JPH0450057B2 - - Google Patents

Info

Publication number
JPH0450057B2
JPH0450057B2 JP5824188A JP5824188A JPH0450057B2 JP H0450057 B2 JPH0450057 B2 JP H0450057B2 JP 5824188 A JP5824188 A JP 5824188A JP 5824188 A JP5824188 A JP 5824188A JP H0450057 B2 JPH0450057 B2 JP H0450057B2
Authority
JP
Japan
Prior art keywords
hollow fiber
polyamide
separation membrane
membrane
fiber separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5824188A
Other languages
Japanese (ja)
Other versions
JPH01231903A (en
Inventor
Masao Sakashita
Yoshuki Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5824188A priority Critical patent/JPH01231903A/en
Publication of JPH01231903A publication Critical patent/JPH01231903A/en
Publication of JPH0450057B2 publication Critical patent/JPH0450057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は液状食品の濃縮、医薬品製造プロセス
における濃縮、分離、精製に用いられる精密濾過
用および限外濾過用中空糸分離膜およびその製造
方法に関するものであり、とくに耐熱性に優れた
ポリアミドを膜素材とし、高圧水蒸気減菌操作に
よつても分離性能が劣化することのない中空糸分
離膜およびその製造方法に関するものである。 [従来の技術] 逆浸透膜、限外濾過膜、および精密濾過膜等の
分離膜は海水淡水化、純水製造、排水処理と中水
回収、液状食品の濃縮、医薬品製造プロセスにお
ける分離、精製等広範な産業分野で利用され、ま
たその用途範囲も拡大している。これらの分離膜
は、その形状により、平膜、管状膜、および中空
糸膜に大別され、いずれにおいてもケース内に組
み込んだモジユールの形で利用される。かかる分
離膜モジユールの内、中空糸膜モジユールは膜強
度向上のための補助多孔質担体を必要としないた
め、モジユール単位体積当りの膜面積を大きくす
ることができ、工業的規膜の膜分離プロセスでは
中空糸膜モジユールが利用されることが多い。 分離膜の上述の利用分野のうち、液状食品の濃
縮、医薬品製造分野における分離・精製プロセス
で利用する場合、分離膜モジユールは減菌操作に
より清浄状態に保持することが必要である。一般
に装置の減菌方法としては、次亜塩素酸塩水溶液
等の液状薬剤、エチレンオキシド等気体状薬剤処
理が挙げられるが、液状薬剤処理後には残留薬剤
を除去するために充分な洗浄を行わなければなら
ず、また、気体状薬剤処理後にはその排ガス対策
をこうじることが必要となる。最も迅速、簡便か
つ人体に安全な減菌方法は高圧水蒸気処理であ
り、123〜127℃に加熱した高圧水蒸気で処理する
ことにより、細菌、ウイルスはもとより、最も熱
に耐性のある胞子をも短時間内に死滅させうる。
しかし、既に実用化されている分離膜ではかかる
高温環境では膜素材が軟化し、分離性能を決定し
ている細孔構造が消失し、分離膜として所定の機
能を示さなくなる。例えば、セルロース系あるい
はポリオレフイン系分離膜は40℃でその機能が消
失し、比較的耐熱性に優れているポリスルホン系
分離膜でさえ100℃以上の高温水処理により分離
性能が低下する。 耐熱性に優れた重合体として芳香族系ポリアミ
ドおよびポリイミドが知られており、300℃以上
の高いガラス転移温度あるいは分解温度を有する
重合体が多数報告されている。しかしながら、芳
香族系ポリアミドおよびポリイミドは耐熱性が高
いがゆえに加熱溶融して中空糸を製造する溶融製
造法は実質的に困難であり、また、有機溶剤に溶
解し難いために湿式製造法が可能な重合体の種類
も限定されている。かかる素材と製造方法の制限
により、溶媒可溶性かつ耐熱性に優れたポリアミ
ドあるいはポリイミドを膜素材とし、膜表面の細
孔径が0.01〜1μmの範囲である孔径が大きい限外
濾過膜および精密濾過膜用中空糸分離膜およびそ
の製造方法は未だ提唱されていない。 中空糸膜の湿式製造法の一般的な製造工程は、
膜素材の重合体を溶媒中に溶解させる製膜原液製
造工程、凝固芯液製造工程、二重管状構造を有す
る紡糸ノズルの環状口と円状口からそれぞれ製膜
原液と凝固芯液を押し出す工程、製膜原液と凝固
芯液が紡糸ノズルから凝固浴へ到達するまでの空
中走行工程、および凝固浴中で脱溶媒と凝固が終
了する凝固工程からなる。かかる製造工程により
得られる分離膜の断面構造は、多くのばあい分離
の分画分子量を決定する表面緻密層と呼ばれる微
細孔層とそれを支持する多孔質層からなる。この
製造工程を適切に選定することにより、微細孔の
孔径が0.01μm以上の限外濾過膜および精密濾過
用中空糸分離膜を製造することが試みられている
が、表面細孔径の制御と得られた中空糸の機械的
強度に改善の余地が残されている。例えば特開昭
55−106243号公報にあるようにポリエチレンオキ
シドを製膜原液に添加し製膜後に溶出除去する方
法があるが、均一な0.01μm以上の孔径を有する
中空糸分離膜を得ることは難しい。また、特開昭
60−222112公報においては、ポリスルホンを素材
とする孔径0.01μmの中空糸膜を、製膜原液の相
分離作用を用いて製造している。しかしながら、
その製膜原液の粘度が低く、十分な膜圧の中空糸
分離膜を得ることが難しい。しかも、かかる中空
糸分離膜は、高圧水蒸気減菌条件に耐える耐熱性
はない。本発明者らは、特願昭62−18237におい
て、フルオレン骨格を有する縮合環系ポリアミド
は耐熱性に優れるとともに有機溶剤に可溶なため
中空糸の湿式紡糸が可能であり、デキシトラン分
画分子量が数万、推定細孔径1〜2nmであつて高
圧水蒸気減菌によつても分離性能が低下しない限
外濾過膜を提供できる旨を提唱した。 本発明者等は、上記耐熱性ポリアミドを用いて
細孔径が0.01μmより大きい限外濾過膜および精
密濾過用中空糸分離膜を製造するための方法を検
討し、中空糸の内面から外面まで厚さ全体にわた
つて網状の組織からなり、その内表面と外表面に
は網状組織に連続してできた最大孔径0.01〜1μm
の孔を有する中空糸分離膜を、製膜原液が均一相
状態から相分離状態へ相転移する作用を利用して
製造する本発明に至つた。 [発明が解決しようとする課題] 本発明の目的は高圧水蒸気減菌条件に耐える耐
熱性を有し、外表面および内表面に最大孔径0.01
〜1μmの孔を有する中空糸状分離膜およびその
製造方法を提供するものである。 [課題を解決するための手段] 中空糸の内面から外面まで全厚みにわたつて網
状の組織からなり、その内表面と外表面には網状
組織に連続してできた最大孔径0.05〜1μmの孔を
有する一般式(a)であらわされるポリアミドからな
ることを特徴とする中空糸分離膜である。 但し、lは繰り返し単位数を示し、RはH,
CH3,C2H5のうちいずれかを示す。 また、中空糸の内面から外面まで厚さ全体にわ
たつて網状の組織からなり、その内表面と外表面
には網状組織に連続してできた0.01〜0.05μmの
孔を有する上記一般式(a)であらわされるポリアミ
ドと下記一般式(b)であらわされるポリアミイドの
混合体からなることを特徴とする中空糸分離膜。 但し、m,nは繰り返し単位を示し、RはH,
CH3,C2H5のうちいずれかを示す。 上記一般式(a)および(b)であらわされるポリアミ
ド混合体からなる中空糸分離膜における一般式(b)
であらわされるポリアミドの占める重量%が50%
以下であること、および一般式(b)であらわされる
ポリアミド繰り返し単位のモル比n/mが0.05〜
1であることを特徴とする。 上述の中空糸分離膜は湿式製造法によつて製造
される。すなわち、該ポリアミドとその良溶媒、
1価および2価の陽イオンからなる電解質群から
選ばれる少なくとも1種、および、エチルアルコ
ール、プロピルアルコール、などの1価アルコー
ル、エチレングリコール、プロピレングリコー
ル、グリセリン、などの多価アルコールの内から
選ばれる少なくとも1種のアルコールを含有する
製膜原液の組成が均一相状態から相分離状態へ転
移する相転移温度を有する組成であり、相転移温
度以上に加温した製膜原液を2重管状の中空糸紡
糸ノズルの環状口から押し出し、同時に円状口か
ら押し出された凝固芯液の温度、ノズルから外部
凝固液までの空中走行時の雰囲気温度、および外
部凝固液温度のうち少なくとも一つ、好ましくは
二つ以上の温度を相転移温度以下とすることによ
り、製膜原液を均一相状態から相分離状態へ相転
移させながら凝固と脱溶媒を行うことを特徴とす
る中空分離膜の製造方法である。また、用いられ
る製膜原液の相転移温度が10〜80℃の範囲である
ことを特徴とする。 本発明の中空糸分離膜の素材に用いられるポリ
アミドのうち、一般式(a)であらわされるポリアミ
ドは、 (但し、RはH,CH3,C2H5のうちいずれか
を示す。) であらわされる9,9′−ビス(4アミノフエニ
ル)フルオレン類と式 であらわされるイソフタル酸クロリドあるいはテ
レフタル酸クロリドとをN,N′−ジメチルアセ
トアミドまたはN−メチル−2−ピロリドンなど
の溶媒中で冷却下数時間反応させて得ることがで
きる。 また、一般式(b)であらわされるポリアミドは、
上述の9,9′−ビス(4アミノフエニル)フルオ
レン類にアジピン酸クロリドとイソフタル酸クロ
リドあるいはテレフタル酸クロリドがn:mのモ
ル比率である酸クロリド混合物を混合して、一般
式(a)であらわされるポリアミドと同様の方法で反
応させて得ることができる。 本発明の中空糸分離膜に素材となる一般式(a)お
よび(b)であらわされるポリアミドはいずれも優れ
た耐熱性を有する。たとえば、一般式(a)でRがH
であるポリアミドのガラス転移温度は380℃、分
解温度は455℃である。また、一般式(b)でRがH
であり、繰り返し単位のモル比率n/mが0.05で
あるポリアミドのガラス転移温度は265℃、分解
温度は440℃、モル比率n/mが0.11であるポリ
アミドのガラス転移温度は230℃、分解温度は415
℃である。本発明の中空糸分離膜のうち、一般式
(a)と(b)の混合体からなる場合において、一般式(b)
であらわされるポリアミドが占める重量%が50%
以下、好ましくは5〜35%とし、かつ繰り返し単
位のモル比率n/mが0.05から1、好ましくは
0.05〜0.3とすることにより、得られる中空糸分
離膜の高い耐熱性が保持される。 本発明の中空糸分離膜は、中空糸の内面から外
面まで厚さ全体にわたつて網状の組織からなり、
その外表面と内表面には網状組織に連続してでき
た最大孔径0.01〜1μmの孔を有するものであり、
このうち、最大孔径0.05〜1μmの孔を有する中空
糸分離膜は一般式(a)であらわされるポリアミドの
みをその素材とし、最大孔径0.01〜0.05μmの孔
を有する中空糸分離膜は一般式(a)と(b)であらわさ
れるポリアミド混合体からなることを特徴として
いる。ここで、一般式(b)であらわされるポリアミ
ドは、得られる中空糸分離膜の表面細孔の径を小
さくする効果をもつものである。 第1図は一般式(a)でRがHであるポリアミドか
らなる中空糸分離膜の断面顕微鏡写真の一例であ
り、内面から外面まで全厚みにわたつて網状の組
織からなることが確認でき、一方、第2図はその
外表面の顕微鏡写真であり、最大孔径が約0.2μm
であることが確認できる。この最大孔径の範囲は
該ポリアミドを素材とする中空糸膜の製造工程で
調節される。 本発明の中空糸分離膜は湿式製造法で得ること
ができるが、以下にその詳細を述べる。本発明の
製膜原液は、一般式(a)であらわされるポリアミ
ド、あるいは一般式(a)と(b)であらわされるポリア
ミドの混合体、該ポリアミドの良溶媒、無機電解
質、および1価あるいは多価アルコールの混合溶
液である。ここで、ポリアミドの良溶媒として
は、N,N−ジメチルアセトアミド、N,N−ジ
メチルホルムアミド、N−メチル−2−ピロリド
ン、ジメチルスルフオキシド等極性溶媒が挙げら
れる。これら極性溶媒単独あるいはそれらの混合
溶媒に無機電解質としてLiCl,LiNO3,CaCl2
溶解せしめて該ポリアミドの溶媒中への溶解度を
増大させる。1価あるいは多価アルコールは、均
一相状態の製膜原液を冷却により相分離状態への
転移を誘起させる目的で添加するものであり、エ
チルアルコール、プロピルアルコール、シクロヘ
キサノール等の1価アルコール、あるいはエチレ
ングリコール、プロピレングリコール、グリセリ
ン等の多価アルコールのうちの少なくとも1種で
ある。かかる製膜原液の組成は、目的とする中空
糸分離膜の外表面および内表面の最大孔径によつ
て異なるが、概ね、溶媒100重量部に対して、ポ
リアミド10〜50重量部、無機電解質0.5〜10重量
部、1価あるいは多価アルコール20〜200重量部
である。 上記の製膜原液を凝固、脱溶媒する紡糸芯液と
外部凝固液には水単独、あるいは水とメチルアル
コールなどの1価アルコール、エチレングリコー
ル等の多価アルコール、およびN,N−ジメチル
アセトアミド、N−メチル−2−ピロリドン等の
良溶媒の混合溶液が用いられる。 製膜原液と紡糸芯液はそれぞれ2重管状紡糸ノ
ズルの環状口と円状口から押し出され、空中走行
工程を経て外部凝固液中へ導入して中空糸を製造
する湿式製造法において、本発明では、紡糸芯液
温度、空中走行時の雰囲気温度および外部凝固液
温度のうち少なくとも一つ、好ましくは二つ以上
の温度が製膜原液を均一相状態から相分離状態へ
相転移させるに充分低温に設定される。とくに、
紡糸芯液と外部凝固液の温度を相転移温度以下と
することは、得られる中空糸分離膜の表面の孔径
を大きくするのに有効である。この相転移温度は
製膜原液の粘度の温度変化を別個に測定すること
により決定することができる。たとえば、N−メ
チル−2−ピロリドン100重量部に対して、一般
式(a)でRがHであるポリアミド(以下繰り返し単
位(a−1)を有するポリアミド)を20重量部、
LiCl5重量部、エチレングリコール58重量部を含
む製膜原液の粘度をE型粘度計で測定した結果を
第3図に示す。 第3図において、製膜原液の粘度が32℃におい
て大きく異なり、この温度の高温側で高粘度の均
一相状態、低温側で低粘度の相分離状態であるこ
とを示している。しかしながら、相分離状態にお
いても中空糸の紡糸には十分高い粘度があり、こ
の状態ではさらに粘度の低いポリスルホン系樹脂
に比較して強度に優れた中空糸を得ることができ
る。 本発明の中空糸分離膜は、紡糸ノズルから押し
出された製膜原液は相転移温度以下で凝固、脱溶
媒されるが、相転移温度以下の低温を実用的に得
るためには相転移温度が10℃以上であることが好
ましい。一方、紡糸ノズルに導入される製膜原液
は加温により、均一相状態に維持されており、加
温による蒸気発生を抑制するためには製膜原液の
相転移温度は80℃以下が好ましい。製膜原液の相
転移温度の好ましい相転移温度の範囲は10〜80℃
である。かかる相転移温度の最適化は、良溶媒の
種類、添加する1価および多価アルコールの種類
と量とにより最適化されるが、本発明の中空糸分
離膜の製造法においては、良溶媒としてはN−メ
チル−2−ピロリドン、添加アルコールとしては
エチレングリコール、プロピレングリコール、グ
リセリン等の多価アルコールのうちの少なくとも
一つを用いることにより、相転移温度を好適に10
〜80℃に調整できる。 [作用] 本発明により得られた中空糸分離膜は、膜素材
としてガラス転移温度および分解温度の高いポリ
アミドからなつているため、耐熱性に優れ、しか
も製膜原液の相分離現象を利用した製膜方法であ
るため細孔径が大きく、透水性に優れているた
め、液状食品の濃縮、医薬品製造プロセスにおけ
る精製、分離等減菌操作を必要とする膜利用分野
において、高圧水蒸気減菌が可能な限外濾過膜お
よび精密濾過膜として用いることができる。 [実施例] 以下に本発明の実施例を挙げるが、本発明はこ
れらに限定されるものではない。以下の実施例に
おいて、製膜原液の相転移温度の測定には降温速
度0.5℃/分のE型粘度計を用いた。中空糸分離
膜の内表面と外表面の孔の大きさは走査電子顕微
鏡写真から判定した。また、中空糸分離膜の純水
透過速度は、操作圧力1.0Kg/cm2、流速1.5cm/
秒、温度25℃の条件で測定した。 実施例 1 N−メチル−2−ピロリドン(以下NMP)
100重量部に塩化リチウム5重量部と式 であらわされる繰り返し単位(a−1)を有する
ポリアミド20重量部、エチレングリコール(以下
EG)58重量部とを溶解して製膜原液を調整し、
その粘度の温度変化から(第3図)、相転移温度
32℃を得た。この製膜原液を40℃に加温して、紡
糸ノズルの環状口(外径1.0mm、内径0.8mm)から
押し出し、同時に水100重量部にNMP185重量部
を溶かした5℃の紡糸芯液を押し出し、空中走行
時の温度を25℃、外部凝固液を水単独としてその
温度5℃である条件で凝固と脱溶媒をし、外径
1.0mm、内径0.7mmの中空糸分離膜を得た。得られ
た中空糸分離膜は内面から外面の全体にわたつて
網状の組織からなり(第1図)、その内表面と外
表面には網状組織に連続した細孔が開いており、
その最大孔径は内表面にて0.1μm、外表面にて
0.2μm(第2図)であつた。また、透水速度は
1050/m2・時・気圧であつた。これらの製膜条
件と中空糸の性能を第1表にまとめた。 実施例 2〜6 NMP100重量部に塩化リチウム5重量部を溶
解し、実施例1に同じ繰り返し単位(a−1)を
有するポリアミド15〜20重量部、多価アルコール
としてEG、プロピレングリコール(以下PG)あ
るいはグリセリン(以下Gly)とを溶解して製膜
原液とし、実施例1と同様の方法で外径1.0mm、
内径0.7mmの中空糸分離膜を第1表に示した製膜
条件で得た。第1表には中空糸分離膜の特性も併
せて示してある。製膜原液に添加する多価アルコ
ールの種類と濃度で中空糸分離膜の内表面と外表
面の孔径を0.05〜1μmに制御できる。 実施例 7,8 NMP100重量部に塩化リチウム5重量部を溶
解し、膜素材ポリアミド20重量部を実施例1に同
じ繰り返し単位(a−1)と式 であらわされ、n/mが0.11である繰り返し単位
(b−1)を有するポリアミドとの混合体とし、
EGを添加多価アルコールとする製膜原液から実
施例1と同様の方法で外径1.0mm、内径0.7mmの中
空糸分離膜を得た。第1表にその製膜条件と中空
糸分離膜の特性をまとめた。繰り返し単位(a−
1)と(b−1)のポリアミド混合体を用いるこ
とにより、中空糸分離膜の内表面と外表面の細孔
の大きさを0.01〜0.05μmに制御できる。 実施例 9 実施例1と8に示した中空糸分離膜を123℃に
て30分間加圧水蒸気処理した後、中空糸分離膜の
特性をしらべた。その結果、実施例1の中空糸の
内、外表面の最大孔径は0.1および0.2μmで不変
であり、透水速度は1020/m2・時・気圧であつ
た。また、実施例8の中空糸分離膜の内、外表面
最大孔径も不変であり、透水速度は300/m2
時・気圧であつた。すなわち、本発明の中空糸分
離膜の特性は加圧水蒸気減菌操作によつてもその
特性は劣化しない。
[Field of Industrial Application] The present invention relates to a hollow fiber separation membrane for precision filtration and ultrafiltration used for concentration, separation, and purification of liquid foods and pharmaceutical manufacturing processes, and a method for producing the same. The present invention relates to a hollow fiber separation membrane that uses polyamide with excellent properties as a membrane material and whose separation performance does not deteriorate even when subjected to high-pressure steam sterilization, and a method for manufacturing the same. [Prior art] Separation membranes such as reverse osmosis membranes, ultrafiltration membranes, and precision filtration membranes are used for seawater desalination, pure water production, wastewater treatment and gray water recovery, concentration of liquid foods, and separation and purification in pharmaceutical manufacturing processes. It is used in a wide range of industrial fields, and its range of applications is also expanding. These separation membranes are broadly classified into flat membranes, tubular membranes, and hollow fiber membranes depending on their shape, and all of them are used in the form of modules built into a case. Among these separation membrane modules, hollow fiber membrane modules do not require an auxiliary porous carrier to improve membrane strength, so the membrane area per unit volume of the module can be increased, making it suitable for industrial membrane separation processes. hollow fiber membrane modules are often used. Among the above-mentioned fields of application of separation membranes, when used in liquid food concentration and separation/purification processes in the pharmaceutical manufacturing field, the separation membrane module must be kept in a clean state by sterilization. Generally, methods for sterilizing equipment include treatment with liquid chemicals such as hypochlorite aqueous solution and gaseous chemicals such as ethylene oxide, but after treatment with liquid chemicals, sufficient cleaning must be performed to remove residual chemicals. Moreover, it is necessary to take measures against the exhaust gas after gaseous chemical treatment. The quickest, simplest, and safest sterilization method for humans is high-pressure steam treatment. By treating with high-pressure steam heated to 123 to 127 degrees Celsius, it can quickly destroy bacteria, viruses, and even the most heat-resistant spores. It can be killed in time.
However, in separation membranes that have already been put into practical use, the membrane material softens in such high-temperature environments, the pore structure that determines separation performance disappears, and the separation membrane no longer functions as intended. For example, cellulose-based or polyolefin-based separation membranes lose their functionality at 40°C, and even polysulfone-based separation membranes, which have relatively excellent heat resistance, lose their separation performance when treated with high-temperature water of 100°C or higher. Aromatic polyamides and polyimides are known as polymers with excellent heat resistance, and many polymers having high glass transition temperatures or decomposition temperatures of 300° C. or higher have been reported. However, because aromatic polyamides and polyimides have high heat resistance, it is practically difficult to use a melt manufacturing method to produce hollow fibers by heating and melting them, and wet manufacturing methods are possible because they are difficult to dissolve in organic solvents. The types of polymers that can be used are also limited. Due to such limitations in materials and manufacturing methods, membrane materials for ultrafiltration membranes and precision filtration membranes with large pore diameters in the range of 0.01 to 1 μm have been developed using polyamide or polyimide, which are solvent soluble and have excellent heat resistance. A hollow fiber separation membrane and its manufacturing method have not yet been proposed. The general manufacturing process of the wet manufacturing method for hollow fiber membranes is as follows:
A membrane forming stock solution production process in which the polymer of the membrane material is dissolved in a solvent, a coagulation core solution production process, and a process of extruding the membrane forming stock solution and coagulation core solution from the annular opening and the circular opening of a spinning nozzle having a double tubular structure, respectively. The process consists of an aerial traveling process in which the membrane forming stock solution and coagulation core liquid reach the coagulation bath from the spinning nozzle, and a coagulation process in which solvent removal and coagulation are completed in the coagulation bath. The cross-sectional structure of a separation membrane obtained by such a manufacturing process is composed of a microporous layer called a surface dense layer, which determines the molecular weight cutoff for separation in many cases, and a porous layer supporting the microporous layer. Attempts have been made to manufacture ultrafiltration membranes and hollow fiber separation membranes for precision filtration with micropore diameters of 0.01 μm or more by appropriately selecting this manufacturing process. There is still room for improvement in the mechanical strength of the hollow fibers. For example, Tokukai Akira
As described in Japanese Patent No. 55-106243, there is a method in which polyethylene oxide is added to the membrane forming stock solution and eluted and removed after membrane forming, but it is difficult to obtain a hollow fiber separation membrane having a uniform pore size of 0.01 μm or more. Also, Tokukai Akira
In Publication No. 60-222112, a hollow fiber membrane made of polysulfone and having a pore diameter of 0.01 μm is manufactured using the phase separation effect of a membrane-forming stock solution. however,
The viscosity of the membrane-forming stock solution is low, making it difficult to obtain a hollow fiber separation membrane with sufficient membrane pressure. Moreover, such hollow fiber separation membranes do not have the heat resistance to withstand high pressure steam sterilization conditions. The present inventors disclosed in Japanese Patent Application No. 62-18237 that a condensed ring polyamide having a fluorene skeleton has excellent heat resistance and is soluble in organic solvents, so wet spinning of hollow fibers is possible. proposed that it is possible to provide an ultrafiltration membrane with an estimated pore size of 1 to 2 nm and whose separation performance does not deteriorate even when subjected to high-pressure steam sterilization. The present inventors investigated a method for producing ultrafiltration membranes and hollow fiber separation membranes for precision filtration with pore diameters larger than 0.01 μm using the above heat-resistant polyamide, and found that the thickness from the inner surface to the outer surface of the hollow fibers was It consists of a network structure throughout the body, and the inner and outer surfaces have pores with a maximum diameter of 0.01 to 1 μm that are continuous to the network structure.
The present invention has been achieved in which a hollow fiber separation membrane having holes of [Problems to be Solved by the Invention] The purpose of the present invention is to have heat resistance that can withstand high-pressure steam sterilization conditions, and to have a maximum pore size of 0.01 on the outer and inner surfaces.
A hollow fiber separation membrane having pores of ~1 μm and a method for manufacturing the same are provided. [Means for solving the problem] The hollow fiber is composed of a network structure over the entire thickness from the inner surface to the outer surface, and pores with a maximum diameter of 0.05 to 1 μm are formed continuously in the network structure on the inner and outer surfaces. This is a hollow fiber separation membrane characterized by being made of a polyamide represented by the general formula (a). However, l indicates the number of repeating units, R is H,
Indicates either CH 3 or C 2 H 5 . In addition, the hollow fiber is composed of a network structure over the entire thickness from the inner surface to the outer surface, and the inner and outer surfaces have pores of 0.01 to 0.05 μm continuous to the network structure. A hollow fiber separation membrane comprising a mixture of a polyamide represented by the following formula (b) and a polyamide represented by the following general formula (b). However, m and n indicate repeating units, R is H,
Indicates either CH 3 or C 2 H 5 . General formula (b) in a hollow fiber separation membrane made of a polyamide mixture represented by the above general formulas (a) and (b)
The weight percentage of polyamide represented by is 50%
and the molar ratio n/m of the polyamide repeating unit represented by general formula (b) is 0.05 to
1. The hollow fiber separation membrane described above is manufactured by a wet manufacturing method. That is, the polyamide and its good solvent,
At least one kind selected from the electrolyte group consisting of monovalent and divalent cations, and monohydric alcohols such as ethyl alcohol and propyl alcohol, and polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin. The composition of the film-forming stock solution containing at least one kind of alcohol is such that it has a phase transition temperature at which it transitions from a homogeneous phase state to a phase-separated state. At least one of the temperature of the coagulated core liquid extruded from the annular opening of the hollow fiber spinning nozzle and simultaneously extruded from the circular opening, the atmospheric temperature during air travel from the nozzle to the external coagulating liquid, and the temperature of the external coagulating liquid, preferably is a method for manufacturing a hollow separation membrane, characterized in that coagulation and solvent removal are performed while causing a phase transition of a membrane forming stock solution from a homogeneous phase state to a phase separation state by lowering two or more temperatures below the phase transition temperature. be. Further, it is characterized in that the phase transition temperature of the membrane forming stock solution used is in the range of 10 to 80°C. Among the polyamides used as the material for the hollow fiber separation membrane of the present invention, the polyamide represented by the general formula (a) is (However, R represents either H, CH 3 or C 2 H 5. ) 9,9'-bis(4-aminophenyl)fluorenes represented by the formula It can be obtained by reacting isophthalic acid chloride or terephthalic acid chloride represented by the formula in a solvent such as N,N'-dimethylacetamide or N-methyl-2-pyrrolidone under cooling for several hours. In addition, the polyamide represented by the general formula (b) is
The above-mentioned 9,9'-bis(4-aminophenyl)fluorene is mixed with an acid chloride mixture in which adipic acid chloride and isophthalic acid chloride or terephthalic acid chloride are in a molar ratio of n:m to obtain a compound represented by general formula (a). It can be obtained by reacting in the same manner as polyamide. The polyamides represented by general formulas (a) and (b), which are the raw materials for the hollow fiber separation membrane of the present invention, both have excellent heat resistance. For example, in general formula (a), R is H
The glass transition temperature of polyamide is 380℃, and the decomposition temperature is 455℃. Also, in general formula (b), R is H
The glass transition temperature of polyamide with a repeating unit molar ratio n/m of 0.05 is 265°C and the decomposition temperature is 440°C, and the glass transition temperature of polyamide with a molar ratio n/m of 0.11 is 230°C and decomposition temperature. is 415
It is ℃. Among the hollow fiber separation membranes of the present invention, the general formula
In the case of a mixture of (a) and (b), general formula (b)
The weight percentage of polyamide represented by is 50%
Hereinafter, it is preferably 5 to 35%, and the molar ratio n/m of the repeating unit is 0.05 to 1, preferably
By setting it to 0.05 to 0.3, high heat resistance of the obtained hollow fiber separation membrane is maintained. The hollow fiber separation membrane of the present invention consists of a network structure over the entire thickness from the inner surface to the outer surface of the hollow fiber,
Its outer and inner surfaces have pores with a maximum diameter of 0.01 to 1 μm formed continuously in a network structure,
Among these, hollow fiber separation membranes with pores with a maximum pore diameter of 0.05 to 1 μm are made only of polyamide represented by the general formula (a), and hollow fiber separation membranes with pores with a maximum pore diameter of 0.01 to 0.05 μm are made with the general formula ( It is characterized by being made of a polyamide mixture represented by a) and (b). Here, the polyamide represented by the general formula (b) has the effect of reducing the diameter of the surface pores of the hollow fiber separation membrane obtained. Figure 1 is an example of a cross-sectional micrograph of a hollow fiber separation membrane made of polyamide in which R is H in the general formula (a), and it can be confirmed that it consists of a network structure over the entire thickness from the inner surface to the outer surface. On the other hand, Figure 2 is a microscopic photograph of the outer surface, and the maximum pore diameter is approximately 0.2 μm.
It can be confirmed that The range of this maximum pore diameter is adjusted during the manufacturing process of the hollow fiber membrane made of the polyamide. The hollow fiber separation membrane of the present invention can be obtained by a wet manufacturing method, the details of which will be described below. The film-forming stock solution of the present invention comprises a polyamide represented by the general formula (a) or a mixture of polyamides represented by the general formulas (a) and (b), a good solvent for the polyamide, an inorganic electrolyte, and a monovalent or polyhydric polyamide. It is a mixed solution of alcohols. Here, examples of good solvents for polyamide include polar solvents such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, and dimethylsulfoxide. LiCl, LiNO 3 and CaCl 2 as inorganic electrolytes are dissolved in these polar solvents alone or in a mixture thereof to increase the solubility of the polyamide in the solvent. Monohydric or polyhydric alcohols are added for the purpose of inducing a transition to a phase separation state by cooling the membrane forming stock solution in a homogeneous phase state, and monohydric alcohols such as ethyl alcohol, propyl alcohol, cyclohexanol, etc. At least one type of polyhydric alcohol such as ethylene glycol, propylene glycol, and glycerin. The composition of such a membrane-forming stock solution varies depending on the maximum pore diameters of the outer and inner surfaces of the target hollow fiber separation membrane, but it generally contains 100 parts by weight of solvent, 10 to 50 parts by weight of polyamide, and 0.5 parts by weight of inorganic electrolyte. ~10 parts by weight, and 20 to 200 parts by weight of monohydric or polyhydric alcohol. The spinning core liquid and external coagulation liquid used to coagulate and remove solvent from the above film-forming stock solution include water alone, or water and monohydric alcohol such as methyl alcohol, polyhydric alcohol such as ethylene glycol, and N,N-dimethylacetamide. A mixed solution of a good solvent such as N-methyl-2-pyrrolidone is used. In a wet manufacturing method in which a membrane forming stock solution and a spinning core solution are extruded from an annular opening and a circular opening of a double-tubular spinning nozzle, respectively, and are introduced into an external coagulating liquid through an air travel process to manufacture a hollow fiber, the present invention In this case, at least one, preferably two or more of the spinning core liquid temperature, the atmospheric temperature during air travel, and the external coagulation liquid temperature are sufficiently low to cause a phase transition of the membrane forming stock solution from a homogeneous phase state to a phase separated state. is set to especially,
Setting the temperatures of the spinning core liquid and the external coagulating liquid to below the phase transition temperature is effective in increasing the pore size on the surface of the resulting hollow fiber separation membrane. This phase transition temperature can be determined by separately measuring the temperature change in the viscosity of the membrane forming stock solution. For example, for 100 parts by weight of N-methyl-2-pyrrolidone, 20 parts by weight of polyamide in which R is H in general formula (a) (hereinafter referred to as polyamide having repeating unit (a-1)),
The viscosity of a film-forming stock solution containing 5 parts by weight of LiCl and 58 parts by weight of ethylene glycol was measured using an E-type viscometer, and the results are shown in FIG. In FIG. 3, the viscosity of the film-forming stock solution differs greatly at 32° C., indicating that it is in a homogeneous phase state with high viscosity at the high temperature side and a phase separated state with low viscosity at the low temperature side. However, even in a phase-separated state, the viscosity is sufficiently high for spinning hollow fibers, and in this state, it is possible to obtain hollow fibers with superior strength compared to polysulfone resins, which have a lower viscosity. In the hollow fiber separation membrane of the present invention, the membrane forming stock solution extruded from the spinning nozzle is coagulated and desolvated below the phase transition temperature, but in order to practically obtain a low temperature below the phase transition temperature, the phase transition temperature is The temperature is preferably 10°C or higher. On the other hand, the membrane-forming stock solution introduced into the spinning nozzle is maintained in a homogeneous phase state by heating, and the phase transition temperature of the film-forming stock solution is preferably 80° C. or lower in order to suppress the generation of steam due to heating. The preferred phase transition temperature range of the membrane forming stock solution is 10 to 80℃.
It is. The phase transition temperature is optimized depending on the type of good solvent and the type and amount of monohydric and polyhydric alcohols to be added. By using N-methyl-2-pyrrolidone and at least one of polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin as the added alcohol, the phase transition temperature can be suitably adjusted to 10
Can be adjusted to ~80℃. [Function] The hollow fiber separation membrane obtained by the present invention is made of polyamide with a high glass transition temperature and high decomposition temperature as a membrane material, so it has excellent heat resistance and can be manufactured using the phase separation phenomenon of the membrane forming solution. Because it is a membrane method, it has large pore diameters and excellent water permeability, making it possible to perform high-pressure steam sterilization in fields where membranes are used, such as concentration of liquid foods, purification in pharmaceutical manufacturing processes, and separation, which require sterilization operations. It can be used as an ultrafiltration membrane and a microfiltration membrane. [Example] Examples of the present invention are listed below, but the present invention is not limited thereto. In the following examples, an E-type viscometer with a cooling rate of 0.5°C/min was used to measure the phase transition temperature of the film-forming stock solution. The pore sizes on the inner and outer surfaces of the hollow fiber separation membrane were determined from scanning electron micrographs. In addition, the pure water permeation rate of the hollow fiber separation membrane is at an operating pressure of 1.0 Kg/cm 2 and a flow rate of 1.5 cm/cm 2 .
Measurements were made at a temperature of 25°C. Example 1 N-methyl-2-pyrrolidone (hereinafter referred to as NMP)
100 parts by weight and 5 parts by weight of lithium chloride 20 parts by weight of polyamide having a repeating unit (a-1) represented by ethylene glycol (hereinafter referred to as
EG) 58 parts by weight to prepare a membrane forming stock solution,
From the change in viscosity with temperature (Figure 3), the phase transition temperature
Obtained 32°C. This film-forming stock solution was heated to 40°C and extruded through the annular opening of the spinning nozzle (outer diameter 1.0 mm, inner diameter 0.8 mm), and at the same time, a spinning core solution of 185 parts by weight of NMP dissolved in 100 parts by weight of water at 5°C was added. After extrusion, the temperature during air travel was 25℃, and the external coagulation liquid was water alone, and the temperature was 5℃ for coagulation and desolvation.
A hollow fiber separation membrane with a diameter of 1.0 mm and an inner diameter of 0.7 mm was obtained. The obtained hollow fiber separation membrane consists of a network structure from the inner surface to the outer surface (Fig. 1), and the inner and outer surfaces have pores that are continuous to the network structure.
Its maximum pore diameter is 0.1 μm on the inner surface and on the outer surface.
It was 0.2 μm (Figure 2). In addition, the water permeation rate is
It was 1050/ m2・hour・atmospheric pressure. These membrane forming conditions and hollow fiber performance are summarized in Table 1. Examples 2 to 6 5 parts by weight of lithium chloride was dissolved in 100 parts by weight of NMP, 15 to 20 parts by weight of polyamide having the same repeating unit (a-1) as in Example 1, EG as a polyhydric alcohol, and propylene glycol (hereinafter PG). ) or glycerin (hereinafter referred to as Gly) to prepare a film-forming stock solution, and prepared using the same method as in Example 1 with an outer diameter of 1.0 mm.
A hollow fiber separation membrane with an inner diameter of 0.7 mm was obtained under the membrane forming conditions shown in Table 1. Table 1 also shows the characteristics of the hollow fiber separation membrane. The pore diameters of the inner and outer surfaces of the hollow fiber separation membrane can be controlled to 0.05 to 1 μm by adjusting the type and concentration of the polyhydric alcohol added to the membrane forming stock solution. Examples 7 and 8 Dissolve 5 parts by weight of lithium chloride in 100 parts by weight of NMP, and add 20 parts by weight of membrane material polyamide to the same repeating unit (a-1) and formula as in Example 1. A mixture with a polyamide having a repeating unit (b-1) represented by and having n/m of 0.11,
A hollow fiber separation membrane having an outer diameter of 1.0 mm and an inner diameter of 0.7 mm was obtained in the same manner as in Example 1 from a membrane forming stock solution containing EG as an added polyhydric alcohol. Table 1 summarizes the membrane forming conditions and characteristics of the hollow fiber separation membrane. Repeating unit (a-
By using the polyamide mixture of 1) and (b-1), the pore sizes on the inner and outer surfaces of the hollow fiber separation membrane can be controlled to 0.01 to 0.05 μm. Example 9 The hollow fiber separation membranes shown in Examples 1 and 8 were treated with pressurized steam at 123° C. for 30 minutes, and then the characteristics of the hollow fiber separation membranes were examined. As a result, the maximum pore diameters of the inner and outer surfaces of the hollow fibers of Example 1 remained unchanged at 0.1 and 0.2 μm, and the water permeation rate was 1020/m 2 ·hr·atm. Furthermore, the maximum pore diameters on the inner and outer surfaces of the hollow fiber separation membrane of Example 8 remained unchanged, and the water permeation rate was 300/m 2 .
It was hot at the time and atmospheric pressure. That is, the characteristics of the hollow fiber separation membrane of the present invention do not deteriorate even when subjected to pressurized steam sterilization.

【表】【table】

【表】 [発明の効果] 本発明により得られた中空糸分離膜は、膜素材
としてガラス転移温度および分解温度の高いポリ
アミドからなつているため、耐熱性に優れ、しか
も製膜原液の相分離現象を利用した製膜方法であ
るため細孔径が大きく透水性に優れており、液状
食品の濃縮、医薬品製造プロセスにおける精製、
分離等減菌操作を必要とする膜利用分野におい
て、高圧水蒸気減菌が可能な限外濾過膜および精
密濾過膜を提供することができる。
[Table] [Effects of the Invention] The hollow fiber separation membrane obtained by the present invention is made of polyamide, which has a high glass transition temperature and decomposition temperature, as a membrane material, so it has excellent heat resistance and also has excellent phase separation of the membrane forming solution. Because it is a membrane-forming method that utilizes this phenomenon, it has large pores and excellent water permeability, making it suitable for concentration of liquid foods, purification in pharmaceutical manufacturing processes,
In the field of membrane application requiring sterilization operations such as separation, ultrafiltration membranes and microfiltration membranes capable of high-pressure steam sterilization can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の中空糸分離膜の断面走査電子
顕微鏡写真であり、第2図はその外表面の走査電
子顕微鏡写真である。第3図は製膜原液の粘度
(η)の温度変化の例であり、相転移温度が32℃
であることを示している。
FIG. 1 is a cross-sectional scanning electron micrograph of the hollow fiber separation membrane of the present invention, and FIG. 2 is a scanning electron micrograph of its outer surface. Figure 3 shows an example of the temperature change in the viscosity (η) of the film-forming stock solution, and the phase transition temperature is 32℃.
It shows that.

Claims (1)

【特許請求の範囲】 1 中空糸の内面から外面まで全厚みにわたつて
網状の組織からなり、その内表面と外表面には網
状組織に連続してできた最大孔径0.05〜1μmの孔
を有する一般式(a)で表わされるポリアミドからな
ることを特徴とする中空糸分離膜。 但し、lは繰り返し単位数を示し、RはH,
CH3,C2H5のうちいずれかを示す。 2 中空糸の内面から外面まで全厚みにわたつて
網状の組織からなり、その内表面と外表面には網
状組織に連続してできた最大孔径0.01〜0.05μm
の孔を有する一般式(a)または(b)の少なくとも一種
であらわされるポリアミド混合体からなることを
特徴とする中空糸分離膜。 但し、l,m,nは繰り返し単位を示し、Rは
H,CH3,C2H5のうちいずれかを示す。 3 ポリアミド混合体が一般式(b)であらわされる
ポリアミドの重量%が50%以下である請求項2記
載の中空糸分離膜。 4 一般式(b)であらわされるポリアミドの繰り返
し単位のモル比率n/mが0.05から1である請求
項2または3記載の中空糸分離膜。 5 ポリアミド、該ポリアミドにたいする良溶
媒、1価および2価の陽イオンからなる電解質群
から選ばれる少なくとも1種、およびエチルアル
コール、プロピルアルコール、シクロヘキサノー
ルなどの1価アルコール、エチレングリコール、
プロピレングリコール、グリセリンなどの多価ア
ルコールのうちから選ばれる少なくとも1種を含
有する製膜原液の組成が均一相状態から相分離状
態へ転移する相転移温度を有する組成であり、相
転移温度以上に加温した均一相状態の製膜原液を
2重管状の中空糸紡糸ノズルの環状口から押しだ
し、同時に円状口から押し出される凝固芯液の温
度、ノズルから外部凝固液までの空中走行時の雰
囲気温度、および外部凝固液温度のうち少なくと
も一つ、好ましくは二つ以上の温度を相転移温度
以下とすることにより、製膜原液を均一相状態か
ら相分離状態に相転移させながら凝固と脱溶媒を
行うことによつて請求項1から4のいずれかに記
載の中空糸分離膜を得るすることを特徴とする中
空糸分離膜の製造方法。 6 中空糸の製膜原液の相転移温度が10℃〜80℃
であることの請求項5記載の中空糸分離膜製造方
法。
[Scope of Claims] 1. The hollow fiber is composed of a network structure over the entire thickness from the inner surface to the outer surface, and has pores with a maximum diameter of 0.05 to 1 μm that are continuous to the network structure on the inner and outer surfaces. A hollow fiber separation membrane comprising a polyamide represented by the general formula (a). However, l indicates the number of repeating units, R is H,
Indicates either CH 3 or C 2 H 5 . 2 The hollow fiber is composed of a network structure over the entire thickness from the inner surface to the outer surface, and the inner and outer surfaces have pores with a maximum diameter of 0.01 to 0.05 μm that are continuous to the network structure.
A hollow fiber separation membrane comprising a polyamide mixture represented by at least one of general formula (a) or (b) having pores. However, l, m, and n represent repeating units, and R represents any one of H, CH 3 , and C 2 H 5 . 3. The hollow fiber separation membrane according to claim 2, wherein the weight percent of the polyamide represented by the general formula (b) in the polyamide mixture is 50% or less. 4. The hollow fiber separation membrane according to claim 2 or 3, wherein the molar ratio n/m of the repeating units of the polyamide represented by the general formula (b) is from 0.05 to 1. 5 Polyamide, a good solvent for the polyamide, at least one kind selected from the electrolyte group consisting of monovalent and divalent cations, and monohydric alcohols such as ethyl alcohol, propyl alcohol, and cyclohexanol, ethylene glycol,
The composition of the membrane forming stock solution containing at least one kind selected from polyhydric alcohols such as propylene glycol and glycerin has a phase transition temperature at which the composition changes from a homogeneous phase state to a phase separation state, and The heated homogeneous phase membrane forming stock solution is pushed out from the annular opening of the double-tubular hollow fiber spinning nozzle, and the temperature of the coagulating core liquid that is simultaneously pushed out from the circular opening and the atmosphere during air travel from the nozzle to the external coagulating liquid. By setting at least one, preferably two or more of the temperature and the temperature of the external coagulating liquid below the phase transition temperature, coagulation and desolvation can be carried out while causing the membrane forming stock solution to undergo a phase transition from a homogeneous phase state to a phase separated state. A method for producing a hollow fiber separation membrane, characterized in that the hollow fiber separation membrane according to any one of claims 1 to 4 is obtained by carrying out the following steps. 6 The phase transition temperature of the hollow fiber membrane forming stock solution is 10℃ to 80℃
The method for producing a hollow fiber separation membrane according to claim 5.
JP5824188A 1988-03-14 1988-03-14 Hollow yarn separating membrane and its production Granted JPH01231903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5824188A JPH01231903A (en) 1988-03-14 1988-03-14 Hollow yarn separating membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5824188A JPH01231903A (en) 1988-03-14 1988-03-14 Hollow yarn separating membrane and its production

Publications (2)

Publication Number Publication Date
JPH01231903A JPH01231903A (en) 1989-09-18
JPH0450057B2 true JPH0450057B2 (en) 1992-08-13

Family

ID=13078612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5824188A Granted JPH01231903A (en) 1988-03-14 1988-03-14 Hollow yarn separating membrane and its production

Country Status (1)

Country Link
JP (1) JPH01231903A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0543171T3 (en) * 1991-10-26 1997-07-28 Hoechst Ag Semipermeable, porous, asymmetric polyether amide membranes.

Also Published As

Publication number Publication date
JPH01231903A (en) 1989-09-18

Similar Documents

Publication Publication Date Title
KR20070113375A (en) Asymmetric poly(vinylidene fluoride) hollow fiber membranes and methods to make membranes
KR20130053933A (en) Hydrophilic polyvinylidene fluoride based hollow fiber membrane and preparing method thereof
KR20180048692A (en) Patent application title: PROCESS FOR PREPARING COATING FILM FOR COST-INDUCED PHASES AND METHOD FOR PRODUCING POROUS HYBRIDS
CN102210979A (en) Positively charged polyvinyl chloride hollow fiber nanofiltration membrane and preparation method thereof
CN114699934B (en) Separation membrane material, preparation method and application
KR20090126796A (en) Water purification membranes with enhanced antifouling property and manufacturing method thereof
JPS6356802B2 (en)
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
KR20160052182A (en) Porous hollow fiber and manufacturing method same
KR101036312B1 (en) Asymmetric Hollow Fiber Membranes and Preparation Thereof
JP2015188778A (en) Nf membrane and production method of the same
KR20070113374A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of spherical particles containing polymeric nanofibers
JPH0450057B2 (en)
KR20070103187A (en) Porous poly(vinylidene fluoride) hollow fiber membranes composed of both fibril and nodular structures
JP2701357B2 (en) Casting dope for film formation
EP3897933A1 (en) Porous membranes for high pressure filtration
WO2020127456A1 (en) Porous membranes for high pressure filtration
KR101797429B1 (en) Porous hollow fiber and manufacturing method same
KR101568032B1 (en) Method for Manufacturing Porous Membrane and Porous Membrane Manufactured thereby
KR100426183B1 (en) A composition for producing microporous polyethersulfone membrane and a method for preparing microporous membrane using the same
JPH0286819A (en) Sheet-shaped porous separation membrane and its production
KR100406362B1 (en) A method for producing asymmetric supporting membranes for composite membranes and asymmetric supporting membranes having improved permeation and mechanical strength produced therefrom
JPH02198618A (en) Production of polyamide separation membrane
JP2001120968A (en) Method for manufacturing porous hollow fiber separation membrane
JP2890596B2 (en) Method for producing asymmetric membrane of copolyamide containing aliphatic cyclic diamine component