JPH03279671A - Fuel injection device - Google Patents

Fuel injection device

Info

Publication number
JPH03279671A
JPH03279671A JP2077286A JP7728690A JPH03279671A JP H03279671 A JPH03279671 A JP H03279671A JP 2077286 A JP2077286 A JP 2077286A JP 7728690 A JP7728690 A JP 7728690A JP H03279671 A JPH03279671 A JP H03279671A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel pressure
adjusted
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2077286A
Other languages
Japanese (ja)
Other versions
JPH0826834B2 (en
Inventor
Tetsuro Muraji
哲朗 連
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2077286A priority Critical patent/JPH0826834B2/en
Publication of JPH03279671A publication Critical patent/JPH03279671A/en
Publication of JPH0826834B2 publication Critical patent/JPH0826834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve responsiveness and obtain a dynamic range enough for use in an automobile by providing a fuel injection valve with which the remaining fuel flow after subtracting a decided quantity for returning through a differential pressure jet from a fuel flow flowing in an upper stream chamber through a metering jet according to adjusted fuel pressure is injected. CONSTITUTION:Fuel pressure corresponding to engine speed A and intake manifold pressure B is set between two opening area setting means, and converted to the adjusted fuel pressure with a third fuel pressure regulator 12. When this adjusted fuel pressure is applied to a lower stream chamber 21 of a fuel injection valve 18, fuel pressure in an upper stream chamber is varied according to this, but fuel flow passing through a differential pressure jet, namely, return flow from the lower stream chamber 21 is controlled to be constant, because pressure difference between both chambers 20, 21 is controlled to be constant. Meanwhile, fuel flow flowing through a metering jet 19 according to the fuel pressure in the upper stream chamber 20 is varied, the remaining fuel flow subtracting the return flow is injected from a discharge port, and fuel pressure of both chambers 20, 21 are balanced each other.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインテークマニホールド圧力とエンジン回転数
に応じて燃料噴射量を制御するようにした圧カバラン°
ス型の燃料噴射装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a pressure cover that controls the amount of fuel injection according to intake manifold pressure and engine speed.
This invention relates to a gas-type fuel injection device.

〔従来の技術及び発明が解決しようとする課題〕この種
の燃料噴射装置の一例として、本出願人が特願平1−3
3Q630号を以って提案したものがある。
[Prior art and problems to be solved by the invention] As an example of this type of fuel injection device, the present applicant has disclosed Japanese Patent Application No. 1-3
There is something proposed in 3Q630.

この装置は、燃料噴射弁において、燃料の吐出口を有す
る上流室と燃料を燃料供給源ヘリターンさせる下流室と
がダイアフラムに仕切られていて、夫々定圧に制御され
、両室を連通ずる差圧ジェットを介して上流室から下流
室へ一定燃料流量が流入するようになっている。そして
、燃圧レギュレータにおいてインテークマニホールド圧
力に応じて設定された燃圧の燃料が、エンジン回転数に
応じて開弁率が制御されるソレノイドバルブによって、
インテークマニホールド圧力とエンジン回転数に応じた
燃圧に設定され、これが別の燃圧レギュレータで調整燃
圧に変換される。
In this device, in a fuel injection valve, an upstream chamber having a fuel discharge port and a downstream chamber that returns fuel to a fuel supply source are separated by a diaphragm, each controlled to a constant pressure, and a differential pressure jet that communicates between the two chambers. A constant flow rate of fuel flows from the upstream chamber to the downstream chamber via the upstream chamber. Then, the fuel at the fuel pressure set according to the intake manifold pressure in the fuel pressure regulator is supplied by the solenoid valve whose opening rate is controlled according to the engine speed.
The fuel pressure is set according to the intake manifold pressure and engine speed, and this is converted to adjusted fuel pressure by a separate fuel pressure regulator.

そして、この調整燃圧が計量ジェットの上流側へ印加さ
れるために、計量ジェットを通過して燃料噴射弁の上流
室へ流入する燃料流量が変動し、上述の差圧ジェットを
通過する一定流量との差の゛流量が、ダイアフラムの変
位に連動して吐出口を開閉制御するバルブによって、要
求燃料流量として吐出口から噴射されるようになってい
る。
Since this adjusted fuel pressure is applied to the upstream side of the metering jet, the fuel flow rate passing through the metering jet and flowing into the upstream chamber of the fuel injection valve fluctuates, resulting in a change from the constant flow rate passing through the differential pressure jet described above. The difference in flow rate is injected from the discharge port as the required fuel flow rate by a valve that controls opening and closing of the discharge port in conjunction with the displacement of the diaphragm.

本発明はこの種の装置と関連する、別種の基本構造を備
えた燃料噴射装置を提案するものであって、製造コスト
が低廉で、応答性が良く、自動車用として十分なダイナ
ミックレンジを有する燃料噴射装置を提供することを目
的とする。
The present invention proposes a fuel injection device with a different basic structure related to this type of device, which is inexpensive to manufacture, has good responsiveness, and has a sufficient dynamic range for use in automobiles. The purpose is to provide an injection device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による燃料噴射装置は、インテークマニホールド
圧力に応じた燃圧を発生させる第一燃圧レギュレータと
、この第一燃圧レギュレータへ燃料通路を介して接続さ
れていて一定の燃圧を発生させる第二燃圧レギュレータ
と、燃料通路に設けられていてその間からインテークマ
ニホールド圧力とエンジン回転数に応じた燃圧を発生さ
せる少なくとも一方がエンジン回転数に応じて開口面積
を調整する二つの開口面積設定手段と、この燃圧を調整
燃圧に変換せしめる第三燃圧レギュレータと、 計量ジェットを介して第一燃圧レギュレータから燃料が
流入すると共に燃料の吐出口を備えた上流室と、調整燃
圧が印加され且つ差圧ジェットを介して上流室と連通ず
ると共に一定燃料流量がリターンされる下流室と、上流
室と下流室を仕切ると共に吐出口を開閉制御するバルブ
を連動させるダイアフラムとを有する燃料噴射弁と、を
備えている。
The fuel injection device according to the present invention includes a first fuel pressure regulator that generates fuel pressure according to intake manifold pressure, and a second fuel pressure regulator that is connected to the first fuel pressure regulator via a fuel passage and generates a constant fuel pressure. , two opening area setting means provided in the fuel passage, at least one of which generates fuel pressure depending on the intake manifold pressure and the engine speed, and adjusting the opening area according to the engine speed; and two opening area setting means that adjust the fuel pressure. an upstream chamber into which fuel flows from the first fuel pressure regulator via a metering jet and is provided with a fuel discharge port; The fuel injection valve includes a downstream chamber that communicates with the fuel injection valve and returns a constant flow rate of fuel, and a diaphragm that partitions the upstream and downstream chambers and interlocks a valve that controls the opening and closing of the discharge port.

〔作 用〕[For production]

エンジン作動時に、第一燃圧レギュレータでインテーク
マニホールド圧力が燃圧に変換され、この燃圧の燃料が
燃料通路に供給され、エンジン回転数に応じて少なくと
も一方の開口面積設定手段の開口面積が調整され、二つ
の開口面積設定手段の間でエンジン回転数とインテーク
マニホールド圧力に応じた燃圧が設定され、これが第三
燃圧レギュレータで調整燃圧に変換されて、この調整燃
圧が燃料噴射弁の下流室へ印加されると、これに応じて
上流室の燃圧も変化するが、画室の差圧は一定に制御さ
れるために差圧ジェットを通過する燃料流量即ち下流室
からのリターン流量は一定に制御され、一方、上流室の
燃圧に応じて計量ジェットを介して流入する燃料流量は
変化し、このうちリターン流量を除いた残りの燃料流量
が吐出口から噴射され、両室の燃圧がバランスする。
When the engine is operating, the intake manifold pressure is converted to fuel pressure by the first fuel pressure regulator, fuel at this fuel pressure is supplied to the fuel passage, and the opening area of at least one opening area setting means is adjusted according to the engine speed. A fuel pressure according to the engine speed and intake manifold pressure is set between the two opening area setting means, this is converted to an adjusted fuel pressure by the third fuel pressure regulator, and this adjusted fuel pressure is applied to the downstream chamber of the fuel injection valve. The fuel pressure in the upstream chamber changes accordingly, but since the differential pressure in the compartment is controlled to be constant, the fuel flow rate passing through the differential pressure jet, that is, the return flow rate from the downstream chamber, is controlled to be constant. The fuel flow rate flowing in through the metering jet changes depending on the fuel pressure in the upstream chamber, and the remaining fuel flow rate excluding the return flow rate is injected from the discharge port, thereby balancing the fuel pressures in both chambers.

〔実施例〕〔Example〕

以下、本発明の好適な一実施例を第1図を中心に説明す
る。
A preferred embodiment of the present invention will be described below with reference to FIG.

図中、1は図示しない燃料供給源からの燃料を加圧して
送り出す燃料ポンプ、2はインテークマニホールド圧力
を燃圧P1に変換する(第2図参照)第一燃圧レギュレ
ータであり、インテークマニホールド圧力が印加される
負圧室3と燃料ポンプ1から燃料が供給される燃料室4
とがダイアフラム5によって仕切られ、又燃料室4には
ダイアフラム5の変位に応じて燃料供給源ヘリターンさ
せる燃料量を調整する燃料出口4aが設けられている。
In the figure, 1 is a fuel pump that pressurizes and delivers fuel from a fuel supply source (not shown), 2 is a first fuel pressure regulator that converts intake manifold pressure into fuel pressure P1 (see Figure 2), and 2 is a first fuel pressure regulator to which intake manifold pressure is applied. a negative pressure chamber 3 that is supplied with fuel, and a fuel chamber 4 that is supplied with fuel from the fuel pump 1.
The fuel chamber 4 is partitioned by a diaphragm 5, and the fuel chamber 4 is provided with a fuel outlet 4a for adjusting the amount of fuel returned to the fuel supply source according to the displacement of the diaphragm 5.

6は燃料通路7を介して第一燃圧レギュレータ2の燃料
室4に接続されていてその上流側を一定燃圧P 2  
’(< P l )に制御するダイアフラム式の第二燃
圧レギュレータであり、第一燃圧レギュレータ2から流
入する燃料は燃料供給源ヘリターンされるようになって
いる。
6 is connected to the fuel chamber 4 of the first fuel pressure regulator 2 via a fuel passage 7, and its upstream side is maintained at a constant fuel pressure P2.
This is a diaphragm-type second fuel pressure regulator that controls the fuel pressure so that the fuel pressure regulator 2 is controlled so that the fuel pressure regulator 2 is controlled so that the fuel pressure regulator 2 is controlled so that the fuel pressure regulator 2 is controlled so that the fuel pressure regulator 2 is a diaphragm type second fuel pressure regulator.

9は燃料通路7に配設されていてこの通路7の開口面積
をエンジン回転数に応じて制御する第一ソレノイドバル
ブ、lOは第一ソレノイドバルブ9の下流側に配設され
ていて燃料通路7の開口面積をエンジン回転数に応じて
制御する第二ソレノイドバルブ、11は両ソレノイドバ
ルブ9,10に電気的に接続されていてエンジン回転数
信号が入力されて両ソレノイドバルブ9,10の開弁率
を変化させる電子制御ユニッ) (ECU)であり、両
ソレノイドバルブ9,10に電子制御ユニット16から
夫々入力されるパルス信号は同一であるが、第3図に示
すように、このパルス信号がHIGHの時に第一ソレノ
イドバルブ9は閉で、第二ソレノイドバルブIOは開と
なり、又パルス信号がLOWの時に第一ソレノイドバル
ブ9は開で、第二ソレノイドバルブ10は閉となり、互
いに逆に開閉作動せしめ°られるようになっている。そ
して、第4図に示すように、エンジン回転数に応じて両
ソレノイドバルブ9.IOのデユーティ比(パルス信号
の周波数)が決定されて、両ソレノイドバルブ間の燃料
通路7の燃圧が、入力信号であるインテークマニホール
ド圧力とエンジン回転数とに応じた燃圧P、として取り
出されることになる。
9 is a first solenoid valve that is disposed in the fuel passage 7 and controls the opening area of the passage 7 according to the engine speed; IO is a first solenoid valve that is disposed downstream of the first solenoid valve 9 and controls the opening area of the passage 7 according to the engine speed; A second solenoid valve 11 is electrically connected to both solenoid valves 9 and 10 and opens both solenoid valves 9 and 10 when an engine speed signal is input. The pulse signal input from the electronic control unit 16 to both solenoid valves 9 and 10 is the same, but as shown in FIG. When the pulse signal is HIGH, the first solenoid valve 9 is closed and the second solenoid valve IO is open, and when the pulse signal is LOW, the first solenoid valve 9 is open and the second solenoid valve 10 is closed. It is designed to be activated. As shown in FIG. 4, both solenoid valves 9. The duty ratio (pulse signal frequency) of the IO is determined, and the fuel pressure in the fuel passage 7 between both solenoid valves is taken out as the fuel pressure P according to the input signals, the intake manifold pressure and the engine speed. Become.

12はこの燃圧P3を調整燃圧PI(PI<P3)に変
換する第三燃圧レギュレータであって、第一及び第二ソ
レノイドバルブ9.IOの間の燃料通路7の燃圧P3が
印加される第一燃圧室13と、後述の燃料噴射弁から戻
される一定のりターン流量が導入され且つ燃圧P3に応
じた調整燃圧P4に制御される第二燃圧室14とが、ダ
イアフラム15によって仕切られており、第二燃圧室1
4にはダイアフラム15の変位に応じて燃料のリターン
流量が調整される燃料出口14aが配設され、又ダイア
フラム15はスプリング16によって第一燃圧室13方
向へ弾圧されており、これにより燃圧P3に対する調整
燃圧P4の変化割合を低減化(分圧)することができる
12 is a third fuel pressure regulator that converts this fuel pressure P3 into an adjusted fuel pressure PI (PI<P3), and includes first and second solenoid valves 9. A first fuel pressure chamber 13 to which fuel pressure P3 of the fuel passage 7 between IO is applied, and a first fuel pressure chamber 13 to which a constant flow rate returned from a fuel injection valve (described later) is introduced and controlled to an adjusted fuel pressure P4 according to fuel pressure P3. The second fuel pressure chamber 14 is partitioned by a diaphragm 15, and the second fuel pressure chamber 1
4 is provided with a fuel outlet 14a that adjusts the return flow rate of fuel according to the displacement of the diaphragm 15, and the diaphragm 15 is pressed toward the first fuel pressure chamber 13 by a spring 16, so that the fuel pressure P3 The rate of change in the adjusted fuel pressure P4 can be reduced (partial pressure).

18は第一燃圧レギュレータ2及び第三燃圧レギュレー
タ12に連通していてマニホールドへの燃料噴射量が制
御される燃料噴射弁、19は第一燃圧レギュレータ2の
燃料室4から燃料噴射弁18への燃料流量Q、を計量す
る計量ジェットである。燃料噴射弁18において、20
は計量ジェット19から燃料流量Q1が供給されていて
マニホールドへ燃料流量Q2を噴射させ得る吐出口20
aを備えた上流室、21は第三燃圧レギュレータ12の
第二燃圧室14と連通していて調整燃圧P、が印加され
る下流室、22は上流室20と下流室21を仕切るダイ
アフラム、23は上流室20と下流室21を連通ずる差
圧ジェット、24はダイアフラム22に連動して吐出口
20aを開閉制御するバルブ、25はダイアフラム22
をバルブ24の閉弁方向へ弾圧するスプリングであって
、上流室20の燃圧P5は下流室2Iの調整燃圧P、及
びダイアフラム25の荷重の和とバランスするように制
御される。そのため、上流室20と下流室21の差圧(
P5−P、 )は一定に制御され、差圧ジェット23の
圧力損失も一定になるから、差圧ジェット23の流量即
ち下流室21から第二燃圧室14へ戻される燃料流量Q
3も一定に制御される。又、計量ジェット19を通過し
て上流室20へ流入する燃料流量Q、は噴射流量Q2と
一定量のリターン流量Q3との和になる。
Reference numeral 18 indicates a fuel injection valve that communicates with the first fuel pressure regulator 2 and the third fuel pressure regulator 12 and controls the amount of fuel injected into the manifold. It is a metering jet that measures the fuel flow rate Q. In the fuel injection valve 18, 20
is a discharge port 20 to which the fuel flow rate Q1 is supplied from the metering jet 19 and can inject the fuel flow rate Q2 into the manifold.
21 is a downstream chamber communicating with the second fuel pressure chamber 14 of the third fuel pressure regulator 12 and to which the adjusted fuel pressure P is applied; 22 is a diaphragm that partitions the upstream chamber 20 and the downstream chamber 21; 23 24 is a differential pressure jet that communicates the upstream chamber 20 and the downstream chamber 21, 24 is a valve that controls opening and closing of the discharge port 20a in conjunction with the diaphragm 22, and 25 is the diaphragm 22.
The fuel pressure P5 in the upstream chamber 20 is controlled so as to be balanced with the sum of the adjusted fuel pressure P in the downstream chamber 2I and the load on the diaphragm 25. Therefore, the differential pressure between the upstream chamber 20 and the downstream chamber 21 (
P5-P, ) is controlled to be constant and the pressure loss of the differential pressure jet 23 is also constant, so the flow rate of the differential pressure jet 23, that is, the fuel flow rate Q returned from the downstream chamber 21 to the second fuel pressure chamber 14.
3 is also controlled to be constant. Further, the fuel flow rate Q passing through the metering jet 19 and flowing into the upstream chamber 20 is the sum of the injection flow rate Q2 and a constant return flow rate Q3.

本実施例は上述のように構成されており、次に作用を説
明する。
The present embodiment is constructed as described above, and its operation will be explained next.

エンジン作動時に、第二燃圧レギュレータ2ヘインテー
クマ二ホールド圧力が印加されて燃圧P1に変換され(
第2図参照)、これが燃料通路7を介して第二燃圧レギ
ュレータ6へ送り込まれるが、エンジン回転数によって
電子制御ユニット11で第一及び第二ソレノイドバルブ
9.lOのデユーティ比が決定され(第4図参照)、パ
ルス信号として各ソレノイドバルブに印加される。この
場合、パルス信号がHIGHの時に第一ソレノイドバル
ブ9は閉で、第二ソレノイドバルブ10は開であり、又
LOWの時に第一ソレノイドバルブ9は開で、第二ソレ
ノイドバルブ10は閉となるから、両ソレノイドバルブ
間で発生する燃圧P、はエンジン回転数が小さい時に大
きく、そしてエンジン回転数が大きくなると小さくなる
When the engine is running, the second fuel pressure regulator 2 intake manifold pressure is applied and converted to fuel pressure P1 (
(see FIG. 2) is sent to the second fuel pressure regulator 6 via the fuel passage 7, and is controlled by the electronic control unit 11 to the first and second solenoid valves 9, depending on the engine speed. The duty ratio of lO is determined (see FIG. 4) and applied as a pulse signal to each solenoid valve. In this case, when the pulse signal is HIGH, the first solenoid valve 9 is closed and the second solenoid valve 10 is open, and when the pulse signal is LOW, the first solenoid valve 9 is open and the second solenoid valve 10 is closed. Therefore, the fuel pressure P generated between both solenoid valves is large when the engine speed is low, and becomes small when the engine speed is high.

ところで、エンジンに要求される燃料流量は、エンジン
回転数とインテークマニホールドの空気密度との積に比
例するが、空気密度は圧力と代替えでき、圧力差(P、
−P2)に置き換えることができるから、エンジン回転
数に応じてPlの印加率(第一及び第二ソレノイドバル
ブ9,10の′デユーティ比)を調整し、得られた燃圧
P3を第三燃圧レギュレータ12において調整燃圧P4
に変換することによって、第5図に示すように、要求燃
料流量に応じた調整燃圧P、を発生させることができる
。この調整燃圧P、はインテークマニホールド圧力の増
減に応じて増減し、その変化率(傾き)はエンジン回転
数の増減に応じて減少及び増大する。
Incidentally, the fuel flow rate required by the engine is proportional to the product of the engine speed and the air density of the intake manifold, but the air density can be replaced with pressure, and the pressure difference (P,
-P2), the application rate of Pl ('duty ratio of the first and second solenoid valves 9 and 10) can be adjusted according to the engine speed, and the obtained fuel pressure P3 is applied to the third fuel pressure regulator. Adjusted fuel pressure P4 at 12
As shown in FIG. 5, it is possible to generate an adjusted fuel pressure P according to the required fuel flow rate. This adjusted fuel pressure P increases or decreases according to the increase or decrease in the intake manifold pressure, and its rate of change (slope) decreases or increases according to the increase or decrease in the engine speed.

そして、調整燃圧P4は第二燃圧室14から燃料噴射弁
18の下流室21へ印加されるが、下流室21の燃圧P
4の変化に拘らず、差圧ジェット23の流量は一定(−
Q3)に制御されるから、第6図に示すように調整燃圧
P4の増減に応じて上流室21の燃圧P5が変化する。
The adjusted fuel pressure P4 is applied from the second fuel pressure chamber 14 to the downstream chamber 21 of the fuel injection valve 18, but the fuel pressure P4 in the downstream chamber 21 is
4, the flow rate of the differential pressure jet 23 is constant (-
Q3), the fuel pressure P5 in the upstream chamber 21 changes as the adjusted fuel pressure P4 increases or decreases, as shown in FIG.

一方、計量ジェット19を通過する燃料流量Q1はその
前後差圧(Pl Ps)によって決定されるから、調整
燃圧P4がΔP、Plすると、上流室20の燃圧P5も
ΔP5減少し、差圧(p、−p5)が増大する。すると
、第7図に示すように計量ジェット19を経由して上流
室20へ流入する流量Q1が増大するが、差圧ジェット
23の流量はQ3で一定であるから、上流室20の燃圧
P5が上昇してダイアフラム22は下流室21側へ変位
してバルブ24の開弁量を増大させ、吐出口20aから
の燃料噴射量Q2 (−Q、−Q3)が増大する。そし
て上流室20の燃圧P、は調整燃圧P4及びスプリング
25の荷重との和と等しい所定の大きさに戻ってバラン
スする。
On the other hand, since the fuel flow rate Q1 passing through the metering jet 19 is determined by the differential pressure (Pl Ps) before and after the metering jet 19, when the adjusted fuel pressure P4 increases by ΔP, Pl, the fuel pressure P5 in the upstream chamber 20 also decreases by ΔP5, and the differential pressure (p , -p5) increases. Then, as shown in FIG. 7, the flow rate Q1 flowing into the upstream chamber 20 via the metering jet 19 increases, but since the flow rate of the differential pressure jet 23 is constant at Q3, the fuel pressure P5 in the upstream chamber 20 increases. The diaphragm 22 rises and is displaced toward the downstream chamber 21, increasing the opening amount of the valve 24, and increasing the fuel injection amount Q2 (-Q, -Q3) from the discharge port 20a. Then, the fuel pressure P in the upstream chamber 20 returns to a predetermined value equal to the sum of the adjusted fuel pressure P4 and the load of the spring 25, and is balanced.

この燃料噴射量Q2は調整燃圧P、に対応するものであ
るから、上述の要求燃料流量と一致することになる。
Since this fuel injection amount Q2 corresponds to the adjusted fuel pressure P, it matches the above-mentioned required fuel flow rate.

又、調整燃圧P、がΔP4増大した場合には、上流室2
0の燃圧P5も第6図に基づいてΔP5増大し、計量ジ
ェット19の前後差圧(Pps)が小さくなって燃料流
量Q1が減少するから、要求燃料流量に対応する燃料噴
射量Q2も減少する。
Moreover, when the adjusted fuel pressure P increases by ΔP4, the upstream chamber 2
Based on FIG. 6, the fuel pressure P5 at 0 also increases by ΔP5, the differential pressure across the metering jet 19 (Pps) decreases, and the fuel flow rate Q1 decreases, so the fuel injection amount Q2 corresponding to the required fuel flow rate also decreases. .

尚、インテークマニホールド圧力が最小の時にはP、=
P、となり、エンジン回転数に拘らず調整燃圧P、=P
、o(第5図参照)となって、この時の差圧(P、−P
5)によって燃料流量QQ3となり、Q2−0となる(
第7図参照)。
Furthermore, when the intake manifold pressure is minimum, P, =
P, and the adjusted fuel pressure P, = P regardless of the engine speed
, o (see Figure 5), and the differential pressure at this time (P, -P
5), the fuel flow rate becomes QQ3, which becomes Q2-0 (
(See Figure 7).

1 ところで、計量ジェット19の燃料流量Q1は第7図に
示すように前後差圧(P、−P5)の平方根に比例して
変化するが、流量Q、に噴射流量Q2の他にリターンさ
れる一定流量Q3を予め付加しておくことによって、噴
射流量Q2が差圧(P+   Ps)に対して直線的に
変化する部分を取り出すことができる。そのために、計
量ジェット19の流量Q1と前後差圧(p、−p5)に
関し、自動車用として十分な広範囲に亘るダイナミック
レンジを得ることができる。
1 By the way, as shown in Fig. 7, the fuel flow rate Q1 of the metering jet 19 changes in proportion to the square root of the differential pressure across the front and rear (P, -P5), but the fuel flow rate Q1 is returned to the flow rate Q in addition to the injection flow rate Q2. By adding the constant flow rate Q3 in advance, it is possible to extract the portion where the injection flow rate Q2 changes linearly with respect to the differential pressure (P+Ps). Therefore, regarding the flow rate Q1 of the metering jet 19 and the differential pressure across the front and rear (p, -p5), a wide dynamic range sufficient for use in automobiles can be obtained.

上述のように本実施例によれば、構造が比較的簡単であ
るから、製造コストを低廉にすることができ、しかも応
答性が良く、自動車用として十分なダイナミックレンジ
を有する燃料噴射装置を実現することができる。
As described above, according to this embodiment, the structure is relatively simple, so manufacturing costs can be reduced, and a fuel injection device with good responsiveness and a sufficient dynamic range for automobiles can be realized. can do.

尚、第一及び第二ソレノイドバルブ9,10は夫々開口
面積設定手段を構成するが、この開口面積設定手段はソ
レノイドバルブに限定されることなく、ステッピングモ
ータ等を用いて電気的に開口面積を増減調整するように
してもよい。或いは、2 二つの開口面積設定手段のうち、何れか一方をジェット
として構成してもよい。
Note that the first and second solenoid valves 9 and 10 each constitute an opening area setting means, but this opening area setting means is not limited to a solenoid valve, and may electrically set the opening area using a stepping motor or the like. It may be adjusted to increase or decrease. Alternatively, either one of the two opening area setting means may be configured as a jet.

又、上述の実施例は単点式燃料噴射装置に関するもので
あるが、多点式燃料噴射装置にも採用できることはいう
までもない。この場合、燃料噴射弁18と計量ジェット
19とを各気筒毎に配設し、夫々単一の第一燃圧レギュ
レータ2と第三燃圧レギュレータ12に接続すればよく
、燃料噴射量Q2を均等に各気筒毎に分配することがで
きる。
Further, although the above-described embodiments relate to a single-point fuel injection system, it goes without saying that the present invention can also be applied to a multi-point fuel injection system. In this case, the fuel injection valve 18 and the metering jet 19 may be arranged for each cylinder and connected to a single first fuel pressure regulator 2 and a single third fuel pressure regulator 12, respectively, and the fuel injection amount Q2 can be equally distributed to each cylinder. It can be distributed to each cylinder.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明に係る燃料噴射装置は、エンジンの要
求燃料流量に応じた調整燃圧を発生させる第一燃圧レギ
ュレータ及び開口面積設定手段と、調整燃圧に応じて計
量ジェットを通過して上流室へ流入する燃料流量のうち
、差圧ジェットを介してリターンされる一定流量を除い
た残りの燃料流量を噴射させる燃料噴射弁とを備えたか
ら、構造が比較的簡単で製造コストを低廉にすることが
でき、しかも応答性が良く、自動車用として十分なダイ
ナミックレンジを有するという、実用上重要な利点を有
する。
As described above, the fuel injection device according to the present invention includes a first fuel pressure regulator and an opening area setting means that generate an adjusted fuel pressure according to the required fuel flow rate of the engine, and a fuel injection device that passes through the metering jet and enters the upstream chamber according to the adjusted fuel pressure. Since it is equipped with a fuel injection valve that injects the remaining fuel flow rate excluding the constant flow rate returned via the differential pressure jet out of the inflowing fuel flow rate, the structure is relatively simple and the manufacturing cost can be reduced. In addition, it has the important practical advantages of being highly responsive and having a dynamic range sufficient for use in automobiles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料噴射装置の一実施例を示す概
略断面図、第2図は第一燃圧レギュレータにおけるイン
テークマニホールド圧力と燃圧P1との関係を示す図、
第3図はパルス信号を示す図、第4図はエンジン回転数
に応じたパルス信号の周期を示す図、第5図はインテー
クマニホールド圧力とエンジン回転数に応じた調整燃圧
P。 を示す図、第6図は調整燃圧P、と上流室の燃圧P5と
の関係を示す図、第7図は差圧(PP5)と各燃料流量
との関係を示す図である。 2・・・・第−燃圧レギュレータ、6・・・・第二燃圧
レギュレータ、7・・・・燃料通路、9・・・・第一ソ
レノイドバルブ、10・・・・第二ソレノイドバルブ、
12・・・・第三燃圧レギュレータ、18・・・・燃料
噴射弁、19・・・・計量ジェット、20・・・・上流
室、20a・・・・吐出口、21・・・・下流室、22
・・・・ダイアフラム、23・・・・差圧ジェット、2
4・・・・バルブ。 5馴般川d 娯財に 1財 d 雫! 伽
FIG. 1 is a schematic sectional view showing an embodiment of a fuel injection device according to the present invention, FIG. 2 is a diagram showing the relationship between intake manifold pressure and fuel pressure P1 in the first fuel pressure regulator,
FIG. 3 is a diagram showing a pulse signal, FIG. 4 is a diagram showing the period of the pulse signal depending on the engine speed, and FIG. 5 is a diagram showing the intake manifold pressure and the adjusted fuel pressure P depending on the engine speed. FIG. 6 is a diagram showing the relationship between the adjusted fuel pressure P and the fuel pressure P5 in the upstream chamber, and FIG. 7 is a diagram showing the relationship between the differential pressure (PP5) and each fuel flow rate. 2...First fuel pressure regulator, 6...Second fuel pressure regulator, 7...Fuel passage, 9...First solenoid valve, 10...Second solenoid valve,
12...Third fuel pressure regulator, 18...Fuel injection valve, 19...Metering jet, 20...Upstream chamber, 20a...Discharge port, 21...Downstream chamber , 22
...Diaphragm, 23...Differential pressure jet, 2
4...Valve. 5 familiar river d 1 good for recreational goods d Drop! Fairy tale

Claims (1)

【特許請求の範囲】 インテークマニホールド圧力に応じた燃圧を発生させる
第一燃圧レギュレータと、一定の燃圧を発生させる第二
燃圧レギュレータと、該第一及び第二燃圧レギュレータ
を接続する燃料通路に設けられていてその間からインテ
ークマニホールド圧力とエンジン回転数に応じた燃圧を
発生させる少なくとも一方がエンジン回転数に応じて開
口面積を調整し得る二つの開口面積設定手段と、該イン
テークマニホールド圧力とエンジン回転数に応じた燃圧
を調整燃圧に変換せしめる第三燃圧レギュレータと、 計量ジェットを介して前記第一燃圧レギュレータから燃
料が流入すると共に燃料の吐出口を備えた上流室と、前
記調整燃圧が印加され且つ差圧ジェットを介して上流室
と連通すると共に一定流量がリターンされる下流室と、
前記上流室と下流室を仕切ると共に吐出口を開閉し得る
バルブを連動せしめるダイアフラムとを有する燃料噴射
弁と、を備えた燃料噴射装置。
[Claims] A first fuel pressure regulator that generates fuel pressure according to intake manifold pressure, a second fuel pressure regulator that generates a constant fuel pressure, and a fuel passage that connects the first and second fuel pressure regulators. two opening area setting means, at least one of which generates fuel pressure in accordance with the intake manifold pressure and engine rotational speed between which the opening area can be adjusted in accordance with the engine rotational speed; an upstream chamber into which fuel flows from the first fuel pressure regulator via a metering jet and is provided with a fuel outlet, to which the adjusted fuel pressure is applied and the difference is adjusted; a downstream chamber communicating with the upstream chamber via a pressure jet and to which a constant flow rate is returned;
A fuel injection device comprising: a fuel injection valve having a diaphragm that partitions the upstream chamber and the downstream chamber and interlocks a valve that can open and close a discharge port.
JP2077286A 1990-03-27 1990-03-27 Fuel injector Expired - Fee Related JPH0826834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2077286A JPH0826834B2 (en) 1990-03-27 1990-03-27 Fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2077286A JPH0826834B2 (en) 1990-03-27 1990-03-27 Fuel injector

Publications (2)

Publication Number Publication Date
JPH03279671A true JPH03279671A (en) 1991-12-10
JPH0826834B2 JPH0826834B2 (en) 1996-03-21

Family

ID=13629629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2077286A Expired - Fee Related JPH0826834B2 (en) 1990-03-27 1990-03-27 Fuel injector

Country Status (1)

Country Link
JP (1) JPH0826834B2 (en)

Also Published As

Publication number Publication date
JPH0826834B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US3930481A (en) Fuel injection system for internal combustion engines
US4895184A (en) Fluid servo system for fuel injection and other applications
US10954904B2 (en) Pressure-regulating device for a fuel consumption measurement system and fuel consumption measurement system
US4211201A (en) Fuel supply apparatus for internal combustion engines
JPH02286871A (en) Fuel injection device
JPH03279671A (en) Fuel injection device
US2442954A (en) Control apparatus for internalcombustion engines
EP0497386B1 (en) Fuel supply system for injection carburetors
JPS5824627B2 (en) Fuel control device for internal combustion engines
US4549515A (en) Fuel injection system
US4341192A (en) Fuel injection system
US4364361A (en) Fuel injection system
US3951119A (en) Fuel injection system
RU2386838C1 (en) Aircraft engine acs
JPH08531Y2 (en) Multi-point fuel injector
US2989065A (en) Fuel control unit for internal combustion engines
JP2569649Y2 (en) Fuel injection device
JPH03968A (en) Fuel supply device
JPS5974365A (en) Fuel feed device for internal-combustion engine
JPH03111662A (en) Fuel injection device
US4986240A (en) Fuel injection device for injection carburetors
US4150641A (en) Arrangement for controlling an air-fuel ratio of an air-fuel mixture of an internal combustion engine
JP2512145Y2 (en) Fuel supply device
JPH03134263A (en) Air-fuel ratio adjusting mechanism for fuel injection device
JPH03168358A (en) Pressure balance type fuel injection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees