JP2001120968A - Method for manufacturing porous hollow fiber separation membrane - Google Patents

Method for manufacturing porous hollow fiber separation membrane

Info

Publication number
JP2001120968A
JP2001120968A JP33888899A JP33888899A JP2001120968A JP 2001120968 A JP2001120968 A JP 2001120968A JP 33888899 A JP33888899 A JP 33888899A JP 33888899 A JP33888899 A JP 33888899A JP 2001120968 A JP2001120968 A JP 2001120968A
Authority
JP
Japan
Prior art keywords
hollow fiber
separation membrane
porous hollow
fiber separation
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33888899A
Other languages
Japanese (ja)
Other versions
JP4284795B2 (en
Inventor
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP33888899A priority Critical patent/JP4284795B2/en
Publication of JP2001120968A publication Critical patent/JP2001120968A/en
Application granted granted Critical
Publication of JP4284795B2 publication Critical patent/JP4284795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a porous hollow fiber separation membrane which is capable of simultaneously satisfying both of high water permeation performance and separation performance of a nano filtration level or both of high gas permeation performance and gas separation performance. SOLUTION: The porous hollow fiber separation membrane is manufactured by extruding a spinning stock solution which is prepared by using polyether imide and polyamide imide at a blending ratio of 2/8 to 9/1 and dissolving these polymers at a concentration of 25 to 35 wt.% into a solidifying bath from double annular nozzles under heating conditions of >=70 deg.C and solidifying the same.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質中空糸分離
膜の製造法に関する。更に詳しくは、ナノロ過用または
気体分離用に好適に使用される多孔質中空糸分離膜の製
造法に関する。
[0001] The present invention relates to a method for producing a porous hollow fiber separation membrane. More specifically, the present invention relates to a method for producing a porous hollow fiber separation membrane suitably used for nanofiltration or gas separation.

【0002】[0002]

【従来の技術】ナノロ過用の分離膜としては、逆浸透膜
と同様に、多孔質ポリスルホン支持体の表面上に架橋ポ
リアミドによって代表される活性層を被覆した複合膜が
知られているが(特開平1-130707号公報、同5-317667号
公報、同9-10565号公報、同9-24259号公報など)、膜形
状の殆んどが平膜型であって、その膜エレメントの殆ん
どがスパイラル型であるばかりではなく、それの製造に
際しては複合化工程を必要としている。
2. Description of the Related Art As a separation membrane for nanofiltration, a composite membrane in which an active layer represented by a cross-linked polyamide is coated on the surface of a porous polysulfone support, similarly to a reverse osmosis membrane, is known. JP-A-1-130707, JP-A-5-317667, JP-A-9-10565, JP-A-9-24259), most of the membrane shape is a flat membrane type, most of the membrane element Not only are they spiral-shaped, but their production requires a complexing process.

【0003】これに対し、相転換法によって製造される
多孔質膜は、製造工程が少くて製造コスト上有利である
ばかりではなく、中空糸状の膜を容易に得ることもでき
るため、単位容積当りの膜面積を非常に大きくすること
ができ、膜エレメントを小さく設定できるという利点を
有している。しかしながら、このような多孔質中空糸膜
は、高い透水性能を得ようとすると分離性能が不十分と
なり、逆に高い分離性能を得ようとすると透水性能が不
十分となるといったように、高い透水性能とナノロ過レ
ベルの分離性能の両方を同時に満足させることができな
い。
On the other hand, a porous membrane produced by the phase inversion method is not only advantageous in terms of production cost because of a small number of production steps, but also allows a hollow fiber membrane to be easily obtained. Has the advantage that the membrane area can be made very large and the membrane element can be set small. However, such porous hollow fiber membranes have a high water permeability, such as insufficient separation performance when trying to obtain high water permeability, and conversely, insufficient water permeability when trying to obtain high separation performance. Both performance and nano-level separation performance cannot be satisfied simultaneously.

【0004】一方、膜素材としてポリエーテルイミドと
ポリアミドイミドとのブレンド物などを用い、それを乾
湿式紡糸して得られる多孔質中空糸膜は、膜表面の平均
孔径が5nm以下と小さいにも拘らず、高い透水性と低い
窒素ガス透過性とを有しているため、除湿膜として有効
に使用し得ることが本出願人によって見出されているが
(特開平11-537号公報実施例6参照)、これはナノロ過膜
としての分離性能あるいは非凝縮性ガスに対する分離性
能が必ずしも十分ではなかった。
On the other hand, a porous hollow fiber membrane obtained by using a blend of a polyetherimide and a polyamideimide as a membrane material and spin-dry spinning the same has a small average pore diameter of 5 nm or less on the membrane surface. Regardless, it has been found by the present applicant that it has high water permeability and low nitrogen gas permeability and can be effectively used as a dehumidifying membrane.
(See Example 6 of JP-A-11-537), which did not necessarily have sufficient separation performance as a nano-perm membrane or separation performance for non-condensable gas.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高い
透水性能とナノロ過レベルの分離性能の両方あるいは高
い気体透過性能と気体分離性能の両方を同時に満足させ
得る多孔質中空糸分離膜の製造法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a porous hollow fiber separation membrane capable of simultaneously satisfying both high water permeation performance and nanofiltration-level separation performance or both high gas permeation performance and gas separation performance. It is to provide a manufacturing method.

【0006】[0006]

【課題を解決するための手段】かかる本発明の目的は、
ポリエーテルイミドとポリアミドイミドとが2/8〜9/1の
ブレンド比で用いられ、かつこれらのポリマーを25〜35
重量%の濃度で溶解させた紡糸原液を、70℃以上の加熱
条件下で、二重環状ノズルから凝固浴中に押出し、凝固
させることにより多孔質中空糸分離膜を製造する方法に
よって達成される。
SUMMARY OF THE INVENTION The object of the present invention is as follows.
Polyetherimide and polyamide imide are used in a blend ratio of 2/8 to 9/1, and these polymers are used in 25 to 35
It is achieved by a method of producing a porous hollow fiber separation membrane by extruding a spinning stock solution dissolved at a concentration of weight% from a double annular nozzle into a coagulation bath under heating conditions of 70 ° C. or more and coagulating. .

【0007】[0007]

【発明の実施の形態】ポリエーテルイミドとしては、次
の一般式で表されるくり返し単位 を有するものが用いられ、実際には市販品、例えば次の
一般式で表されるくり返し単位 を有するGEプラスチック・ジャパン製品ウルテム1000な
どをそのまま用いることができる。
DETAILED DESCRIPTION OF THE INVENTION As a polyetherimide, a repeating unit represented by the following general formula is used. Is used, and is actually a commercially available product, for example, a repeating unit represented by the following general formula GE Plastics Japan product Ultem 1000 or the like can be used as it is.

【0008】また、ポリアミドイミドとしては、次の一
般式で表されるくり返し単位を有するアモコ・ジャパン
社製品トーロン4000Tなどの市販品をそのまま用いるこ
とができる。
As the polyamideimide, a commercially available product such as Toromo 4000T manufactured by Amoco Japan Co., Ltd. having a repeating unit represented by the following general formula can be used as it is.

【0009】これらのポリエーテルイミドとポリアミド
イミドとは、2/8〜9/1、好ましくは4/6〜8/2の割合でブ
レンドして用いられる。ポリアミドイミドのブレンド割
合がこれよりも少ないと、ナノロ過レベルの分離性能は
向上するが、殆んど透水性能がみられないようになりあ
るいは気体透過性は高いが気体分離性能が大きく低下す
るようになり、一方これ以上の割合でブレンドした場合
も、殆んど透水性能はみられないようになり、気体分離
性能および気体透過性が共に大きく低下するようにな
る。
These polyetherimides and polyamideimides are used by blending at a ratio of 2/8 to 9/1, preferably 4/6 to 8/2. If the blend ratio of the polyamideimide is lower than this, the separation performance at the nano filtration level is improved, but almost no water permeability is seen or the gas permeability is high but the gas separation performance is greatly reduced. On the other hand, when blended at a higher ratio, almost no water permeability is observed, and both gas separation performance and gas permeability are greatly reduced.

【0010】これら両者は、これらの共通の良溶媒であ
る非プロトン性極性溶媒、例えばジメチルホルムアミ
ド、ジエチルホルムアミド、ジメチルアセトアミド、ジ
エチルアセトアミド、ジメチルスルホキシド、N-メチル
-2-ピロリドン等、好ましくはアミド系の溶媒、特に好
ましくはジメチルアセトアミド中に、紡糸原液中約25〜
35重量%、好ましくは約30〜35重量%を占めるような割合
で溶解させて用いられる。紡糸原液中のポリマー濃度が
これ以下になると、透水性能にはすぐれているものの、
ナノロ過レベルの分離性能が殆んどみられなくなりある
いは気体透過性にはすぐれるものの気体分離性能の点で
満足されなくなる。一方、これ以上のポリマー濃度の紡
糸原液を用いると、粘度が高くなりすぎ良好な中空糸膜
形状が形成されなくなるばかりではなく、気体透過性が
殆んどみられなくなる。
Both of these are aprotic polar solvents which are common good solvents such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, dimethylsulfoxide, N-methyl
-2-pyrrolidone or the like, preferably an amide-based solvent, particularly preferably dimethylacetamide, in a spinning solution of about 25 to
It is used by dissolving it in a proportion so as to account for 35% by weight, preferably about 30 to 35% by weight. When the polymer concentration in the spinning solution is lower than this, although the water permeability is excellent,
The separation performance at the nano filtration level is hardly observed or the gas permeability is excellent but the gas separation performance is not satisfactory. On the other hand, when a spinning solution having a polymer concentration higher than this is used, not only does the viscosity become so high that a good hollow fiber membrane shape is not formed, but also the gas permeability is hardly observed.

【0011】以上の各成分からなる紡糸原液を用いての
紡糸は、湿式法によって行われるが、その際約70℃以
上、好ましくは約90〜130℃の加熱条件下で、二重環状
ノズルから直接凝固浴中に押出し、凝固させる方法がと
られる。約70℃以上という加熱条件は、紡糸原液がこの
ような条件下にあればよく、そのためには紡糸原液自体
の加熱のみならず、原液タンク、配管部分、二重環状ノ
ズル等がこのような温度条件下に保たれていることが望
ましい。これ以下の温度条件下で紡糸して得られた多孔
質中空糸膜は、透水性能の点では満足されるもののナノ
ロ過レベルの分離性能の点で満足されなくなりあるいは
気体の分離性能が低くなって気体分離膜として機能しな
くなる。
The spinning using the spinning dope composed of the above components is carried out by a wet method. At this time, under a heating condition of about 70 ° C. or more, preferably about 90 to 130 ° C., a double annular nozzle is used. A method of extruding and coagulating directly into a coagulation bath is employed. The heating condition of about 70 ° C. or more may be such that the spinning dope is not only under such conditions. For this purpose, not only the spinning dope itself is heated, but also the stock solution tank, piping section, double annular nozzle, etc. It is desirable that the conditions be maintained. The porous hollow fiber membrane obtained by spinning under a temperature condition below this is satisfactory in terms of water permeability, but is no longer satisfactory in terms of nanofiltration level separation performance, or gas separation performance is low. It will not function as a gas separation membrane.

【0012】二重環状ノズルを用いての湿式紡糸に際し
ては、水または非プロトン性極性溶媒水溶液よりなる芯
液あるいは湿潤空気または乾燥空気よりなる芯ガスを用
いることができ、この芯液の温度は室温乃至約50℃に設
定することができる。また、凝固浴としては、水だけで
はなく、これにポリエチレングリコール、エチレングリ
コール、グリセリン、ポリビニルピロリドン等の水溶性
添加剤を溶解させた水溶液を用いることもできる。特
に、凝固浴として水を用いた場合には、高い気体透過性
能と気体分離性能の中空糸膜を得ることができる。
In the wet spinning using a double annular nozzle, a core liquid composed of water or an aqueous solution of an aprotic polar solvent or a core gas composed of wet air or dry air can be used. It can be set from room temperature to about 50 ° C. As the coagulation bath, not only water but also an aqueous solution in which a water-soluble additive such as polyethylene glycol, ethylene glycol, glycerin, or polyvinylpyrrolidone is dissolved can be used. In particular, when water is used as the coagulation bath, a hollow fiber membrane having high gas permeability and gas separation performance can be obtained.

【0013】なお、気体分離膜として用いる場合には、
中空糸膜状ではなく平膜状であってもよく、その場合に
はポリエーテルイミドとポリアミドイミドとが2/8〜9/1
のブレンド比で用いられ、かつこれらのポリマーを25〜
35重量%の濃度で溶解させた製膜原液を、70℃以上の加
熱条件下で製膜して、水凝固浴中に浸漬し、凝固させる
ことによって、それの製造が行われる。
When used as a gas separation membrane,
Instead of a hollow fiber membrane, it may be a flat membrane, in which case the polyetherimide and the polyamideimide are 2/8 to 9/1
Used in a blend ratio of
A film-forming stock solution dissolved at a concentration of 35% by weight is formed under a heating condition of 70 ° C. or more, immersed in a water coagulation bath, and coagulated, thereby producing the same.

【0014】[0014]

【発明の効果】本発明方法により、高い透水性能とナノ
ロ過レベルの分離性能の両方あるいは高い気体透過性能
および気体分離性能の両方を同時に満足させ得る、非対
称な横断面を有する多孔質中空糸膜(表面緻密層と多孔
質層とが同一素材で、一般に同時に形成された中空糸
膜)を容易に得ることができる。この多孔質中空糸膜
は、ナノロ過膜として各種の有機物質や無機塩の除去に
効果的に用いられあるいは酸素、窒素、メタン、炭酸ガ
ス等を混合ガスから分離するのに効果的に用いられる。
According to the method of the present invention, a porous hollow fiber membrane having an asymmetrical cross section capable of simultaneously satisfying both high water permeation performance and separation performance at a nano filtration level, or both high gas permeation performance and gas separation performance. (A hollow fiber membrane in which the surface dense layer and the porous layer are made of the same material and are generally formed simultaneously) can be easily obtained. This porous hollow fiber membrane is effectively used as a nanofiltration membrane to remove various organic substances and inorganic salts, or is effectively used to separate oxygen, nitrogen, methane, carbon dioxide, etc. from a mixed gas. .

【0015】[0015]

【実施例】次に、実施例について本発明を説明する。Next, the present invention will be described with reference to examples.

【0016】実施例1 ポリエーテルイミド(PEI;GEプラスチック・ジャパン製
品ウルテム1000)24重量部およびポリアミドイミド(PAI;
アモコ・ジャパン製品トーロン4000T)6重量部をジメチ
ルアセトアミド70重量部中に溶解させて調製した紡糸原
液を、いずれも100℃に加熱された原液タンク、配管部
分および二重環状ノズルを通して、25℃の水よりなる凝
固浴中に押出し、凝固浴中を通過させた後ロールに巻き
取った。この際、芯液には50重量%ジメチルアセトアミ
ド溶液が用いられた。
EXAMPLE 1 24 parts by weight of polyetherimide (PEI; Ultem 1000 manufactured by GE Plastics Japan) and polyamideimide (PAI;
Amoco Japan product Torlon 4000T) A spinning stock solution prepared by dissolving 6 parts by weight in 70 parts by weight of dimethylacetamide was passed through a stock solution tank heated to 100 ° C, a piping section and a double annular nozzle, and then cooled to 25 ° C. It was extruded into a coagulation bath composed of water, passed through the coagulation bath, and wound up on a roll. At this time, a 50% by weight dimethylacetamide solution was used as the core liquid.

【0017】このようにして得られた中空糸膜(外径360
μm、内径260μm)に対して、操作圧力15Kgf/cm2の条件
下において、外圧式全量純水透過試験を行ない、透過水
量を測定した。また、濃度をいずれも0.2重量%に調整し
たNaCl水溶液、グルコース水溶液、スクロース水溶液ま
たはポリエチレングリコール(PEG、MW=200)水溶液を供
給液として、操作圧力15Kgf/cm2の条件下において、中
空糸膜による外圧式全量透過試験を行ない、それぞれの
阻止率を測定した。
The hollow fiber membrane (outside diameter 360
μm, inner diameter 260 μm), under an operating pressure of 15 Kgf / cm 2 , an external pressure permeation pure water permeation test was performed to measure the permeated water amount. Further, NaCl aqueous solution adjusted to 0.2 wt% both concentrations, aqueous glucose solution, sucrose solution, or polyethylene glycol (PEG, MW = 200) with an aqueous solution as a feed solution, under the conditions of operation pressure 15 kgf / cm 2, the hollow fiber membranes And a rejection rate of each was measured.

【0018】なお、NaClの阻止率は、電気伝導度の測定
により、 阻止率(%)=[1-(透過液の電気伝導度)/(供給液の電気伝
導度)]×100 として算出した。また、グルコース、スクロースまたは
PEGの阻止率は、高速液体クロマトグラフィーにより、
それぞれの溶出ピークの高さを測定し、 阻止率(%)=[1-(透過液のピーク高さ)/(供給液のピーク
高さ)]×100 として算出した。
The rejection of NaCl was calculated by measuring the electrical conductivity as follows: Rejection (%) = [1− (electric conductivity of permeate) / (electric conductivity of feed solution)] × 100. . Also glucose, sucrose or
The rejection of PEG was determined by high performance liquid chromatography.
The height of each elution peak was measured, and the rejection (%) was calculated as [1- (peak height of permeate) / (peak height of feed)] × 100.

【0019】実施例2 実施例1において、ポリエーテルイミド16重量部、ポリ
アミドイミド16重量部およびジメチルアセトアミド68重
量部よりなる紡糸原液が用いられた。
Example 2 In Example 1, a spinning dope comprising 16 parts by weight of polyetherimide, 16 parts by weight of polyamideimide and 68 parts by weight of dimethylacetamide was used.

【0020】比較例1 実施例1において、原液タンク、配管部分および二重環
状ノズルの加熱を行わず、室温条件下(25℃)で紡糸を行
った。
Comparative Example 1 In Example 1, the spinning was carried out at room temperature (25 ° C.) without heating the stock solution tank, the pipe section and the double annular nozzle.

【0021】比較例2 実施例1において、ポリエーテルイミド30重量部および
ジメチルアセトアミド70重量部よりなる紡糸原液が用い
られた。
Comparative Example 2 In Example 1, a spinning dope comprising 30 parts by weight of polyetherimide and 70 parts by weight of dimethylacetamide was used.

【0022】比較例3 実施例1において、ポリエーテルイミド16重量部、ポリ
アミドイミド4重量部およびジメチルアセトアミド80重
量部よりなる紡糸原液が用いられた。
Comparative Example 3 In Example 1, a stock solution for spinning comprising 16 parts by weight of polyetherimide, 4 parts by weight of polyamideimide and 80 parts by weight of dimethylacetamide was used.

【0023】以上の各実施例および比較例で得られた測
定結果は、次の表1に示される。 表1 PEI ポリマー 透過水量 阻止率(%) /PAI 濃度(%) [L/(m 3 ・day)] NaCl グルコース スクロース PEG 実施例1 8/2 30 40 85 95 100 100 〃 2 5/5 32 250 35 50 80 100 比較例1 8/2 30 120 7 20 38 21 〃 2 10/0 30 0.18 45 100 100 100 〃 3 8/2 20 5000 0 2 6 4
The measurement results obtained in each of the above Examples and Comparative Examples are shown in Table 1 below. Table 1 Example of PEI polymer permeated water rejection (%) / PAI concentration (%) [L / (m 3 · day)] NaCl glucose sucrose PEG Example 1 8/2 30 40 85 95 100 100 〃 25/5 32 250 35 50 80 100 Comparative Example 1 8/2 30 120 7 20 38 21 〃 2 10/0 30 0.18 45 100 100 100 〃 3 8/2 20 5000 0 2 6 4

【0024】実施例3 実施例1において、芯液として25℃の水が用いられた。Example 3 In Example 1, water at 25 ° C. was used as the core liquid.

【0025】このようにして得られた中空糸膜(外径600
μm、内径370μm)を、枝分れしたチューブ状の管内に平
行に収容し、膜の有効長が10cmになるように両端部を接
着剤で固定した。このような状態の中空糸膜の内側に、
酸素ガスまたは窒素ガスを3.0Kgf/cm2の圧力で加圧供給
し、膜を透過してくるガス容量を流量計で測定した。そ
して、単位時間当り透過したガス容量から酸素透過速度
および窒素透過速度を求め、この比から分離係数を算出
した。
The hollow fiber membrane (outer diameter 600
μm, 370 μm inside diameter) were accommodated in parallel in a branched tube, and both ends were fixed with an adhesive so that the effective length of the membrane became 10 cm. Inside the hollow fiber membrane in such a state,
Oxygen gas or nitrogen gas was supplied under pressure at a pressure of 3.0 kgf / cm 2 , and the volume of gas permeating the membrane was measured with a flow meter. Then, the oxygen permeation rate and the nitrogen permeation rate were determined from the gas volume permeated per unit time, and the separation coefficient was calculated from this ratio.

【0026】比較例4 実施例3において、原液タンク、配管部分および二重環
状ノズルの加熱を行わず、室温条件下(25℃)で紡糸を行
った。
Comparative Example 4 In Example 3, the spinning was carried out at room temperature (25 ° C.) without heating the stock solution tank, the piping and the double annular nozzle.

【0027】比較例5 実施例3において、ポリエーテルイミド30重量部および
ジメチルアセトアミド70重量部よりなる紡糸原液が用い
られた。
Comparative Example 5 In Example 3, a spinning dope comprising 30 parts by weight of polyetherimide and 70 parts by weight of dimethylacetamide was used.

【0028】比較例6 実施例3において、ポリアミドイミド30重量部およびジ
メチルアセトアミド70重量部よりなる紡糸原液が用いら
れた。
Comparative Example 6 In Example 3, a stock solution for spinning comprising 30 parts by weight of polyamideimide and 70 parts by weight of dimethylacetamide was used.

【0029】以上の実施例3および比較例4〜6で得られ
た結果は、次の表2に示される。 表2 酸素透過速度 窒素透過速度 分離係数 [m 3 (STP)/(m 2 ・秒・Pa)] [m 3 (STP)/(m 2 ・秒・Pa)] (O 2 /N 2 ) 実施例3 8.4×10-10 1.7×10-10 4.9 比較例4 7.1×10-10 7.5×10-10 0.9 〃 5 3.5×10-10 2.9×10-10 1.2 〃 6 3.6×10-13 3.0×10-13 1.2
The results obtained in Example 3 and Comparative Examples 4 to 6 are shown in Table 2 below. Table 2 Oxygen permeation rate Nitrogen permeation rate Example of separation coefficient [m 3 (STP) / (m 2 · sec · Pa)] [m 3 (STP) / (m 2 · sec · Pa)] (O 2 / N 2 ) Example 3 8.4 × 10 -10 1.7 × 10 -10 4.9 Comparative Example 4 7.1 × 10 -10 7.5 × 10 -10 0.9 〃 5 3.5 × 10 -10 2.9 × 10 -10 1.2 〃 6 3.6 × 10 -13 3.0 × 10 -13 1.2

フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA41 KE03R MA01 MA06 MA22 MA33 MB04 MB20 MC54 MC58 MC59 MC62 NA04 NA10 NA17 NA18 NA41 NA75 PB17 PB62 PB63 4L035 AA09 BB03 BB06 BB11 BB17 DD03 DD07 FF01 MD01 MD02Continued on the front page F term (reference) 4D006 GA03 GA06 GA41 KE03R MA01 MA06 MA22 MA33 MB04 MB20 MC54 MC58 MC59 MC62 NA04 NA10 NA17 NA18 NA41 NA75 PB17 PB62 PB63 4L035 AA09 BB03 BB06 BB11 BB17 DD03 DD07 FF01 MD01 MD02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 ポリエーテルイミドとポリアミドイミド
とが2/8〜9/1のブレンド比で用いられ、かつこれらのポ
リマーを25〜35重量%の濃度で溶解させた紡糸原液を、7
0℃以上の加熱条件下で、二重環状ノズルから凝固浴中
に押出し、凝固させることを特徴とする多孔質中空糸分
離膜の製造法。
1. A spinning dope in which a polyetherimide and a polyamideimide are used in a blend ratio of 2/8 to 9/1, and these polymers are dissolved at a concentration of 25 to 35% by weight.
A method for producing a porous hollow fiber separation membrane, comprising extruding from a double annular nozzle into a coagulation bath under a heating condition of 0 ° C. or more to coagulate.
【請求項2】 ポリマーを非プロトン性極性溶媒中に溶
解させた紡糸原液が用いられる請求項1記載の多孔質中
空糸分離膜の製造法。
2. The method for producing a porous hollow fiber separation membrane according to claim 1, wherein a spinning solution obtained by dissolving a polymer in an aprotic polar solvent is used.
【請求項3】 芯液に水または非プロトン性極性溶媒水
溶液が用いられる請求項1記載の多孔質中空糸分離膜の
製造法。
3. The method for producing a porous hollow fiber separation membrane according to claim 1, wherein water or an aqueous solution of an aprotic polar solvent is used as the core liquid.
【請求項4】 凝固浴として水または水溶性添加剤水溶
液が用いられる請求項1記載の多孔質中空糸分離膜の製
造法。
4. The method for producing a porous hollow fiber separation membrane according to claim 1, wherein water or an aqueous solution of a water-soluble additive is used as the coagulation bath.
【請求項5】 請求項1記載の方法で得られた非対称横
断面を有する多孔質中空糸分離膜。
5. A porous hollow fiber separation membrane having an asymmetric cross section obtained by the method according to claim 1.
【請求項6】 ナノロ過用分離膜として用いられる請求
項5記載の多孔質中空糸分離膜の製造法。
6. The method for producing a porous hollow fiber separation membrane according to claim 5, which is used as a separation membrane for nanofiltration.
【請求項7】 気体分離膜として用いられる請求項5記
載の多孔質中空糸分離膜の製造法。
7. The method for producing a porous hollow fiber separation membrane according to claim 5, which is used as a gas separation membrane.
【請求項8】 ポリエーテルイミドとポリアミドイミド
とが2/8〜9/1のブレンド比で用いられ、かつこれらのポ
リマーを25〜35重量%の濃度で溶解させた製膜原液を、7
0℃以上の加熱条件下で製膜して、水凝固浴中に浸漬
し、凝固させることを特徴とする多孔質分離膜の製造
法。
8. A film-forming stock solution in which polyetherimide and polyamideimide are used in a blend ratio of 2/8 to 9/1 and these polymers are dissolved at a concentration of 25 to 35% by weight,
A method for producing a porous separation membrane, comprising forming a membrane under heating conditions of 0 ° C. or higher, immersing it in a water coagulation bath, and coagulating it.
JP33888899A 1999-04-05 1999-11-30 Method for producing porous hollow fiber separation membrane Expired - Fee Related JP4284795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33888899A JP4284795B2 (en) 1999-04-05 1999-11-30 Method for producing porous hollow fiber separation membrane

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9770199 1999-04-05
JP22957699 1999-08-16
JP11-97701 1999-08-16
JP11-229576 1999-08-16
JP33888899A JP4284795B2 (en) 1999-04-05 1999-11-30 Method for producing porous hollow fiber separation membrane

Publications (2)

Publication Number Publication Date
JP2001120968A true JP2001120968A (en) 2001-05-08
JP4284795B2 JP4284795B2 (en) 2009-06-24

Family

ID=27308475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33888899A Expired - Fee Related JP4284795B2 (en) 1999-04-05 1999-11-30 Method for producing porous hollow fiber separation membrane

Country Status (1)

Country Link
JP (1) JP4284795B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646312B1 (en) * 2005-06-10 2006-11-23 (주)에어레인 Hollow fiber membrane for oxygen separation and preparation method thereof
KR100813892B1 (en) 2004-09-17 2008-03-18 주식회사 코오롱 Method of manufacturing for braid-reinforced hollow fiber membrane
WO2012074487A1 (en) * 2010-11-29 2012-06-07 Nanyang Technological University Forward osmosis hollow fiber membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813892B1 (en) 2004-09-17 2008-03-18 주식회사 코오롱 Method of manufacturing for braid-reinforced hollow fiber membrane
KR100646312B1 (en) * 2005-06-10 2006-11-23 (주)에어레인 Hollow fiber membrane for oxygen separation and preparation method thereof
CN100435916C (en) * 2005-06-10 2008-11-26 艾尓灵株式会社 Hollow fiber oxygen separation membrane and method for preparing same
WO2012074487A1 (en) * 2010-11-29 2012-06-07 Nanyang Technological University Forward osmosis hollow fiber membrane

Also Published As

Publication number Publication date
JP4284795B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
US6623639B2 (en) Solvent-resistant microporous polybenzimidazole membranes
EP0732143B1 (en) Fluid separation membranes prepared from blends of polyimide polymers
EP2646136B1 (en) Forward osmosis hollow fiber membrane
US20080197071A1 (en) Nano Composite Hollow Fiber Membrane and Method of Manufacturing the Same
US5443728A (en) Method of preparing membranes from blends of polyetherimide and polyimide polymers
KR20140082532A (en) Method for composite membrane module
EP3348323A1 (en) Film-forming stock solution for use in non-solvent-induced phase separation methods, and method for producing porous hollow fiber membrane using same
JP4057217B2 (en) Method for producing solvent-resistant microporous polybenzimidazole thin film
CN111282455B (en) External pressure type hollow fiber industrial nanofiltration membrane and preparation method thereof
JPH0478729B2 (en)
JP2001120968A (en) Method for manufacturing porous hollow fiber separation membrane
KR102139208B1 (en) A preparation method of fouling-resistant hollow fiber membrane and a fouling-resistant hollow fiber membrane prepared by the same
WO2010077876A2 (en) Chemically-modified polybenzimidazole membranous tubes
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
JP2022514036A (en) Porous membrane for high pressure filtration
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JP3422657B2 (en) Hollow fiber membrane for dehumidification
KR102524361B1 (en) Method of manufacturing membrane, membrane and water treatment module
JPS6219209A (en) Preparation of polysulfone base film
JPS6190709A (en) Production of polysulfone hollow membrane
JPH0450057B2 (en)
JPH027690B2 (en)
JPH03186328A (en) Hollow yarn separation membrane for pervaporization
JPS59112027A (en) Manufacture of hollow polysulfone fiber
JPH02198618A (en) Production of polyamide separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees