JPH0450189A - Method and apparatus for production of compound semiconductor single crystal - Google Patents
Method and apparatus for production of compound semiconductor single crystalInfo
- Publication number
- JPH0450189A JPH0450189A JP15855790A JP15855790A JPH0450189A JP H0450189 A JPH0450189 A JP H0450189A JP 15855790 A JP15855790 A JP 15855790A JP 15855790 A JP15855790 A JP 15855790A JP H0450189 A JPH0450189 A JP H0450189A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- heater
- temperature distribution
- longitudinal direction
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 150000001875 compounds Chemical class 0.000 title claims description 25
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 239000011810 insulating material Substances 0.000 claims abstract description 15
- 239000003708 ampul Substances 0.000 claims description 21
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 37
- 239000011521 glass Substances 0.000 description 8
- 229910000953 kanthal Inorganic materials 0.000 description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【発明の詳細な説明】
「産業上の利用分野」
本発明は、ボート法によるm−V族等の化合物半導体単
結晶の製造方法及び製造装置に関する。DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method and apparatus for manufacturing compound semiconductor single crystals such as m-V group by boat method.
「従来の技術」
近年、電子工業の分野においては、転位やリネージ等の
結晶欠陥の少ない、GaAs、 InP。"Prior Art" In recent years, in the field of electronics industry, GaAs and InP, which have few crystal defects such as dislocations and lineages, have been used.
InAsなとの化合物半導体単結晶を、安価に製造する
方法が種々研究されている。Various methods of manufacturing compound semiconductor single crystals such as InAs at low cost are being studied.
化合物半導体単結晶の製造方法としては、ボート法と引
上げ法がよ(知られているが、このうちボート法は、引
上げ法に比べて温度勾配が小さ(、ストイキオメトリ−
制御が容易であるため、結晶欠陥が少ない単結晶を育成
することができる利点がある。The boat method and the pulling method are known as methods for manufacturing compound semiconductor single crystals, but the boat method has a smaller temperature gradient (and stoichiometry) than the pulling method.
Since it is easy to control, it has the advantage of being able to grow single crystals with few crystal defects.
ボート法には、水平ブリッジマン法(FIB法)と温度
傾斜法(GF法)とがあるが、いずれも、長尺なボート
に原料融液を入れ、長手方向に温度勾配を設けた横型炉
内で、ボートの一端から結晶固化して、単結晶を製造す
る方法である。The boat method includes the horizontal Bridgman method (FIB method) and the temperature gradient method (GF method), both of which use a horizontal furnace in which a raw material melt is placed in a long boat and a temperature gradient is created in the longitudinal direction. This method produces a single crystal by solidifying the crystal from one end of the boat.
ボート法は、温度勾配が小さいために、炉内の温度分布
、特に固液界面近傍の温度分布を正確に制御することが
重要である。また、結晶固化け、原料融液の自由表面か
ら始まり、ボートの底部に向けて進行するので、炉の長
軸方向の温度勾配と共に、炉の上下方向の温度勾配も正
確に制御する必要がある。Since the boat method has a small temperature gradient, it is important to accurately control the temperature distribution in the furnace, especially the temperature distribution near the solid-liquid interface. In addition, since crystallization starts from the free surface of the raw material melt and progresses toward the bottom of the boat, it is necessary to accurately control the temperature gradient in the longitudinal direction of the furnace as well as the temperature gradient in the vertical direction of the furnace. .
第4図には、ボート法による従来の単結晶の製造装置の
一例として、特開昭62−153184号に開示された
装置が示されている。FIG. 4 shows an apparatus disclosed in Japanese Patent Application Laid-open No. 153184/1984 as an example of a conventional single crystal manufacturing apparatus using the boat method.
この装置は、原料融液6を収容するボート5を石英製の
アンプル管4内に封入し、このアンプル管4を炉内に配
置している。炉は、上記アンプル管4を囲むヒータ3と
、このヒータ3の外周を覆う断熱材2と、更に断熱材2
の外側を囲むケーシング1とで構成されている。そして
、断熱材2及びヒータ3の上方に、原料融液の熱を放散
するための放熱口を設け、この放熱口にガラス板8を嵌
込んで、放熱を兼ねた結晶観察用の窓としている。この
従来例では、放熱口の両側に移動壁9を配置し、ガラス
板8上の空間の容積を変更して放熱量を調節し、それに
よって原料融液6の上層の温度を制御することを特徴と
している。In this device, a boat 5 containing a raw material melt 6 is enclosed in an ampoule tube 4 made of quartz, and the ampoule tube 4 is placed in a furnace. The furnace includes a heater 3 surrounding the ampoule tube 4, a heat insulating material 2 covering the outer periphery of the heater 3, and a heat insulating material 2.
It consists of a casing 1 surrounding the outside of the casing 1. A heat dissipation port is provided above the heat insulating material 2 and the heater 3 to dissipate the heat of the raw material melt, and a glass plate 8 is fitted into this heat dissipation port to serve as a window for crystal observation that also serves as heat dissipation. . In this conventional example, movable walls 9 are arranged on both sides of the heat radiation port, and the volume of the space above the glass plate 8 is changed to adjust the amount of heat radiation, thereby controlling the temperature of the upper layer of the raw material melt 6. It is a feature.
また、第5図には、ボート法による従来の単結晶の製造
装置の他の例として、特開平1219091号に開示さ
れた装置が示されている。Further, FIG. 5 shows an apparatus disclosed in Japanese Patent Application Laid-Open No. 1219091 as another example of a conventional single crystal manufacturing apparatus using the boat method.
なお、第4図と同一部分には同符合が付されている。Note that the same parts as in FIG. 4 are given the same reference numerals.
この装置は、第4図に示される装置と基本的には同じで
あるが、放熱口に枠体7を装着し、この枠体7にガラス
板8を嵌込んでいる。そして、枠体7を取り替えるなど
の方法によって、ガラス板8の高さを変化させ、それに
よって放熱量を調節し、原料融液6の上層の温度を制御
することを特徴としている。This device is basically the same as the device shown in FIG. 4, but a frame 7 is attached to the heat radiation port, and a glass plate 8 is fitted into the frame 7. The height of the glass plate 8 is changed by replacing the frame 7 or the like, thereby adjusting the amount of heat radiation and controlling the temperature of the upper layer of the raw material melt 6.
これら従来の装置は、炉体の放熱口部分の構造を変化さ
せて、炉内の上下方向の温度分布を制御するものである
。These conventional devices control the temperature distribution in the vertical direction within the furnace by changing the structure of the heat radiation port portion of the furnace body.
一方、特公昭59−38185号には、第6図 (イ)
、(ロ)に示される横型炉が提案されている。On the other hand, in Special Publication No. 59-38185, Figure 6 (a)
A horizontal furnace shown in (b) has been proposed.
第6図において、A2、A3は高温加熱部、B2、B3
は中温加熱部、C2、C8は低温加熱部であり、10は
結晶観察用窓で、ここに原料融液の固液界面が存在する
。第6図(イ)に示す炉は、加熱部A2及びB2の結晶
観察用窓10側にそれぞれ上下に二つに分割された加熱
体a、b及びC,dが設けられ、他の加熱炉は管状の加
熱体11から構成されている。また、第6図 (ロ)に
示す炉は、加熱部A3の結晶観察用窓10側の加熱炉を
加熱体a、bで構成し、加熱部B3の結晶観察用窓10
側に、1個多い管状の加熱体11°を設け、他の加熱炉
は管状の加熱体11から構成されている。In Fig. 6, A2 and A3 are high temperature heating parts, B2 and B3
1 is a medium temperature heating section, C2 and C8 are low temperature heating sections, and 10 is a crystal observation window where the solid-liquid interface of the raw material melt exists. The furnace shown in FIG. 6(a) is provided with heating bodies a, b, C, and d divided into two vertically, respectively, on the crystal observation window 10 side of heating parts A2 and B2, and is composed of a tubular heating body 11. Further, in the furnace shown in FIG. 6(B), the heating furnace on the side of the crystal observation window 10 of the heating section A3 is composed of heating elements a and b, and the heating furnace on the side of the crystal observation window 10 of the heating section B3 is
One more tubular heating element 11° is provided on the side, and the other heating furnace is composed of tubular heating elements 11.
この従来例においては、加熱体a、b、c、d、11.
11゛にかける電力量をそれぞれ独立して制御すること
により、炉の長軸方向における温度分布と、特に固液界
面近傍における炉の上下方向の温度分布とを、所定の分
布となるように制御することを特徴としている。すなわ
ち、この従来の装置は、温度制御を加熱体にかける電力
量で調整しようとするものである。In this conventional example, heating elements a, b, c, d, 11.
By independently controlling the amount of power applied to each element, the temperature distribution in the long axis direction of the furnace and the temperature distribution in the vertical direction of the furnace, especially near the solid-liquid interface, can be controlled to a predetermined distribution. It is characterized by That is, in this conventional device, temperature control is attempted to be adjusted by the amount of electric power applied to the heating element.
「発明が解決しようとする課題」
しかしながら、特開昭62−153184号、特開平1
−219091号のように、炉体の放熱口部分の構造を
変更して上下方向の温度勾配を制御する装置は、最適な
温度勾配を得るまでに、温度調節用の治具の位置や、ガ
ラス板の位置を変更しては炉内の温度を測定しなければ
ならず、手間と時間を要するという問題があった。また
、単結晶の種類や、大きさ、長さ等により、最適な温度
勾配は微妙に異なるため、目的とする単結晶が変わる毎
に、治具やガラス板を調節しなければならず、非効率的
であった。更に、上記の装置では、温度勾配を変化させ
ることのできる温度幅も小さく、十分な調整ができない
という問題もあった。そのうえ、炉体やケーシング、ガ
ラス板等は、高温に長時間さらされるため、熱的な変形
が生じやすく、温度勾配を調節した後であっても、これ
らの変形のために温度勾配が所望の値からずれてしまい
、結晶の品質に悪影響を及ぼす場合もあった。"Problem to be solved by the invention" However, JP-A-62-153184, JP-A-1
-219091, which controls the temperature gradient in the vertical direction by changing the structure of the heat dissipation port of the furnace body, requires the position of the temperature adjustment jig, the glass There was a problem in that the temperature inside the furnace had to be measured by changing the position of the plate, which required time and effort. In addition, the optimal temperature gradient differs slightly depending on the type, size, length, etc. of the single crystal, so the jig and glass plate must be adjusted every time the desired single crystal changes. It was efficient. Furthermore, in the above-mentioned apparatus, the temperature range in which the temperature gradient can be changed is also small, and there is a problem in that sufficient adjustment cannot be made. Furthermore, since the furnace body, casing, glass plate, etc. are exposed to high temperatures for long periods of time, they tend to undergo thermal deformation, and even after adjusting the temperature gradient, these deformations may cause the temperature gradient to not reach the desired level. In some cases, the value deviated from the value, which adversely affected the quality of the crystal.
一方、特公昭59−38185号に示される、加熱体を
複数に分割して、それぞれの加熱体に印加する電力を調
整して温度勾配を制御する装置は、電力量の微調整によ
る制御であることから、上記の炉体の構造を変えて制御
する方法に比べれば、短時間で、再現性よく所望の温度
勾配を得ることができるという利点がある。しかしなが
ら、上記の装置では、結晶観察用窓の両側に3ゾ一ン以
上の独立に制御しつる加熱体が設けられ、これらは、そ
れぞれ独立に、長軸方向の温度勾配及び上下方向の温度
勾配に関わり、かつ、炉内の温度保持の役割も有するた
め、例えば、長軸方向の温度勾配を所望の値とした後、
上下方向の温度を調節すると、長軸方向の温度にずれが
生じ、再調節が必要になるなど、温度調節に時間及び手
間がかかるという問題があった。そして、温度勾配を微
妙に調節しようとして、加熱体の数を多くするほど、温
度調節に時間がかかるので、理想的な温度分布を得るに
は、かなりの熟練が要求された。On the other hand, the device shown in Japanese Patent Publication No. 59-38185 that divides the heating element into multiple parts and controls the temperature gradient by adjusting the power applied to each heating element is a control method based on fine adjustment of the amount of electric power. Therefore, compared to the method of controlling by changing the structure of the furnace body, this method has the advantage that a desired temperature gradient can be obtained in a short time and with good reproducibility. However, in the above-mentioned apparatus, three or more zones of independently controlled heating elements are provided on both sides of the crystal observation window, and these zones independently control the temperature gradient in the longitudinal direction and the temperature gradient in the vertical direction. For example, after setting the temperature gradient in the long axis direction to a desired value,
When the temperature in the vertical direction is adjusted, a deviation occurs in the temperature in the longitudinal direction, and readjustment is required.Therefore, there is a problem in that temperature adjustment takes time and effort. In order to finely adjust the temperature gradient, the more heating elements are used, the longer it takes to adjust the temperature, so a great deal of skill is required to obtain an ideal temperature distribution.
また、結晶観察用窓の近傍に設ける複数に分割された加
熱体は、その構造上、通常発熱体として用いられるカン
タル線などのヒータ線を、長軸方向又は円周方向に波形
のつづれ折りヒータにしたものか、セラミックス等の特
殊な面発熱体等を用いたものであるため、通常のスパイ
ラル構造で作成される主加熱体とは別々に作成し、その
後組み合わせることが必要であり、構造が複雑化し、加
熱体のコストが高(なるという問題もあった。また、結
晶観察用窓の近傍において複数に分割された加熱体は、
炉内の温度保持の役割も有することから、印加する電力
量も多く、そのためカンタル線の使用寿命が短(、メン
テナンスにおいても非常にコストがかかるという問題も
有していた。In addition, due to its structure, the heating element, which is divided into a plurality of parts and provided near the crystal observation window, uses a heater wire such as a Kanthal wire, which is normally used as a heating element, that is folded in a corrugated manner in the longitudinal direction or the circumferential direction. Because it uses special surface heating elements such as ceramics, it is necessary to create it separately from the main heating element, which is created with a normal spiral structure, and then combine it. There was also the problem that the heating element was complicated and the cost of the heating element was high.Also, the heating element was divided into multiple parts near the crystal observation window.
Since Kanthal wire also plays the role of maintaining the temperature inside the furnace, it requires a large amount of electric power to be applied, and as a result, the service life of Kanthal wire is short (and maintenance costs are also high).
本発明は、上記従来技術の問題点に鑑みてなされたもの
であり、その目的は、炉内の温度勾配、特に結晶観察用
窓付近の温度勾配を、所望の値に容易かつ再現性よく調
節することができ、しかも製造コストが低減され、装置
の寿命も向上するようにした化合物半導体単結晶の製造
方法及び製造装置を提供することにある。The present invention has been made in view of the problems of the prior art described above, and its purpose is to easily and reproducibly adjust the temperature gradient in the furnace, especially the temperature gradient near the crystal observation window, to a desired value. It is an object of the present invention to provide a method and apparatus for manufacturing a compound semiconductor single crystal, which can reduce the manufacturing cost and improve the life of the device.
[課題を解決するための手段]
上記目的を達成するため、本発明の化合物半導体単結晶
の製造方法は、原料を載せたボートをアンプル管に封入
し、このアンプル管を所定の温度分布を有する炉内に配
置し、前記ボート内の原料融液を一端から徐々に固化し
て単結晶を得るようにしたボート法による化合物半導体
単結晶の製造方法において、前記炉の上部に結晶観察用
窓を形成し、前記炉の長手方向に沿って印加電力を独立
に制御できる複数のゾーンを有する主ヒータを取付け、
かつ、前記結晶観察用窓の近傍の前記主ヒータに補助ヒ
ータを重複して取付け、前記主ヒータによって前記炉の
長手方向における温度分布を調節し、前記補助ヒータに
よって前記炉の上下方向の温度分布を調節して、原料融
液の固化を行なうことを特徴とする。[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a compound semiconductor single crystal of the present invention includes: enclosing a boat loaded with raw materials in an ampoule tube; A method for manufacturing a compound semiconductor single crystal by a boat method in which the raw material melt in the boat is placed in a furnace and gradually solidified from one end to obtain a single crystal, wherein a window for crystal observation is provided in the upper part of the furnace. forming and installing a main heater having a plurality of zones in which the applied power can be independently controlled along the length of the furnace;
Further, an auxiliary heater is attached redundantly to the main heater near the crystal observation window, the main heater adjusts the temperature distribution in the longitudinal direction of the furnace, and the auxiliary heater adjusts the temperature distribution in the vertical direction of the furnace. The method is characterized in that the raw material melt is solidified by adjusting the .
また、本発明の化合物半導体単結晶の製造装置は、原料
を載せたボートをアンプル管に封入し、このアンプル管
を所定の温度分布を有する炉内に配置し、前記ボート内
の原料融液を一端から徐々に固化して単結晶を得るよう
にしたボート法による化合物半導体単結晶の製造装置に
おいて、
前記アンプル管を収容すべ(、全体として水平方向に伸
びる細長い容器形状をなし、上壁部の所定箇所に結晶観
察用窓が形成された断熱材と、
この断熱材の内側に配置され、長手方向に沿って複数の
ゾーンを有し、各ゾーンにおいて独自に印加電力を制御
できる主ヒータと、前記結晶観察用窓の近傍において、
前記主ヒータに重複して配置され、独自に印加電力を制
御できる補助ヒータとによって前記炉が構成されており
、
前記主ヒータによって前記炉の長平方向における温度分
布を調節し、前記補助ヒータによって前記炉の上下方向
の温度分布を調節して、原料融液の固化を行なうように
したことを特徴とする。Further, in the compound semiconductor single crystal manufacturing apparatus of the present invention, a boat loaded with raw materials is sealed in an ampoule tube, the ampoule tube is placed in a furnace having a predetermined temperature distribution, and the raw material melt in the boat is heated. In an apparatus for producing a compound semiconductor single crystal using a boat method in which a single crystal is obtained by gradually solidifying from one end, the ampoule tube is housed (the ampoule tube has an elongated container shape extending in the horizontal direction as a whole, and the upper wall portion is A heat insulating material in which crystal observation windows are formed at predetermined locations; a main heater that is placed inside the insulating material and has multiple zones along the longitudinal direction, and can independently control applied power in each zone; In the vicinity of the crystal observation window,
The furnace is configured by an auxiliary heater which is arranged to overlap with the main heater and whose applied power can be independently controlled; the main heater adjusts the temperature distribution in the longitudinal direction of the furnace; It is characterized in that the temperature distribution in the vertical direction of the furnace is adjusted to solidify the raw material melt.
本発明においては、前記補助ヒータは、前記結晶観察用
窓の長手方向の長さと同じ長さか、それよりも長い長さ
を有することが好ましい。In the present invention, it is preferable that the auxiliary heater has a length equal to or longer than the length in the longitudinal direction of the crystal observation window.
また、前記補助ヒータは、前記結晶観察用窓の近傍に位
置する前記主ヒータの1つのゾーン内に、主ヒータの外
側に配置されていることが好ましく、主ヒータの内側に
あってもよい。Further, the auxiliary heater is preferably arranged outside the main heater in one zone of the main heater located near the crystal observation window, or may be arranged inside the main heater.
「作用」
本発明では、炉の長手方向全体に亙って主ヒータが配置
されており、補助ヒータは、結晶観察用窓の近傍で、主
ヒータの外側に重複して配置されている。このように、
補助ヒータが配置された部分には主ヒータも配置されて
おり、主ヒータによって炉内の長手方向に沿った基本的
な温度分布が保持されるので、補助ヒータは、結晶観察
用窓の近傍において炉内の上下方向の温度分布を調節で
きる程度の発熱量があればよい。すなわち、補助ヒータ
の電力は比較的小さいものでよく、言い換えると、炉の
長手方向全体に亙って配置された主ヒータに、簡単な補
助ヒータを付設するだけで装置を製作することができる
。したがって、特公昭59−38185号に示される装
置のように、炉の長手方向及び上下方向に分割された複
数の加熱体を別々に製作し、それを組み立てるというよ
うな複雑な作業を必要とせず、装置を安価にかつ容易に
製作できる。"Operation" In the present invention, the main heater is arranged over the entire longitudinal direction of the furnace, and the auxiliary heater is arranged near the crystal observation window and overlaps with the outside of the main heater. in this way,
The main heater is also placed in the area where the auxiliary heater is placed, and the main heater maintains the basic temperature distribution along the longitudinal direction of the furnace, so the auxiliary heater is placed near the crystal observation window. It is sufficient that the amount of heat generated is sufficient to adjust the temperature distribution in the vertical direction inside the furnace. That is, the electric power of the auxiliary heater may be relatively small. In other words, the apparatus can be manufactured by simply attaching a simple auxiliary heater to the main heater arranged along the entire length of the furnace. Therefore, unlike the device shown in Japanese Patent Publication No. 59-38185, there is no need for the complicated work of separately manufacturing and assembling multiple heating bodies divided into longitudinal and vertical directions of the furnace. , the device can be manufactured inexpensively and easily.
また、本発明では、主ヒータによって炉の長手方向に沿
った基本的な温度分布を形成し、補助ヒータによ)て結
晶観察用窓の近傍の炉内の上下方向の温度分布を調節す
るので、特公昭59−38185号に示される装置のよ
うに、上下に分割された加熱体によって炉の長手方向及
び上下方向両方の温度分布を調節する方法に比べて、炉
の温度分布の制御が簡単となり、所望の温度分布を得る
ように調節する時間も短時間ですむ。Furthermore, in the present invention, the main heater forms the basic temperature distribution along the longitudinal direction of the furnace, and the auxiliary heater adjusts the temperature distribution in the vertical direction inside the furnace near the crystal observation window. , the temperature distribution in the furnace can be easily controlled compared to the method shown in Japanese Patent Publication No. 59-38185, in which the temperature distribution in both the longitudinal direction and the vertical direction of the furnace is adjusted using heating elements divided into upper and lower parts. Therefore, it takes only a short time to adjust the temperature to obtain the desired temperature distribution.
更に、補助ヒータへ印加する電力は小さくてよいので、
その使用寿命が長くなる。Furthermore, since the power applied to the auxiliary heater can be small,
Its service life will be longer.
このように、本発明では、装置を安価にかつ容易に製作
することができ、炉の長手方向及び上下方向の温度分布
を所望の値となるように、短時間に再現性良(制御する
ことができ、ひいては化合物半導体単結晶の製造コスト
を低減することができる。As described above, according to the present invention, the apparatus can be manufactured easily and at low cost, and the temperature distribution in the longitudinal direction and vertical direction of the furnace can be controlled in a short period of time with good reproducibility (controllable This makes it possible to reduce the manufacturing cost of compound semiconductor single crystals.
「実施例」
第1図及び第2図には、本発明の化合物半導体単結晶の
製造装置の一実施例が示されている。Embodiment FIGS. 1 and 2 show an embodiment of the compound semiconductor single crystal manufacturing apparatus of the present invention.
この装置は、全体として水平方向に伸びる細長い容器形
状又は筒形状をなす断熱材12を有し、断熱材12の上
壁部には結晶観察用窓16が形成されている。断熱材1
2の内周には主ヒータ20が配置されている。また、主
ヒータ20の更に内周には、石英製の炉芯管(均熱管)
13が配置されている。そして、この炉芯管13内に、
原料を入れたボート15が収容されたアンプル管(反応
管)14が設置されるようになっている。なお、断熱材
12の外側を更にケーシングで覆うようにしてもよく、
結晶観察用窓16にはガラス板等の蓋が嵌込まれていて
もよい。This device has a heat insulating material 12 that has an elongated container shape or a cylindrical shape that extends horizontally as a whole, and a crystal observation window 16 is formed in the upper wall of the heat insulating material 12. Insulation material 1
A main heater 20 is arranged on the inner periphery of the main heater 2 . Further, on the inner periphery of the main heater 20, there is a quartz furnace core tube (uniform heating tube).
13 are arranged. In this furnace core tube 13,
An ampoule tube (reaction tube) 14 containing a boat 15 containing raw materials is installed. Note that the outside of the heat insulating material 12 may be further covered with a casing,
A lid such as a glass plate may be fitted into the crystal observation window 16.
主ヒータ20は、炉体の長手方向に所定の温度分布を形
成するように、長手方向に沿って複数のゾーン21〜2
8に区画されている。この実施例の場合、主ヒータ20
は、カンタル線等をスパイラル状に形成した構造をなし
ている。The main heater 20 has a plurality of zones 21 to 2 along the longitudinal direction so as to form a predetermined temperature distribution in the longitudinal direction of the furnace body.
It is divided into 8 sections. In this embodiment, the main heater 20
has a structure in which Kanthal wires or the like are formed in a spiral shape.
主ヒータ20を構成するヒータ線は、ゾーン21〜28
に亙って1本あるいは多くとも2〜3本であり、各ゾー
ン毎に端子を設けて独自に電力を印加できるようにされ
ている。The heater wires constituting the main heater 20 are in zones 21 to 28.
There are one or at most two or three wires for each zone, and a terminal is provided for each zone so that electric power can be applied independently.
断熱材12の結晶観察用窓16の炉体の長手方向に沿っ
た両側部分には、補助ヒータ17が配置されている。こ
の補助ヒータ17は、結晶観察用窓16からの放熱量を
十分補うことができるように、結晶観察用窓16の炉体
の長手方向に沿った長さと同じかそれよりも長い長さと
されている。また、補助ヒータ17の影響による主ヒー
タ20の制御の複雑化を避けるため、補助ヒータ17は
主ヒータ20の結晶観察用窓16の位置に配置された1
つのゾーン24内に配置されている。Auxiliary heaters 17 are arranged on both sides of the crystal observation window 16 of the heat insulating material 12 along the longitudinal direction of the furnace body. This auxiliary heater 17 has a length that is equal to or longer than the length of the crystal observation window 16 along the longitudinal direction of the furnace body so that the amount of heat dissipated from the crystal observation window 16 can be sufficiently supplemented. There is. In addition, in order to avoid complicating the control of the main heater 20 due to the influence of the auxiliary heater 17, the auxiliary heater 17 is placed at the position of the crystal observation window 16 of the main heater 20.
are arranged within one zone 24.
また、第1図に示すように、補助ヒータ17は、熱的効
率を最大限に良くするため、主ヒータ20の外側に重複
し、かつ、断熱材12の内側に配置されている。この実
施例の場合、補助ヒータ17は、波形につづれ折りされ
たヒータ線で構成されている。なお、補助ヒータ17と
主ヒータ20との電気的短絡を防止するため、補助ヒー
タ17のヒータ線は、絶縁物の管の中に入れるなどの処
置をすることが好ましい。Further, as shown in FIG. 1, the auxiliary heater 17 is arranged on the outside of the main heater 20 and inside the heat insulating material 12 in order to maximize thermal efficiency. In this embodiment, the auxiliary heater 17 is composed of a heater wire folded into a waveform. Note that in order to prevent an electrical short circuit between the auxiliary heater 17 and the main heater 20, it is preferable that the heater wire of the auxiliary heater 17 be placed inside an insulating tube.
この装置では、断熱材12と主ヒータ20と炉芯管13
と補助ヒータ17とによって炉体が構成されている。そ
して、図示を省略したが、アンプル管14を炉芯管13
内に配置した状態でアンプル管14と炉体とを相対的に
移動させる手段が設けられている。この手段としては、
例えばアンプル管14を支持棒で保持し、炉体を移動さ
せる手段などが採用される。こうして、アンプル管14
内のボート15に入った原料融液を、ボート15の端部
から徐々に固化させて単結晶を製造することができる。In this device, a heat insulating material 12, a main heater 20, a furnace core tube 13
and the auxiliary heater 17 constitute a furnace body. Although not shown, the ampoule tube 14 is connected to the furnace core tube 13.
Means is provided for relatively moving the ampoule tube 14 and the furnace body while disposed within the ampoule tube 14. As a means of this,
For example, a method is employed in which the ampoule tube 14 is held by a support rod and the furnace body is moved. In this way, the ampoule tube 14
A single crystal can be produced by gradually solidifying the raw material melt entering the inner boat 15 from the end of the boat 15.
第3図には、本発明の化合物半導体単結晶の製造装置の
他の実施例が示されている。FIG. 3 shows another embodiment of the compound semiconductor single crystal manufacturing apparatus of the present invention.
この装置は、補助ヒータ17を導電性セラミックス等か
らなる公知の面ヒータで構成したものであり、他の部分
の構造は第1図及び第2図に示した装置と同じなので、
その説明を省略する。In this device, the auxiliary heater 17 is constructed of a known surface heater made of conductive ceramics, etc., and the structure of the other parts is the same as the device shown in FIGS. 1 and 2.
The explanation will be omitted.
試験例
第1図及び第2図に示される装置(以下、実施例の装置
と記す)と、従来の第6図(イ)に示される装置(以下
、従来の装置と記す)とを製作し、それぞれの装置で、
GaAs単結晶を製造して、装置の製作費、所望の温度
勾配を得るための調整に要する時間、炉が劣化により使
用不能になるまでの時間、及び得られる単結晶の品質を
比較した。Test Example The device shown in FIGS. 1 and 2 (hereinafter referred to as the device of the example) and the conventional device shown in FIG. 6 (a) (hereinafter referred to as the conventional device) were manufactured. , in each device,
GaAs single crystals were manufactured and the manufacturing costs of the equipment, the time required for adjustment to obtain the desired temperature gradient, the time until the furnace became unusable due to deterioration, and the quality of the resulting single crystals were compared.
(a)装置の製作費
実施例の装置は、主ヒータ20を一般的なカンタル線か
らなるスパイラル構造のヒータで構成し、補助ヒータ1
7を波形につづれ折りしたヒータ線で構成して製作した
。(a) Manufacturing cost of the device In the device of the embodiment, the main heater 20 is constituted by a heater with a spiral structure made of a general Kanthal wire, and the auxiliary heater 1
7 was made of heater wires folded into a waveform.
一方、従来の装置は、結晶観察用窓の近傍に設ける加熱
体a、b、c、dを波形につづれ折りしたヒータ線で形
成し、炉体の長手方向に沿った加熱体11.11°をカ
ンタル線からなるスパイラル構造のヒータで形成し、各
加熱体を組み合わせて製作した。On the other hand, in the conventional apparatus, the heating elements a, b, c, and d provided near the crystal observation window are formed of heater wires folded in a waveform, and the heating elements are arranged at an angle of 11.11° along the longitudinal direction of the furnace body. was formed using a spiral-structured heater made of Kanthal wire, and was manufactured by combining each heating element.
こうして製作された装置の製作費を比較したところ、実
施例の装置は、従来の装置の約70%の費用で製作でき
た。A comparison of the manufacturing costs of the devices manufactured in this way revealed that the device of the example could be manufactured at approximately 70% of the cost of the conventional device.
(b)所望の温度勾配を得るための調整に要する時間
実施例の装置において、炉体の長手方向の温度勾配を、
主ヒータ20の各ゾーン21〜28に印加する電力を制
御して、所望の値に調整した。その後、補助ヒータ17
に電力を印加し、上下方向の温度勾配を調整した。上下
方向の温度勾配の調整は、補助ヒータ17にわずかな電
力を印加するだけで行なうことができ、予め調整された
長手方向の温度勾配に影響を与えることはなかった。(b) Time required for adjustment to obtain a desired temperature gradient In the apparatus of the embodiment, the temperature gradient in the longitudinal direction of the furnace body is
The electric power applied to each zone 21 to 28 of the main heater 20 was controlled and adjusted to a desired value. After that, the auxiliary heater 17
Electric power was applied to adjust the temperature gradient in the vertical direction. The temperature gradient in the vertical direction could be adjusted by simply applying a small amount of electric power to the auxiliary heater 17, without affecting the pre-adjusted temperature gradient in the longitudinal direction.
従来の装置において、加熱体11.11 に電力を印加
して炉体の長手方向の温度勾配を調整した後、結晶観察
用窓の近傍の加熱体a、b、c、dに電力を印加して上
下方向の温度勾配を調整した。しかし、加熱体a、b、
c、dに電力を印加することによって、長手方向の温度
勾配にずれが生じたので、加熱体11.11°の印加電
力を再度調整し、これらの操作を繰り返して所望の温度
勾配を得ることができた。In the conventional apparatus, after adjusting the temperature gradient in the longitudinal direction of the furnace body by applying electric power to the heating elements 11 and 11, electric power is applied to the heating elements a, b, c, and d near the crystal observation window. to adjust the temperature gradient in the vertical direction. However, the heating elements a, b,
By applying power to c and d, a shift occurred in the temperature gradient in the longitudinal direction, so readjust the power applied to heating element 11.11° and repeat these operations to obtain the desired temperature gradient. was completed.
この結果、実施例の装置を所望の温度勾配にするために
要した時間は、従来の装置の約半分であった。As a result, the time required to achieve the desired temperature gradient in the apparatus of the example was about half that of the conventional apparatus.
(c)炉が劣化により使用不能になるまでの時間
実施例の装置と、従来の装置とを用いて、原料、結晶成
長用ポート、アンプル管等は同一条件としてGaAs単
結晶を製造した。(c) Time until the furnace becomes unusable due to deterioration GaAs single crystals were produced using the apparatus of the example and the conventional apparatus, with the raw materials, crystal growth ports, ampoule tubes, etc. being the same.
実施例の装置の炉は、約30カ月後に劣化により使用不
能となったのに対し、従来の装置は約15カ月後に使用
不能となった。すなわち、実施例の装置は、従来の装置
に比べて約2倍の期間メンテナンスフリーで使用できた
。The furnace of the apparatus of the example became unusable after about 30 months due to deterioration, whereas the conventional apparatus became unusable after about 15 months. That is, the device of the example could be used without maintenance for about twice as long as the conventional device.
(d)製造された単結晶の品質
実施例の装置で製造されたGaAs単結晶と、従来の装
置で製造されたGaAs単結晶との結晶欠陥、電気特性
等を比較したところ、はとんど同等の品質であった。(d) Quality of manufactured single crystal A comparison of crystal defects, electrical properties, etc. between the GaAs single crystal manufactured using the apparatus of the example and the GaAs single crystal manufactured using the conventional apparatus revealed that The quality was the same.
「発明の効果」
以上説明したように、本発明の■−V族等の化合物半導
体単結晶の製造方法によれば、炉を所望の温度勾配に、
短時間で、容易に、再現性よく調整することができる。"Effects of the Invention" As explained above, according to the method of manufacturing a compound semiconductor single crystal of the ■-V group, etc. of the present invention, the furnace is adjusted to a desired temperature gradient.
Adjustments can be made easily and with good reproducibility in a short time.
また、本発明の化合物半導体単結晶の製造装置は、構造
が複雑でないので製作が容易で、かつ製作費用が安価で
あり、また、劣化により使用不能になるまでの期間が長
いので、メンテナンス費用も安価である。In addition, the compound semiconductor single crystal manufacturing apparatus of the present invention has a simple structure, so it is easy to manufacture and the manufacturing cost is low.In addition, since it takes a long time to become unusable due to deterioration, maintenance costs are reduced. It's cheap.
すなわち、本発明によれば、従来の装置で製造される単
結晶と同等の品質の単結晶を、容易に、安価に製造でき
る。That is, according to the present invention, a single crystal having the same quality as a single crystal produced using a conventional apparatus can be easily produced at a low cost.
第1図は本発明の化合物半導体単結晶の製造装置の一実
施例を示す横断面図、第2図は同装置の平面断面図、第
3図は本発明の化合物半導体単結晶の製造装置の他の実
施例を示す横断面図、第4図及び第5図は従来の化合物
半導体単結晶の製造装置のそれぞれ異なる例を示す横断
面図、第6図(イ)及び(ロ)は従来の化合物半導体単
結晶の製造装置の更に異なる例を示す縦断面図である。
図中、12は断熱材、13は炉芯管、14はアンプル管
、15はボート、16は結晶観察用窓、17は補助ヒー
タ、20は主ヒータ、21〜28は主ヒータの各ゾーン
である。
第
図
第
圀FIG. 1 is a cross-sectional view showing an embodiment of the compound semiconductor single crystal manufacturing apparatus of the present invention, FIG. 2 is a plan sectional view of the same apparatus, and FIG. 3 is a cross-sectional view of the compound semiconductor single crystal manufacturing apparatus of the present invention. 4 and 5 are cross-sectional views showing different examples of the conventional compound semiconductor single crystal manufacturing apparatus, and FIGS. 6 (a) and (b) are cross-sectional views showing the conventional FIG. 3 is a longitudinal cross-sectional view showing still another example of a compound semiconductor single crystal manufacturing apparatus. In the figure, 12 is a heat insulating material, 13 is a furnace core tube, 14 is an ampoule tube, 15 is a boat, 16 is a crystal observation window, 17 is an auxiliary heater, 20 is a main heater, and 21 to 28 are each zone of the main heater. be. Map area
Claims (4)
アンプル管を所定の温度分布を有する炉内に配置し、前
記ボート内の原料融液を一端から徐々に固化して単結晶
を得るようにしたボート法による化合物半導体単結晶の 製造方法において、前記炉の上部に結晶観察用窓を形成
し、前記炉の長手方向に沿って印加電力を独立に制御で
きる複数のゾーンを有する主ヒータを取付け、かつ、前
記結晶観察用窓の近傍の前記主ヒータに補助ヒータを重
複して取付け、前記主ヒータによって前記炉の長手方向
における温度分布を調節し、前記補助ヒータによって前
記炉の上下方向の温度分布を調節して、原料融液の固化
を行なうことを特徴とする化合物半導体単結晶の製造 方法。(1) A boat loaded with raw materials is sealed in an ampoule tube, the ampoule tube is placed in a furnace with a predetermined temperature distribution, and the raw material melt in the boat is gradually solidified from one end to obtain a single crystal. In the method for manufacturing a compound semiconductor single crystal by the boat method, a main heater has a crystal observation window formed in the upper part of the furnace, and has a plurality of zones in which applied power can be independently controlled along the longitudinal direction of the furnace. and an auxiliary heater is attached redundantly to the main heater near the crystal observation window, the main heater adjusts the temperature distribution in the longitudinal direction of the furnace, and the auxiliary heater adjusts the temperature distribution in the vertical direction of the furnace. A method for producing a compound semiconductor single crystal, comprising solidifying a raw material melt by adjusting the temperature distribution of the compound semiconductor.
アンプル管を所定の温度分布を有する炉内に配置し、前
記ボート内の原料融液を一端から徐々に固化して単結晶
を得るようにしたボート法による化合物半導体単結晶の 製造装置において、 前記アンプル管を収容すべく、全体として 水平方向に伸びる細長い容器形状をなし、上壁部の所定
箇所に結晶観察用窓が形成された断熱材と、 この断熱材の内側に配置され、長手方向に 沿って複数のゾーンを有し、各ゾーンにおいて独自に印
加電力を制御できる主ヒータと、前記結晶観察用窓の近
傍において、前記主 ヒータに重複して配置され、独自に印加電力を制御でき
る補助ヒータとによって前記炉が構成されており、 前記主ヒータによって前記炉の長手方向に おける温度分布を調節し、前記補助ヒータによって前記
炉の上下方向の温度分布を調節して、原料融液の固化を
行なうようにしたことを特徴とする化合物半導体単結晶
の製造装 置。(2) Enclose the boat carrying the raw material in an ampoule tube, place this ampoule tube in a furnace with a predetermined temperature distribution, and gradually solidify the raw material melt in the boat from one end to obtain a single crystal. In the apparatus for producing compound semiconductor single crystals using the boat method, the container has an elongated container shape extending horizontally as a whole to accommodate the ampoule tube, and a crystal observation window is formed at a predetermined location on the upper wall. a heat insulating material; a main heater disposed inside the heat insulating material and having a plurality of zones along the longitudinal direction and capable of independently controlling applied power in each zone; and a main heater in the vicinity of the crystal observation window; The furnace is configured by an auxiliary heater which is placed overlapping the heater and whose applied power can be independently controlled.The main heater adjusts the temperature distribution in the longitudinal direction of the furnace, and the auxiliary heater adjusts the temperature distribution of the furnace. 1. A compound semiconductor single crystal production apparatus characterized in that a raw material melt is solidified by adjusting the temperature distribution in the vertical direction.
の長さと同じ長さか、それよりも長い長さを有する請求
項2記載の化合物半導体単結晶の製造装置。(3) The compound semiconductor single crystal manufacturing apparatus according to claim 2, wherein the auxiliary heater has a length that is equal to or longer than the length in the longitudinal direction of the crystal observation window.
置する前記主ヒータの1つのゾーン内に配置されている
請求項2又は3記載の化合物半導体単結晶の製造装置。(4) The compound semiconductor single crystal manufacturing apparatus according to claim 2 or 3, wherein the auxiliary heater is arranged in one zone of the main heater located near the crystal observation window.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15855790A JP2830392B2 (en) | 1990-06-19 | 1990-06-19 | Method and apparatus for manufacturing compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15855790A JP2830392B2 (en) | 1990-06-19 | 1990-06-19 | Method and apparatus for manufacturing compound semiconductor single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0450189A true JPH0450189A (en) | 1992-02-19 |
JP2830392B2 JP2830392B2 (en) | 1998-12-02 |
Family
ID=15674310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15855790A Expired - Lifetime JP2830392B2 (en) | 1990-06-19 | 1990-06-19 | Method and apparatus for manufacturing compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2830392B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10612777B2 (en) | 2016-01-29 | 2020-04-07 | Kinsei Sangyo Co., Ltd. | Dry distillation gasification waste incineration method |
-
1990
- 1990-06-19 JP JP15855790A patent/JP2830392B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10612777B2 (en) | 2016-01-29 | 2020-04-07 | Kinsei Sangyo Co., Ltd. | Dry distillation gasification waste incineration method |
Also Published As
Publication number | Publication date |
---|---|
JP2830392B2 (en) | 1998-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5116456A (en) | Apparatus and method for growth of large single crystals in plate/slab form | |
WO1982002409A1 (en) | The method and apparatus for forming and growing a single crystal of a semiconductor compound | |
JP2013533196A (en) | Method and apparatus for producing polycrystalline silicon ingot | |
KR20110094025A (en) | Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method | |
KR20160075498A (en) | Silicon single crystal puller | |
JPH0450189A (en) | Method and apparatus for production of compound semiconductor single crystal | |
US5785758A (en) | Single crystal growing apparatus | |
JP6866706B2 (en) | Heating element module and growing device including heating element module | |
JPS6234717B2 (en) | ||
JPS6111914B2 (en) | ||
JPS60264391A (en) | Crystallizer | |
JP7061911B2 (en) | Single crystal manufacturing method and single crystal manufacturing equipment | |
EP4174220A1 (en) | Single crystal growth apparatus | |
JP2697327B2 (en) | Compound semiconductor single crystal manufacturing equipment | |
JPS5815472B2 (en) | crystal growth equipment | |
JPH03193694A (en) | Crystal growing device | |
JPS5852293Y2 (en) | Ferrite single crystal production equipment | |
JPS62241889A (en) | Apparatus for making single crystal | |
JPH0684275B2 (en) | Method and apparatus for producing single crystal using horizontal furnace | |
JPS61201688A (en) | Production of iii-v compound semiconductor single crystal | |
JPS62153184A (en) | Production of apparatus for iii-v compound semiconductor single crystal | |
JPH06263582A (en) | Single crystal growing apparatus and production of single crystal | |
JPH0362676B2 (en) | ||
JPS61227984A (en) | Apparatus for preparing compound semiconductor single crystal | |
JPH08333187A (en) | Vertical type apparatus for producing single crystal |