流れ
るようになっている。
Further, a constant flow rate of fuel always flows through the constant flow rate control means.

又、ピストンバルブによって空気流量に応じた可変ベ
ンチュリ部が形成され、空気流量に応じた圧力差が検出
される。
Further, the piston valve forms a variable venturi portion according to the air flow rate, and a pressure difference according to the air flow rate is detected.

又、各燃料制御手段では、空気流量検出手段で検出さ
れた圧力差に応じた吐出流量が、所定流量に対するオリ
フィスを流れるリターン流量との差として計量され、噴
射される。
Further, in each fuel control means, the discharge flow rate according to the pressure difference detected by the air flow rate detection means is measured as the difference between the predetermined flow rate and the return flow rate flowing through the orifice, and the fuel is injected.

〔実施例〕〔Example〕

以下、本考案の第一実施例を第1図を中心に説明す
る。
The first embodiment of the present invention will be described below with reference to FIG.

第1図は燃料供給装置の概略断面図であり、1は空気
流量に応じた圧力差を検出する空気流量検出手段、2は
図示しない燃料ポンプとタンクよりなる燃料供給源から
供給される燃料の送り出し流量を一定に制御する一定流
量制御手段、3は空気流量に応じて吸気通路4へ吐出さ
せる燃料量を制御する燃料制御手段である。第2図
(A)に示す空気流量検出手段1において、5は吸気通
路4の空気の流れ方向に対して直交する方向に進退して
可変ベンチュリ部5aを構成するピストンバルブ、6はピ
ストンバルブ5の先端円部に形成されていて可変ベンチ
ュリ部5aを流れる空気流量に応じた負圧をサクション室
5bに導入してピストンバルブ5を作動せしめ得る開口
部、7は可変ベンチュリ部5aを狭くする方向にピストン
バルブ5を付勢するスプリング、8は板座8aを介してス
プリング7の弾力を調整せしめ得るアジャストスクリュ
ー、9はピストンバルブ5の直径の異なる段部に設けら
れていてエアホーンの大気が導入される動圧室、10は可
変ベンチュリ部5aに開口していて該ベンチュリ部5aの空
気流量に応じた負圧を検出する負圧通路、11はエアホー
ンに開口していて比較的高い圧力(例えば大気圧)を検
出する空気通路である。そして、空気流量に応じて発生
する圧力差(例えば大気圧と負圧)が後述する燃料の流
量及び圧力との関係と対応するように第2図(B)に示
す如く可変ベンチュリ部5aが構成されるべく吸気通路4
の開口部4aが形成されている。尚、ピストンバルブに替
えてエアバルブタイプを用いてもよい。又、第3図に示
す一定流量制御手段2において、12は開口12aから燃料
を導入する上流の室、13はダイアフラム14によって上流
の室12と仕切られていて開口13aから所定流量の燃料を
送り出す下流の室、15は両方の室12と13とを連通するオ
リフィス、16は一端がダイアフラム14と連結されていて
上流の室12の開口12aに対して所定量開弁せしめられて
いるバルブ、17はダイアフラム14を上流の室12側に弾圧
するスプリング、18は板座18aを介してスプリング17の
弾力を調整し得るアジャストスクリューであって、該ア
ジャストスクリュー18によってバルブ16の開弁量を調整
せしめて一定流量制御手段2からの燃料流量を調整し得
るようになっている。尚、これに替えて一定流量制御手
段として定流量タイプのポンプを用いてもよい。又、第
1図に示す燃料制御手段3において、19は一定流量制御
手段2から所定流量の燃料が供給されていてこの所定流
量の燃料のうち後述する吐出流量Qaの燃料を吸気通路4
に吐出せしめる噴射口19aを有する上流室、20は第一ダ
イアフラム21によって上流室19と仕切られていて負圧通
路10から負圧が導入せしめられる負圧室、22は内壁23に
よって負圧室20と仕切られていて空気通路11から大気が
導入せしめられる空気室、24は第二ダイアフラム25によ
って空気室22と仕切られている下流室、26は上流室19と
下流室24を連通するオリフィス、27は下流室24内の燃圧
を所定の大きさに維持せしめると共にオリフィス26を通
過する燃料を燃料供給源へ戻す燃圧レギュレータ、28は
内壁23の小孔23aを挿通して第一及び第二ダイアフラム2
1,25を連結せしめた連結棒であって、その下端部に噴射
口19aを開閉し得るバルブ28aが形成されている。29はバ
ルブ28aを閉弁せしめる方向に第二ダイアフラム25を弾
圧するスプリング、30は板座30aを介してスプリング29
の弾力を調整するためのアジャストスクリューである。
そして、燃料噴射の際、オリフィス26を流れる燃料流量
即ちリターン流量は一定流量制御手段2から送り出され
る所定流量Qと噴射口19aから吐出される可変の吐出流
量Qaとの差Qb(=Q−Qa)である。又、オリフィス26の
前後の燃圧差をPとし、特に吐出流量Qa=0のときのオ
リフィス26の前後の燃圧差をPoとすると、吐出流量Qa
差圧(P0−P)の関係は、所定流量Qの設定値にもよる
が、第4図に示すようにやや上に凸となった直線に近い
関係を呈することになる。
FIG. 1 is a schematic cross-sectional view of a fuel supply apparatus. 1 is an air flow rate detecting means for detecting a pressure difference according to an air flow rate, and 2 is a fuel supply source composed of a fuel pump and a tank (not shown). The constant flow rate control means 3 for controlling the delivery flow rate to be constant is a fuel control means for controlling the amount of fuel discharged to the intake passage 4 according to the air flow rate. In the air flow rate detecting means 1 shown in FIG. 2 (A), 5 is a piston valve that moves forward and backward in a direction orthogonal to the air flow direction of the intake passage 4 to form a variable venturi portion 5a, and 6 is a piston valve 5 A negative pressure is formed in the tip circular portion of the suction chamber, which produces a negative pressure according to the flow rate of air flowing through the variable venturi portion 5a.
5b is an opening through which the piston valve 5 can be operated, 7 is a spring for urging the piston valve 5 in a direction to narrow the variable venturi portion 5a, and 8 is an elastic force of the spring 7 via a seat 8a. The adjusting screw to be obtained, 9 is a dynamic pressure chamber which is provided in a stepped portion having a different diameter of the piston valve 5 and into which the atmosphere of the air horn is introduced, and 10 is opened in the variable venturi portion 5a to adjust the air flow rate of the venturi portion 5a. A negative pressure passage for detecting a corresponding negative pressure, and 11 is an air passage opened to the air horn for detecting a relatively high pressure (for example, atmospheric pressure). The variable venturi portion 5a is configured as shown in FIG. 2B so that the pressure difference (for example, the atmospheric pressure and the negative pressure) generated according to the air flow rate corresponds to the relationship between the fuel flow rate and the pressure described later. Intake passage 4 as much as possible
The opening 4a is formed. An air valve type may be used instead of the piston valve. Further, in the constant flow rate control means 2 shown in FIG. 3, 12 is an upstream chamber into which fuel is introduced from the opening 12a, and 13 is separated from the upstream chamber 12 by a diaphragm 14 so that a predetermined flow rate of fuel is sent out from the opening 13a. A downstream chamber, 15 is an orifice communicating between both chambers 12 and 13, 16 is a valve whose one end is connected to the diaphragm 14 and which is opened by a predetermined amount with respect to the opening 12a of the upstream chamber 12, 17 Is a spring that elastically presses the diaphragm 14 toward the upstream chamber 12 side, 18 is an adjusting screw that can adjust the elastic force of the spring 17 via the plate seat 18a, and adjusts the valve opening amount of the valve 16 by the adjusting screw 18. The fuel flow rate from the constant flow rate control means 2 can be adjusted. Instead of this, a constant flow rate type pump may be used as the constant flow rate control means. Further, in the fuel control means 3 shown in FIG. 1, 19 is a constant flow rate control means 2 from have fuel of a predetermined flow rate is supplied discharge flow rate Q fuel intake passage a 4 to be described later of the fuel of the predetermined flow rate
An upstream chamber having an injection port 19a for discharging the negative pressure chamber, 20 is a negative pressure chamber which is partitioned from the upstream chamber 19 by a first diaphragm 21, and a negative pressure is introduced from the negative pressure passage 10, and 22 is a negative pressure chamber 20 by an inner wall 23. An air chamber into which the atmosphere is introduced from the air passage 11, 24 is a downstream chamber partitioned from the air chamber 22 by a second diaphragm 25, 26 is an orifice connecting the upstream chamber 19 and the downstream chamber 24, 27 Is a fuel pressure regulator that keeps the fuel pressure in the downstream chamber 24 at a predetermined level and returns the fuel that has passed through the orifice 26 to the fuel supply source; 28 is the first and second diaphragms 2 that are inserted through the small holes 23a of the inner wall 23;
A connecting rod in which 1, 25 are connected, and a valve 28a capable of opening and closing the injection port 19a is formed at the lower end portion thereof. 29 is a spring for elastically pressing the second diaphragm 25 in the direction of closing the valve 28a, and 30 is a spring 29 via the plate seat 30a.
It is an adjusting screw for adjusting the elasticity of.
Then, when the fuel injection, the difference Q b (= Q of the variable discharge flow rate Q a fuel flow rate i.e. the return flow through the orifice 26 is ejected from the predetermined flow rate Q and the injection port 19a fed from the constant flow rate control means 2 -Q a ). If the fuel pressure difference before and after the orifice 26 is P, and the fuel pressure difference before and after the orifice 26 is P o when the discharge flow rate Q a = 0, the discharge flow rate Q a and the differential pressure (P 0 −P) Although the relationship depends on the set value of the predetermined flow rate Q, the relationship is close to a straight line that is slightly convex as shown in FIG.

又、各ダイアフラム21,25の有効面積をS,スプリング2
9の弾力をFsp,空気流量検出手段1により検出された差
圧をFaとすると、 P×S+Fa×S+Fsp=0 ……(i) なる関係を有しており、燃料制御手段3の機能はこのよ
うに圧力差をバランスさせることであり、結果的に空気
流量に応じた燃料流量(吐出流量)を吐出させることに
なる。尚、第5図(A)はオリフィス26の前後の燃圧差
Pと吐出流量Qaとの関係を、同図(B)はこれに応じて
空気流量検出手段1に要求される空気流量とその差圧の
特性を夫々示す図である。
Also, set the effective area of each diaphragm 21, 25 to S, spring 2
Assuming that the elasticity of 9 is F sp and the pressure difference detected by the air flow rate detection means 1 is F a , there is a relationship of P × S + F a × S + F sp = 0 (i), and the fuel control means 3 The function of is to balance the pressure difference in this way, and as a result, the fuel flow rate (discharge flow rate) according to the air flow rate is discharged. 5 (A) shows the relationship between the fuel pressure difference P before and after the orifice 26 and the discharge flow rate Q a, and FIG. 5 (B) shows the air flow rate required by the air flow rate detecting means 1 and its corresponding value. It is a figure which shows the characteristic of each differential pressure.

本実施例は以上の構成を有しており、次に作用を説明
する。
The present embodiment has the above configuration, and the operation will be described below.

本実施例における燃料供給装置においては、エンジン
・スタートに先立ち、例えばエンジン・スイッチを始動
操作すると先ず燃料ポンプ(図示省略)が始動し、燃料
供給源より一定流量制御手段2を通って、燃料制御手段
3に所定流量Qの燃料が送り込まれる。エンジンが始動
していないこの段階では、空気流量検出手段1による圧
力差の検出はなされておらず、バルブ28aは閉弁状態に
ある。燃料制御手段3の上流室19内に導入された所定流
量Qの燃料は、オリフィス26を差圧P0の下に下流室24内
に流れ込み、更に燃圧レギュレータ27を通って燃料供給
源へ戻される。すなわち、エンジンがまだ始動していな
い状態では、オリフィス26の前後の差圧P0で生じる荷重
とスプリング29の荷重とがバランスして、バルブ28aが
閉弁されており、所定流量Qの燃料が燃料ポンプにより
燃料供給源、一定流量制御手段2,燃料制御手段3及び燃
圧レギュレータ27などから形成される閉流路内を循環す
ることになる。
In the fuel supply system according to the present embodiment, prior to starting the engine, for example, when the engine switch is operated to start, a fuel pump (not shown) is first started, and the fuel control is performed from the fuel supply source through the constant flow rate control means 2. A predetermined flow rate Q of fuel is sent to the means 3. At this stage when the engine is not started, the pressure difference is not detected by the air flow rate detecting means 1, and the valve 28a is in the closed state. The fuel having the predetermined flow rate Q introduced into the upstream chamber 19 of the fuel control means 3 flows into the downstream chamber 24 through the orifice 26 under the differential pressure P 0 , and further returns to the fuel supply source through the fuel pressure regulator 27. . That is, when the engine is not yet started, the load generated by the differential pressure P 0 before and after the orifice 26 and the load of the spring 29 are balanced, the valve 28a is closed, and the fuel of the predetermined flow rate Q is The fuel pump circulates in the closed flow path formed by the fuel supply source, the constant flow rate control means 2, the fuel control means 3, the fuel pressure regulator 27 and the like.

次に、エンジン・スイッチの点火操作によりエンジン
が始動すると、吸気通路4に空気が吸い込まれるように
なる。そして、空気流量が増大して空気流量検出手段1
で圧力差が検出されると、負圧室20内に負圧が導入され
第一ダイアフラム21が負圧室20側に変位し、バルブ28a
が開弁して燃料の吐出流量Qaがオリフィス26を経由せず
に吸気通路4に噴射され上流室24内の燃圧が低下して両
ダイアフラム21,25にかかる圧力がバランスする。これ
と同時にオリフィス26を流れるリターン流量Qbの前後の
燃圧差PがPoから小さくなり、結局空気流量に応じた圧
力差(小→大)とオリフィス26の前後の燃圧差(大→
小)とがバランスした状態で混合気の空燃比が一定にな
る。
Next, when the engine is started by the ignition operation of the engine switch, air is sucked into the intake passage 4. Then, the air flow rate increases and the air flow rate detection means 1
When a pressure difference is detected at, the negative pressure is introduced into the negative pressure chamber 20, the first diaphragm 21 is displaced to the negative pressure chamber 20 side, and the valve 28a
Is opened and the fuel discharge flow rate Q a is injected into the intake passage 4 without passing through the orifice 26, the fuel pressure in the upstream chamber 24 is reduced, and the pressures applied to both diaphragms 21 and 25 are balanced. At the same time the fuel pressure difference P before and after the return flow Q b through the orifice 26 is reduced from P o, eventually the pressure difference corresponding to the air flow rate (small → large) and the fuel pressure differential across the orifice 26 (large →
The air-fuel ratio of the air-fuel mixture becomes constant when (small) and () are balanced.

このようにして吐出流量Qaと差圧(Po−P)とが第4
図に示された直線に近い関係を呈するので、広範囲に亘
って高精度な燃料流量の制御が可能になる。
In this way, the discharge flow rate Q a and the differential pressure (P o −P) become the fourth
Since the relationship is close to the straight line shown in the figure, it is possible to control the fuel flow rate with high accuracy over a wide range.

第6図は燃料制御手段31の構造が第一実施例と多少異
なる第二実施例を示す概略断面図であって、32は開口19
bを介して上流室19と接続されていて一定流量制御手段
2から所定流量Qの燃料が供給される燃料通路であっ
て、連結棒28の下端部に形成されたバルブ28bによって
オリフィス26を流れるリターン流量Qbの上流室19内への
流入が制御される。33は燃料通路32の他端に接続されて
いて吐出流量Qaを吸気通路4に噴射せしめる噴射ノズル
であって、ニードルバルブ34aを連結せしめたダイアフ
ラム34とスプリング35を内蔵している。
FIG. 6 is a schematic sectional view showing a second embodiment in which the structure of the fuel control means 31 is slightly different from that of the first embodiment, and 32 is an opening 19
A valve 28b formed at the lower end of the connecting rod 28 is a fuel passage that is connected to the upstream chamber 19 via b and is supplied with a predetermined flow rate of fuel from the constant flow rate control means 2 and flows through the orifice 26. flowing into the return flow Q b of the upstream chamber 19 is controlled. An injection nozzle 33 is connected to the other end of the fuel passage 32 and injects the discharge flow rate Q a into the intake passage 4, and has a built-in diaphragm 34 and a spring 35 to which a needle valve 34 a is connected.

従って、空気流量検出手段1から差圧が印加される
と、バルブ28bは閉弁方向に移動せしめられて燃料供給
源からの燃料流入量が減少して各室19,24内の圧力が低
下するので、噴射ノズル33のダイアフラム34に生じる荷
重が増してスプリング35の弾力に抗してバルブ34aを開
弁させ、吐出流量の燃料を噴射せしめるので、オリフィ
ス26の前後の燃圧差が減少して空気流量の圧力差とオリ
フィス26の前後の燃圧差とがバランスするようになる。
Therefore, when the differential pressure is applied from the air flow rate detecting means 1, the valve 28b is moved in the valve closing direction, the fuel inflow amount from the fuel supply source is reduced, and the pressure in each chamber 19, 24 is reduced. Therefore, the load generated on the diaphragm 34 of the injection nozzle 33 increases and the valve 34a is opened against the elasticity of the spring 35 to inject the fuel at the discharge flow rate, so that the fuel pressure difference before and after the orifice 26 decreases and The flow rate pressure difference and the fuel pressure difference before and after the orifice 26 are balanced.

第7図は燃料制御手段36の構造が第一,第二実施例と
多少異なる第三実施例を示す概略断面図であり、28cは
下流室24の開口24aを開閉弁せしめてリターン流量Qb
燃料供給源への戻しを制御するバルブ、37は第一ダイア
フラム21を介してスプリング29と対向して配置されてい
て第一ダイアフラム21を上流室19側に弾圧する他のスプ
リングであって、本実施例の場合、両スプリング29と37
との弾力の差が前述の(i)式におけるFspに相当す
る。
Structure first Figure 7 is a fuel control unit 36 is a schematic sectional view showing a slightly different third embodiment and the second embodiment, 28c the return flow rate caused to the opening 24a of the downstream chamber 24 on-off valve Q b A valve for controlling the return of the fuel to the fuel supply source, 37 is another spring which is arranged to face the spring 29 through the first diaphragm 21 and elastically presses the first diaphragm 21 toward the upstream chamber 19 side, In this embodiment, both springs 29 and 37
The difference in elasticity between and corresponds to F sp in equation (i) above.

従って、空気流量検出手段1によって検出された圧力
差により第一ダイアフラム21が負圧室20側に変位してバ
ルブ28cの開弁量が減少すると上流室19内の燃圧が大き
くなり、吐出流量Qaが噴射ノズル33から噴射され、空気
流量の圧力差とオリフィス26の前後の燃圧差とがバラン
スするようになる。
Therefore, when the first diaphragm 21 is displaced to the negative pressure chamber 20 side due to the pressure difference detected by the air flow rate detecting means 1 and the valve opening amount of the valve 28c is reduced, the fuel pressure in the upstream chamber 19 is increased and the discharge flow rate Q a is injected from the injection nozzle 33, and the pressure difference of the air flow rate and the fuel pressure difference before and after the orifice 26 are balanced.

第8図は上記各実施例とは異なる燃料制御手段38の構
造を有する第四実施例を示す概略断面図であり、図中、
39は負圧室20と空気室22を仕切る負圧ダイアフラム、40
は上流室19と下流室24を仕切る燃料ダイアフラム、28d
は吸気通路4を挾んで負圧ダイアフラム39と燃料ダイア
フラム40を連結する連結棒28の途中に形成されていて上
流室19の噴射口19aの開閉を制御するバルブである。
FIG. 8 is a schematic sectional view showing a fourth embodiment having a structure of the fuel control means 38 different from the above-mentioned embodiments,
39 is a negative pressure diaphragm that separates the negative pressure chamber 20 from the air chamber 22, 40
Is a fuel diaphragm that separates the upstream chamber 19 and the downstream chamber 24, 28d
Is a valve that is formed in the middle of a connecting rod 28 that connects the negative pressure diaphragm 39 and the fuel diaphragm 40 across the intake passage 4 and controls the opening and closing of the injection port 19a of the upstream chamber 19.

尚、空気流量検出手段においてピストンバルブ5の作
動時における摩擦力を低減させるためにベアリングを用
いてもよい。
A bearing may be used to reduce the frictional force when the piston valve 5 is operating in the air flow rate detecting means.

〔考案の効果〕[Effect of device]

上述の如く、本考案に係る燃料供給装置によれば、所
定流量の燃料のうち空気流量に応じて計量された吐出流
量をオリフィスを経由せずに噴射させ、残りのリターン
流量をオリフィスを経由して燃料供給源に戻すようにし
たから、吐出流量とその燃圧差との関係が直線に近い関
係となって、一系統の燃料系によって広範囲に亘る燃料
流量の計量を高精度に実現でき、また構造も簡素化さ
れ、スロー系とメイン系のつながりに関する問題も生じ
ない。
As described above, according to the fuel supply device of the present invention, the discharge flow rate measured according to the air flow rate of the fuel of the predetermined flow rate is injected without passing through the orifice, and the remaining return flow rate is passed through the orifice. Since the fuel flow rate is returned to the fuel supply source, the relationship between the discharge flow rate and the fuel pressure difference is close to a straight line, and a single fuel system can accurately measure the fuel flow rate over a wide range. The structure is also simplified, and there is no problem with the connection between the slow system and the main system.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係る燃料供給装置の第一実施例を示す
概略断面図、第2図(A)は空気流量検出手段の概略断
面図、(B)は図(A)の矢印方向からみた吸気通路の
開口面積を示す図、第3図は一定流量制御手段の概略断
面図、第4図は第一実施例における吐出流量と差圧の関
係を示す図、第5図(A)は第一実施例における吐出流
量とオリフィスの前後の差圧との関係を示す図、(B)
は第一実施例における空気流量と差圧との間の要求され
る関係を示す図、第6,第7及び第8図は夫々本考案の第
二,第三及び第四実施例を示す概略断面図、第9図は従
来装置における燃料流量(吐出流量)とオリフィスの前
後の差圧との関係を示す図である。 1……空気流量検出手段、2……一定流量制御手段、3,
31,36,38……燃料制御手段、4……吸気通路、5……ピ
ストンバルブ、19……上流室、20……負圧室、21……第
一ダイアフラム、24……下流室、25……第二ダイアフラ
ム、26……オリフィス、28a,28b,28c,28d……バルブ、3
3……噴射ノズル、39……負圧ダイアフラム、40……燃
料ダイアフラム。
FIG. 1 is a schematic sectional view showing a first embodiment of a fuel supply device according to the present invention, FIG. 2 (A) is a schematic sectional view of an air flow rate detecting means, and (B) is from an arrow direction of FIG. FIG. 3 is a diagram showing the opening area of the intake passage, FIG. 3 is a schematic sectional view of the constant flow rate control means, FIG. 4 is a diagram showing the relationship between the discharge flow rate and the differential pressure in the first embodiment, and FIG. The figure which shows the relationship between the discharge flow volume in 1st Example, and the pressure difference before and behind an orifice, (B)
Is a diagram showing the required relationship between the air flow rate and the differential pressure in the first embodiment, and FIGS. 6, 7, and 8 are schematic diagrams showing the second, third, and fourth embodiments of the present invention, respectively. FIG. 9 is a sectional view showing the relationship between the fuel flow rate (discharge flow rate) and the differential pressure before and after the orifice in the conventional device. 1 ... Air flow rate detection means, 2 ... Constant flow rate control means, 3,
31,36,38 ... Fuel control means, 4 ... Intake passage, 5 ... Piston valve, 19 ... Upstream chamber, 20 ... Negative pressure chamber, 21 ... First diaphragm, 24 ... Downstream chamber, 25 ...... Second diaphragm, 26 …… Orifice, 28a, 28b, 28c, 28d …… Valve, 3
3 ... Injection nozzle, 39 ... Negative pressure diaphragm, 40 ... Fuel diaphragm.

Claims (7)

(57)【実用新案登録請求の範囲】(57) [Scope of utility model registration request] 【請求項1】燃料供給源から一定流量制御手段を介して
所定流量の燃料を送り出して燃料制御手段のオリフィス
を経由してリターン流量の燃料を前記燃料供給源に戻す
流路を有し、前記燃料制御手段が前記オリフィスと前記
一定流量制御手段との間で前記流路から分岐せしめて吐
出流量の燃料を吸気通路内に噴射せしめ得る流路を備え
ると共に,空気流量検出手段で検出せしめた圧力差と前
記オリフィスの前後における燃圧差とをバランスさせる
ように前記吐出流量を計量することにより,混合気の空
燃比を一定に維持せしめるように構成されている燃料供
給装置。
1. A flow path for returning a fuel having a predetermined flow rate from a fuel supply source via a constant flow rate control means and returning a fuel having a return flow rate to the fuel supply source via an orifice of the fuel control means, The fuel control means is provided with a flow path for branching the flow path between the orifice and the constant flow rate control means so as to inject a discharge flow amount of fuel into the intake passage, and the pressure detected by the air flow rate detection means. A fuel supply device configured to maintain a constant air-fuel ratio of an air-fuel mixture by measuring the discharge flow rate so as to balance the difference and the fuel pressure difference before and after the orifice.
【請求項2】一定流量制御手段が、上流の室と下流の室
とを仕切るダイアフラムと、前記ダイアフラムに連結さ
れていて前記上流の室の開口を開閉弁せしめ得るバルブ
と、前記上流の室と前記下流の室とを連通するオリフィ
スと、前記バルブを開弁方向に前記ダイアフラムを付勢
するスプリングとから成る実用新案登録請求の範囲
(1)に記載の燃料供給装置。
2. A constant flow rate control means, a diaphragm for partitioning an upstream chamber and a downstream chamber, a valve connected to the diaphragm for opening and closing an opening of the upstream chamber, and the upstream chamber. The fuel supply device according to claim (1), wherein the utility model registration comprises an orifice that communicates with the downstream chamber and a spring that biases the diaphragm in a valve opening direction.
【請求項3】空気流量検出手段が、空気流量に応じて吸
気通路に進退し得るピストンバルブと、前記ピストンバ
ルブを進出方向に付勢するスプリングと、前記吸気通路
のピストンバルブと対向する内壁に開口する負圧通路
と、エアホーンに開口する空気通路とから成る実用新案
登録請求の範囲(1)に記載の燃料供給装置。
3. An air flow rate detecting means, wherein a piston valve capable of advancing and retracting to and from an intake passage according to an air flow rate, a spring for urging the piston valve in an advancing direction, and an inner wall of the intake passage facing the piston valve. The utility model registration claim (1) comprising a negative pressure passage that opens and an air passage that opens to the air horn.
【請求項4】燃料制御手段が、噴射口を設けた上流室と
負圧室とを仕切る第一ダイアフラムと、下流室と空気室
とを仕切る第二ダイアフラムと、前記両ダイアフラムを
連結する連結棒に設けられていて空気流量検出手段によ
り検出された圧力差に応じて吐出流量の燃料を噴射せし
めるバルブと、前記バルブを閉弁方向に付勢するスプリ
ングとを備えている実用新案登録請求の範囲(1)又は
(3)のいずれかに記載の燃料供給装置。
4. A fuel control means, a first diaphragm for partitioning an upstream chamber provided with an injection port and a negative pressure chamber, a second diaphragm for partitioning a downstream chamber and an air chamber, and a connecting rod for connecting both diaphragms. A utility model registration claim including a valve for injecting fuel of a discharge flow rate according to a pressure difference detected by an air flow rate detection means, and a spring for urging the valve in a valve closing direction. The fuel supply device according to any one of (1) and (3).
【請求項5】燃料制御手段が、開口を設けた上流室と負
圧室とを仕切る第一ダイアフラムと、下流室と空気室と
を仕切る第二ダイアフラムと、前記両ダイアフラムを連
結する連結棒に設けられていて空気流量検出手段により
検出された圧力差に応じて前記上流室と前記下流室とを
連通するオリフィスを通過するリターン流量を制御する
バルブと、前記バルブを開弁方向に付勢するスプリング
と、前記バルブと一定流量制御手段との間に接続されて
いて吐出流量の燃料を噴射せしめる噴射ノズルとを備え
ている実用新案登録請求の範囲(1),(2)又は
(3)のいずれかに記載の燃料供給装置。
5. The fuel control means includes a first diaphragm for partitioning an upstream chamber having an opening and a negative pressure chamber, a second diaphragm for partitioning a downstream chamber and an air chamber, and a connecting rod for connecting both the diaphragms. A valve that is provided and that controls the return flow rate that passes through an orifice that connects the upstream chamber and the downstream chamber in accordance with the pressure difference detected by the air flow rate detection means, and urges the valve in the valve opening direction. The utility model registration claim (1), (2) or (3), comprising: a spring; and an injection nozzle connected between the valve and the constant flow rate control means for injecting a discharge flow rate of fuel. The fuel supply device according to any one of claims.
【請求項6】燃料制御手段が、上流室と負圧室とを仕切
る第一ダイアフラムと、開口を設けた下流室と空気室と
を仕切る第二ダイアフラムと、前記両ダイアフラムを連
結する連結棒に設けられていて空気流量検出手段により
検出された圧力差に応じて燃料供給源へ戻すリターン流
量を制御するバルブと、前記バルブを閉弁方向に付勢す
るスプリングと、前記上流室に接続されていて吐出流量
の燃料を噴射せしめる噴射ノズルとを備えている実用新
案登録請求の範囲(1)又は(3)のいずれかに記載の
燃料供給装置。
6. The fuel control means includes a first diaphragm for partitioning the upstream chamber and the negative pressure chamber, a second diaphragm for partitioning the downstream chamber having an opening and the air chamber, and a connecting rod for connecting both the diaphragms. A valve that is provided and that controls the return flow rate that returns to the fuel supply source according to the pressure difference detected by the air flow rate detection means, a spring that urges the valve in the valve closing direction, and a valve that is connected to the upstream chamber The fuel supply device according to any one of claims (1) and (3), further comprising an injection nozzle that injects fuel at a discharge flow rate.
【請求項7】燃料制御手段が、噴射口を設けた上流室と
下流室とを仕切る燃料ダイアフラムと、負圧室と空気室
とを仕切る負圧ダイアフラムと、前記両ダイアフラムを
連結する連結棒に設けられていて空気流量検出手段によ
り検出された圧力差に応じて吐出流量の燃料を噴射せし
めるバルブと、前記バルブを閉弁方向に付勢するスプリ
ングとを備えている実用新案登録請求の範囲(1)又は
(3)のいずれかに記載の燃料供給装置。
7. A fuel control means includes a fuel diaphragm for partitioning an upstream chamber and a downstream chamber having an injection port, a negative pressure diaphragm for partitioning a negative pressure chamber and an air chamber, and a connecting rod for connecting both diaphragms. A utility model registration claim comprising a valve which is provided and injects fuel at a discharge flow rate according to a pressure difference detected by the air flow rate detection means, and a spring which biases the valve in a valve closing direction ( The fuel supply device according to any one of 1) or (3).
JP1988071467U 1988-05-30 1988-05-30 Fuel supply device Expired - Lifetime JP2512145Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988071467U JP2512145Y2 (en) 1988-05-30 1988-05-30 Fuel supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988071467U JP2512145Y2 (en) 1988-05-30 1988-05-30 Fuel supply device

Publications (2)

Publication Number Publication Date
JPH01174572U JPH01174572U (en) 1989-12-12
JP2512145Y2 true JP2512145Y2 (en) 1996-09-25

Family

ID=31296675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988071467U Expired - Lifetime JP2512145Y2 (en) 1988-05-30 1988-05-30 Fuel supply device

Country Status (1)

Country Link
JP (1) JP2512145Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661772B2 (en) * 1990-04-23 1997-10-08 松下電子工業株式会社 Semiconductor laser device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131030A (en) * 1976-04-28 1977-11-02 Hitachi Ltd Cold starter in injection carburetor

Also Published As

Publication number Publication date
JPH01174572U (en) 1989-12-12

Similar Documents

Publication Publication Date Title
US3900014A (en) Fuel metering device for internal combustion engines
US3983849A (en) Fuel injection system
EP0363448B1 (en) Fluid servo system for fuel injection and other applications
US4090487A (en) Fuel injection system
US4756293A (en) Fuel injection apparatus
US3994267A (en) Fuel injection system for mixture-compressing, externally ignited, stratified charge, internal combustion engines
US4211201A (en) Fuel supply apparatus for internal combustion engines
JP2512145Y2 (en) Fuel supply device
EP0497386B1 (en) Fuel supply system for injection carburetors
US4364361A (en) Fuel injection system
US5119787A (en) Fuel supply system for injection carburetors
US4341192A (en) Fuel injection system
US4326487A (en) Fuel injection system
GB1575722A (en) Method for influencing the composition of the fuel-air mixture supplied to an internal combustion engine
JP2569649Y2 (en) Fuel injection device
JPH08531Y2 (en) Multi-point fuel injector
US4984547A (en) Fuel injection system for injection carburetors
US4100897A (en) Apparatus for regulating the fuel-air mixture delivered to an internal combustion engine
JP2514788Y2 (en) Multi-point fuel injector
JPS60192846A (en) Fuel supplying device of internal-combustion engine
JPH02199252A (en) Air flow rate detecting device for internal combustion engine
JPH0385360A (en) Gas injector
KR930002715B1 (en) Fuel supply device in throttle
JPH08532Y2 (en) Multi-point fuel injector
JPH0385359A (en) Gas injector