JPH0449756B2 - - Google Patents
Info
- Publication number
- JPH0449756B2 JPH0449756B2 JP57187092A JP18709282A JPH0449756B2 JP H0449756 B2 JPH0449756 B2 JP H0449756B2 JP 57187092 A JP57187092 A JP 57187092A JP 18709282 A JP18709282 A JP 18709282A JP H0449756 B2 JPH0449756 B2 JP H0449756B2
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- matrix
- bipolar electrode
- lead
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 claims description 23
- 239000011159 matrix material Substances 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- 239000006183 anode active material Substances 0.000 claims description 9
- 239000006182 cathode active material Substances 0.000 claims description 9
- 229910000978 Pb alloy Inorganic materials 0.000 claims description 7
- 238000007747 plating Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims 1
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 10
- 239000011149 active material Substances 0.000 description 8
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 229910000882 Ca alloy Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000003483 aging Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910001245 Sb alloy Inorganic materials 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N lead dioxide Inorganic materials O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229910052924 anglesite Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002305 electric material Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005323 electroforming Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
- H01M10/18—Lead-acid accumulators with bipolar electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】
本発明は、鉛蓄電池の極板に係わり、十分な機
械的強度特に電池を使用している間に生じる伸び
に対する抵抗力の大きな集電体を備えたバイポー
ラ形電極およびその製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrode plates for lead-acid batteries, including bipolar electrodes and current collectors having sufficient mechanical strength, particularly resistance to elongation that occurs during use of the battery. It concerns its manufacturing method.
衆知の通り鉛蓄電池、特に自動車用電池の極板
には従来よりPb−Sb系合金からなる集電体(格
子)が用いられてきたが、電池のメンテナンスフ
リー化という要求に対応するために集電体の材質
はPb−Sb系合金からPb−Ca系合金に変りつつあ
る。すなわち、Pb−Ca系合金の如くアンチモン
フリーの鉛合金は、前記Pb−Sb系合金に比べて
水素過電圧が大きいため充電の際の水素ガス発生
が少なく、従つて電解液の減少がPb−Sb系合金
を集電体として用いた電池より大幅に少なくなる
わけである。 As is well known, current collectors (grids) made of Pb-Sb alloys have traditionally been used for the electrode plates of lead-acid batteries, especially automobile batteries, but in order to meet the demand for maintenance-free batteries, current collectors (grids) have been used for the electrode plates of lead-acid batteries, especially automobile batteries. The material of electric bodies is changing from Pb-Sb alloy to Pb-Ca alloy. In other words, antimony-free lead alloys such as Pb-Ca-based alloys have a larger hydrogen overvoltage than the Pb-Sb-based alloys, so less hydrogen gas is generated during charging. This is significantly less than batteries using alloys as current collectors.
ところがPb−Ca系合金を集電体として使用す
るといわゆる「伸び」と呼ばれている現象が問題
となる。すなわち、電池を使用している間に陽極
板の集電体表面にはPbO2層が形成されるが、放
電時にPbO2がPbSO4に変化しこの際体積膨張を
伴なうのでその力によつて集電体が少しずつ伸ば
されるというものである。第1図のbは実車テス
トを終了した電池より取出した陽極板の集電体
で、Pb−0.065Ca−0.5Sn合金から成るエキスパ
ンド格子1である。図に示した通り、試験前の状
態aとはかなり異つた形に変形している。この様
に陽極板の集電体が伸びセパレータの外形寸法以
上に変化すると陰極板との間で短絡を起し易くな
つたり、あるいは活物質の保持能力が低下するた
めに電池の寿命は短かいものになつてしまう。 However, when a Pb-Ca alloy is used as a current collector, a phenomenon called "elongation" becomes a problem. In other words, while the battery is in use, two layers of PbO are formed on the surface of the current collector of the anode plate, but during discharge, PbO2 changes to PbSO4 , which is accompanied by volumetric expansion, so the force As a result, the current collector is gradually stretched. Figure 1b shows a current collector of an anode plate taken out from a battery that has been tested on an actual vehicle, and is an expanded grid 1 made of a Pb-0.065Ca-0.5Sn alloy. As shown in the figure, it has deformed into a shape that is quite different from state a before the test. If the current collector on the anode plate stretches and changes beyond the external dimensions of the separator, short circuits may occur between the anode plate and the cathode plate, or the active material retention capacity may decrease, resulting in a shortened battery life. It becomes a thing.
第2図は同じ自動車用電池であるが、バイポー
ラ形の電極を使用した電池で同じく実車テストを
終了したものの集電体2の変形状況を示したもの
である。衆知の通り、バイポーラ形の電極は1枚
の集電体の表裏をそれぞれ陽極、陰極として使用
するものであり、この場合は周囲を樹脂枠で囲ん
だ1枚のPb−0.07Ca−0.4Sn合金板の一方の面に
陽極活物質、他方の面に陰極活物質を塗布して極
板としたものである。電池使用中に生じた陽極側
での伸びのために、三次元的な複雑な変形を呈し
ている。特に、この場合は周囲が樹脂枠3である
ため、伸びによる変形が集電体の板厚方向に複雑
な形で現われており、このために活物質の脱落が
著しくなつて目標とした期間の半分の寿命となつ
ている。 FIG. 2 shows the state of deformation of the current collector 2 of the same automobile battery, which uses bipolar electrodes and which has also been tested in an actual vehicle. As is well known, a bipolar electrode uses the front and back sides of a single current collector as an anode and a cathode, respectively, and in this case, it is a Pb-0.07Ca-0.4Sn alloy sheet surrounded by a resin frame. An electrode active material is coated on one side of the plate and a cathode active material is applied on the other side to form an electrode plate. Due to the elongation on the anode side that occurs during battery use, the battery exhibits complex three-dimensional deformation. In particular, in this case, since the surrounding area is the resin frame 3, the deformation due to elongation appears in a complicated manner in the thickness direction of the current collector, and as a result, the active material falls off significantly, resulting in the failure of the target period. It has reached half its lifespan.
現時点では、上述した伸びの発生を防止するた
めに積極的な方策をとることはあまり行なわれて
おらず、例えば集電体の断面積を許される範囲内
で大きくしておき、単位面積当りにかかる力すな
わち応力を出来るだけ小さくするといつた程度の
ことしかなされていない。ところが、集電体の断
面積を大きくして伸びを抑制するという考え方
は、最近の自動車用電池に対する軽量化という厳
しい要求とは相容れない点を有するものである。
すなわち、断面積を大きくするということは材料
を多く使うことを意味し、必然的に集電体は重く
なつて電池を軽量化するという目的とは逆行する
わけである。前述したバイポーラ形の電極(極
板)を使用する電池は、通常陰極2枚の集電体を
使用するところを1枚しか使用しないため電池重
量を大幅に軽減出来ることは言うまでもなく、同
時に電圧性能を飛躍的に向上させることが可能と
なる。それ故、軽量化という目的には極めて有効
な極板群構成手法の1つであるが、先に述べた如
き伸びによる不都合を排除できなければ、その利
点は著しく減少してしまう。 At present, there are not many active measures taken to prevent the above-mentioned elongation. For example, by increasing the cross-sectional area of the current collector within the allowable range, The only thing that has been done is to reduce this force, or stress, as much as possible. However, the idea of suppressing elongation by increasing the cross-sectional area of the current collector is incompatible with recent strict demands for weight reduction for automobile batteries.
In other words, increasing the cross-sectional area means using more material, which inevitably makes the current collector heavier, which goes against the objective of making the battery lighter. Batteries that use the bipolar type electrodes (electrode plates) mentioned above use only one cathode current collector instead of the two that would normally be used, so it goes without saying that the weight of the battery can be significantly reduced, and at the same time the voltage performance is improved. It becomes possible to dramatically improve the Therefore, it is one of the extremely effective methods of configuring the electrode plate group for the purpose of weight reduction, but its advantages will be significantly reduced unless the disadvantages due to elongation as described above can be eliminated.
本発明は、上述した如きバイポーラ形電極の伸
びを抑制し電圧性能、寿命性能に優れた信頼性の
高い鉛蓄電池用のバイポーラ形電極およびその製
造法を提供せんとするものである。 The present invention aims to provide a highly reliable bipolar electrode for a lead-acid battery that suppresses elongation of the bipolar electrode as described above and has excellent voltage performance and life performance, and a method for manufacturing the same.
次に、本発明の詳細について述べる。 Next, details of the present invention will be described.
先に述べたPb−Ca系合金を鉛蓄電池の集電体
として用いた時に認められる「伸び」という現象
は、鉛蓄電池の充放電のメカニズムを考えれば明
らかな如く本質的な問題であり、集電体にPbベ
ースの合金を使倫する場合には、程度の差こそあ
れその発生を全くなくすことは従来の合金の製造
手法を踏襲する限り極めて難しいものと考えられ
る。言うまでもなく、「伸び」という現象と深く
係わり合つているPb合金側の問題は機械的性質
であり、引張強さ伸び(この場合は、いわゆる引
張試験にて測定されるもので前述した電池の集電
体に認められるものとは異なる)はもちろんのこ
とクリーブ強度をいかに向上させるかという様な
見方で伸びの防止策を考えることが必要である。
なぜなら、Pb合金というものは融点が低いため、
電池が自動車のエンジンルーム内に設置されて遭
遇する温度に於てすら結晶粒同志のすべり等が発
生しやすく、小さな応力が静的な状態で連続的に
かかることにより容易に変形することが十分考え
られるからである。また、現在集電体として使用
されているPb−Sb系合金あるいはPb−Ca系合金
は、時効硬化性合金であり、時効硬化処理を施す
ことにより材料の強度を高め、電池組立の際の極
板の取扱いを容易にしている。例えば、Pb−Ca
系合金の集電体の場合には時効硬化処理を施すこ
とにより、6〜7Kg/mm2の引張強さを有するもの
としてから電池の製造に供されている。しかしな
がら、こうして強度を高めてから使用しても、実
際に電池が自動車に搭載され実用に供されている
間集電体がその強度を維持できるという保証はな
い。なぜならば、エンジンルーム内に置かれた電
池の温度を考える時、いわゆるオーバーエージン
グによりPb合金の軟化が起こつて時効硬化処理
によつて得た高い引張強さが徐々に低下してゆく
ことは十分あり得ることであるからである。 The phenomenon of "elongation" that is observed when the Pb-Ca alloy mentioned above is used as a current collector in lead-acid batteries is an essential problem, as is clear when considering the charging and discharging mechanism of lead-acid batteries. When using Pb-based alloys in electric bodies, it is considered extremely difficult to completely eliminate the occurrence of this phenomenon, although there are varying degrees of severity, as long as conventional alloy manufacturing methods are followed. Needless to say, the problem on the Pb alloy side, which is closely related to the phenomenon of "elongation", is its mechanical properties. It is necessary to consider measures to prevent elongation from the viewpoint of how to improve the cleave strength (which is different from that observed in electric materials), as well as how to improve the cleave strength.
This is because Pb alloy has a low melting point,
Even at the temperatures encountered when a battery is installed in the engine room of a car, it is easy for crystal grains to slip between each other, and it is easy to deform when a small stress is continuously applied in a static state. This is because it is conceivable. In addition, the Pb-Sb alloy or Pb-Ca alloy currently used as current collectors is an age-hardening alloy, and age-hardening treatment increases the strength of the material, making it ideal for use in battery assembly. This makes it easier to handle the board. For example, Pb−Ca
In the case of a current collector made of a series alloy, it is subjected to an age hardening treatment to have a tensile strength of 6 to 7 kg/mm 2 before being used in battery production. However, even after increasing the strength in this way and using it, there is no guarantee that the current collector can maintain its strength while the battery is actually installed in an automobile and put into practical use. This is because when considering the temperature of a battery placed in the engine compartment, it is well known that the Pb alloy softens due to so-called overaging, and the high tensile strength obtained through age hardening treatment gradually decreases. Because it is possible.
現在集電体として使用されているPb合金、す
なわちPb−Sb系あるいはPb−Ca系合金は、「伸
び」を防止するという観点に立つた場合上述した
如き問題点があるが、本発明の特徴はこれらの問
題解決に当り従来から行なわれてきた様な合金組
成を変えたり、時効硬化処理の方法を変えたりす
る様な方法は何ら目的に合致しないものと判断
し、集電体の素材を複合材料化することにある。
すなわち、PbあるいはPb合金のマトリツクスの
中に例えばガラスやカーボンの様なマトリツクス
の材料より高い引張強さを有する導電性あるいは
非導電性のフイラメント(フアイバー)を偏在し
て配列させた複合材料を集電体となし、前記フイ
ラメントを偏在させた側の表面に陽極活物質を、
反対側の表面に陰極活物質を配置して軽量で電圧
特性の優れたバイポーラ形電極としたものであ
る。 Pb alloys currently used as current collectors, that is, Pb-Sb-based or Pb-Ca-based alloys, have the above-mentioned problems from the viewpoint of preventing "elongation." However, the features of the present invention In order to solve these problems, we determined that the conventional methods of changing the alloy composition or changing the age hardening treatment method did not meet the purpose, so we decided to change the material of the current collector. The goal is to use composite materials.
In other words, a composite material is assembled in which conductive or non-conductive filaments (fibers), which have a higher tensile strength than matrix materials such as glass or carbon, are unevenly arranged in a Pb or Pb alloy matrix. Anode active material is placed on the surface of the side where the filament is unevenly distributed,
A cathode active material is placed on the opposite surface to create a bipolar electrode that is lightweight and has excellent voltage characteristics.
次に、本発明のバイポーラ形電極、特に集電体
用複合材料の製造方法について述べる。 Next, a method for manufacturing the bipolar electrode of the present invention, particularly a composite material for a current collector, will be described.
第3図は、本発明のバイポーラ形電極の集電体
に使用する複合材料の製造方法を示したものであ
る。同図に示した方法は、電鋳を利用した製造方
法であり、4はめつき槽、5はめつき液、6は陽
極板である。目的とする複合材料は、母型7の表
面にPbを電解析出させることにより製作する。
この場合、母型7は同図に示した如く陰極として
の役目を担つている。なお、母型7が非導電性材
料である場合には、表面にグラフアイト粉末を塗
布する等して導体化処理を施し、また母型7が導
電体の場合には陽極電解処理により酸化皮膜を形
成させる等の手段により離型処理を施す(非導電
性の母型7に塗布するグラフアイトは離型材も兼
ねている)。次に、この母型7を図の如くめつき
液5中に浸漬し、前記陽極板6をプラス、母型7
をマイナスにして電解を行なう。この際、母型7
の方は適当な速度で回転させるとよい。なお、め
つき液5としては、例えばホウフツ化鉛、ホウフ
ツ酸、ホウ酸等から成るものが使用される。以上
の様な方法により、まず母型7の表面上に厚さt1
のPbの電着層8を形成する。 FIG. 3 shows a method for manufacturing a composite material used for the current collector of the bipolar electrode of the present invention. The method shown in the figure is a manufacturing method using electroforming, and 4 is a plating tank, 5 is a plating solution, and 6 is an anode plate. The target composite material is produced by electrolytically depositing Pb on the surface of the matrix 7.
In this case, the matrix 7 plays the role of a cathode as shown in the figure. In addition, when the matrix 7 is a non-conductive material, conductive treatment is performed by applying graphite powder on the surface, and when the matrix 7 is a conductor, an oxide film is formed by anodic electrolytic treatment. (The graphite coated on the non-conductive matrix 7 also serves as a mold release material.) Next, the mother mold 7 is immersed in the plating solution 5 as shown in the figure, and the anode plate 6 is placed in the positive direction, and the mother mold 7 is
Perform electrolysis with negative. At this time, matrix 7
It is better to rotate it at an appropriate speed. Note that the plating liquid 5 used includes, for example, lead borofluoride, borofluoric acid, boric acid, or the like. By the method described above, a thickness t 1 is first formed on the surface of the matrix 7.
An electrodeposition layer 8 of Pb is formed.
次に、この様にして形成した厚さt1のPbの電着
層8の上に、例えばカーボン、炭化けい素、ガラ
ス等のフイラメントとPbとの複合層を形成する。
第4図は、その状況を示したものであり、図の如
く上述したフイラメント9を回転する母型7上に
供給し、Pbを電着すると同時にこれを巻付けて
ゆくものである。この様な方法で、電着したPb
のマトリツクス中に前記フイラメント9を含む厚
さt2の複合層を形成した後、母型7より(t1+t2)
の厚さを有するPbベースの複合材料を離型させ、
所定の寸法に切断してバイポーラ形電極用集電体
とするわけである。 Next, a composite layer of Pb and a filament of carbon, silicon carbide, glass, etc. is formed on the electrodeposited layer 8 of Pb having a thickness t 1 thus formed.
FIG. 4 shows the situation. As shown in the figure, the above-described filament 9 is supplied onto the rotating matrix 7, and Pb is electrodeposited at the same time as it is wound. In this way, the electrodeposited Pb
After forming a composite layer of thickness t 2 including the filament 9 in the matrix of (t 1 +t 2 ) from the matrix 7,
demolding a Pb-based composite material with a thickness of
It is cut into predetermined dimensions to make a current collector for bipolar electrodes.
第5図に上述した方法で得た複合材料11の断
面図を示す。また、第6図にはこうして製作した
複合材料11を集電体として用いたバイポーラ形
電極の構造の一例を示す。第6図に於て、12は
上述した方法で製作したPbベースの複合材料1
1より成る集電体であり、その周囲を樹脂枠3に
より囲まれている。また、集電体12の両面には
活物質保持を目的とした樹脂の格子13があり、
これは前記樹脂枠3と一体化した形となつてい
る。そして、集電体12の両面には活物質が塗布
されているが、この場合同図のC部拡大図に示し
た如く、集電体12に於てフイラメント9が偏在
している側に陽極活物質14、その反対側に陰極
活物質15を配置する。 FIG. 5 shows a cross-sectional view of the composite material 11 obtained by the method described above. Further, FIG. 6 shows an example of the structure of a bipolar electrode using the composite material 11 manufactured in this way as a current collector. In Figure 6, 12 is the Pb-based composite material 1 manufactured by the method described above.
1, which is surrounded by a resin frame 3. Furthermore, there is a resin lattice 13 on both sides of the current collector 12 for the purpose of holding the active material.
This is integrated with the resin frame 3. An active material is coated on both sides of the current collector 12, but in this case, as shown in the enlarged view of section C in the figure, an anode is placed on the side of the current collector 12 where the filaments 9 are unevenly distributed. An active material 14 and a cathode active material 15 are arranged on the opposite side.
本発明による鉛電池用バイポーラ形電極の製造
方法を述べたが、この中で本発明に於ける技術的
特徴は集電体としてPbベースの繊維強化型複合
材料を使用し、かつフイラメントを前記複合材料
の厚さ方向に均等に分布する様に配置したのでは
なく、第5図あるいは第6図に示した如く一方の
面側に片寄らせて配置(偏在)した点にある。上
述した如くフイラメントが偏在している側には陽
極活物質、その反対側に陰極活物質を配置するわ
けであるが、この様な活物質配置とする理由は次
の点にある。すなわち、先に述べた如く電池が使
用されている間に陽極板側の集電体は徐々に腐食
され、その表面にはPbO2が生成する。このPbO2
は活物質と同様に充放電に関与し、放電時には
PbSO4に変化するがこの時体積膨張を伴ない、そ
の応力によりいわゆる「伸び」を生じ、バイポー
ラ形電極の場合には第2図に示した如く板厚方向
の波うちを主とした3次元的な変形を呈する。こ
の様に「伸び」の発生源は陽極側にあり、集電体
のうち陽極活物質と接している表面からある厚さ
を有する領域が陰極活物質側より膨張した形にな
ることに問題があるわけである。それ故、電池を
使用している間に生じる腐食によつて影響を受け
ると考えられる陽極活物質側の領域にフイラメン
トを配置することにより強化しておけば、「伸び」
の発生を大幅に減少あるいは皆無とすることが可
能となるわけである。 The method for manufacturing a bipolar electrode for a lead-acid battery according to the present invention has been described, and the technical feature of the present invention is that a Pb-based fiber-reinforced composite material is used as a current collector, and the filament is The problem is that they are not arranged so as to be evenly distributed in the thickness direction of the material, but are arranged (unevenly distributed) toward one side as shown in FIG. 5 or 6. As described above, the anode active material is placed on the side where the filaments are unevenly distributed, and the cathode active material is placed on the opposite side.The reason for arranging the active materials in this manner is as follows. That is, as mentioned above, while the battery is in use, the current collector on the anode plate side gradually corrodes, and PbO 2 is generated on its surface. This PbO2
is involved in charging and discharging in the same way as active materials, and when discharging
It changes to PbSO 4 , but at this time it is accompanied by volume expansion, and the stress causes so-called "elongation", and in the case of bipolar electrodes, three-dimensional waving mainly in the thickness direction as shown in Figure 2. It exhibits deformation. In this way, the source of "elongation" is on the anode side, and the problem is that the area of the current collector that has a certain thickness from the surface that is in contact with the anode active material expands from the cathode active material side. There is a reason. Therefore, if the filament is strengthened by placing it in the area on the side of the anode active material that is considered to be affected by the corrosion that occurs during battery use, it is possible to prevent "stretching".
This makes it possible to significantly reduce or eliminate the occurrence of
我々は、この様な考え方で種々検討を重ねた結
果、フイラメントを配置する領域は集電体の厚さ
の約1/2程度にすること、すなわち第5図に於け
るt1とt2との比率は1程度にするのが望ましいこ
とがわかつた。さらに、「伸び」の発生による3
次元的な変形を防止するためには、第7図に示し
た如くフイラメント9を厚さ方向でお互いに直交
する様な形に配置することが極めて有効であるこ
ともわかつた。また、集電体に使用するフイラメ
ントの材質は先に述べた如くカーボン、炭化けい
素、ガラス等であるが、基本的には機械的性質と
してベースのPbよりも引張強さが大きくかつ伸
びが小さなものでなくてはならない。また、化学
的性質として希硫酸におかされないあるいはおか
されにくいものでなくてはならない。そしてこれ
らの機械的性質、化学的性質に加えて導電性の材
料であればさらに好ましい。フイラメントの太さ
は目的とする集電体の厚さ等に関係するが、集電
体の厚さが1mm程度のものに於ては0.05〜0.1mm
程度のものが好ましい。また、フイラメントとフ
イラメントの間隔は0.5mm以下の場合伸びの発生
防止特に有効であることがわかつた。 As a result of various studies based on this idea, we decided that the area where the filament is placed should be approximately 1/2 the thickness of the current collector, that is, t 1 and t 2 in Figure 5. It was found that it is desirable to set the ratio to about 1. Furthermore, due to the occurrence of “elongation”, 3
In order to prevent dimensional deformation, it has been found that it is extremely effective to arrange the filaments 9 so that they are orthogonal to each other in the thickness direction, as shown in FIG. In addition, as mentioned above, the filament material used for the current collector is made of carbon, silicon carbide, glass, etc., but its mechanical properties basically have greater tensile strength and elongation than the base Pb. It has to be something small. In addition, the chemical properties must be such that it cannot be easily oxidized by dilute sulfuric acid. In addition to these mechanical and chemical properties, it is even more preferable to use a material that is electrically conductive. The thickness of the filament is related to the thickness of the intended current collector, but if the thickness of the current collector is about 1 mm, it is 0.05 to 0.1 mm.
It is preferable that the degree of Furthermore, it has been found that elongation is particularly effectively prevented when the distance between the filaments is 0.5 mm or less.
本発明による複合材料はPbをベースとしその
他の成分を含有したものであるほか、言うまでも
なく前述した如きフイラメントによつて強化され
るため、集電体自体の引張強さは純Pbのそれよ
りはるかに大きくなり、ベースとして純鉛を用い
ても従来より用いられてきたPb−Ca系合金に比
べて強度面での問題は何もない。 Since the composite material according to the present invention is Pb-based and contains other components, it goes without saying that it is reinforced by the filament as mentioned above, so the tensile strength of the current collector itself is far greater than that of pure Pb. Even if pure lead is used as the base, there is no problem in terms of strength compared to the conventionally used Pb-Ca alloy.
次に本発明の実施例について述べる。 Next, embodiments of the present invention will be described.
従来用いていたPb−Ca系合金より成る集電体
を有するバイポーラ形電極(以下従来型と記す)
を用いた電池と本発明による複合材料よりなるバ
イポーラ形電極(以下本発明品と記す)を用いた
電池を組立て寿命試験を行ない、寿命にどの程度
の違いが現われるか、また集電体の変形状態はど
の程度かを比較した。 A bipolar electrode with a current collector made of a conventional Pb-Ca alloy (hereinafter referred to as the conventional type)
A battery using a bipolar electrode made of a composite material according to the present invention and a battery using a bipolar electrode made of a composite material according to the present invention (hereinafter referred to as the product of the present invention) were assembled and subjected to a life test to determine the degree of difference in life and the deformation of the current collector. We compared the condition.
比較実験に供した電池のバイポーラ形電極の仕
様、構造等は次の様なものである。すなわち、従
来型、本発明品いずれの電極を用いた電池も公称
容量48Ahで、極板の大きさは120×250mmのもの
である。従来型の場合、集電体には厚さ0.8mmの
Pb−0.065Ca−0.5Sn合金板を用いた。一方、本
発明品の場合は、集電体の厚さは1mmであるが、
陽極活物質に接する側の表面から0.5mmの厚さの
領域内に直径0.05mmのカーボンフイラメントを配
置したものである。この場合、フイラメント9
は、第8図に示した如く0.1mmピツチで×軸に平
行に並ぶものを0.075mmの層間隔で3層配置し、
次に同じく0.1mmピツチでY軸に平行に並ぶもの
をやはり同じ0.075mmの層間隔で3層配置したも
のである。なお、ベースは鈍鉛であり、この複合
材料は第3図および第4図に示した方法で製作し
ており、この時に使用しためつき液の組成は、ホ
ウフツ化鉛300g/、ホウフツ酸30g/、ホウ
酸40g/、ゼラチン0.2g/である。 The specifications, structure, etc. of the bipolar electrode of the battery used in the comparative experiment are as follows. That is, the batteries using both the conventional electrode and the electrode of the present invention have a nominal capacity of 48 Ah, and the size of the electrode plate is 120 x 250 mm. In the case of the conventional type, the current collector has a thickness of 0.8 mm.
A Pb-0.065Ca-0.5Sn alloy plate was used. On the other hand, in the case of the product of the present invention, the thickness of the current collector is 1 mm;
A carbon filament with a diameter of 0.05 mm is arranged within a 0.5 mm thick region from the surface in contact with the anode active material. In this case, filament 9
As shown in Figure 8, three layers are arranged parallel to the x axis at a pitch of 0.1 mm, with a layer spacing of 0.075 mm.
Next, three layers were arranged parallel to the Y axis at a pitch of 0.1 mm, with the same layer spacing of 0.075 mm. The base is blunt lead, and this composite material is manufactured by the method shown in Figures 3 and 4. The composition of the tamping solution used at this time is 300 g of lead borofluoride and 30 g of borofluoric acid. /, boric acid 40g/, and gelatin 0.2g/.
また、バイポーラ形電極1枚当りの陽極活物質
量は410g、陰極活物質量は310gであり、これは
従来型の電極、本発明品いずれも同一とした。 Further, the amount of anode active material per bipolar electrode was 410 g, and the amount of cathode active material was 310 g, which were the same for both the conventional electrode and the product of the present invention.
次に、寿命試験であるが、これは定電圧型の充
放電試験を行なつた。すなわち、〔200A放電×1
秒×3回→25A制限15V定電圧充電11分→10A定
電流放電16.5分→24分休止〕を1サイクルとする
充放電サイクルに−15℃24時間から45℃24置間ま
での熱サクルを重ねたものである。この様な寿命
試験を行ない劣化の進行度合と寿命が尽きたあと
の集電体の変形状況を比較した。 Next, for the life test, a constant voltage charge/discharge test was conducted. In other words, [200A discharge x 1
25A limit 15V constant voltage charge for 11 minutes → 10A constant current discharge for 16.5 minutes → 24 minutes pause] for a charge/discharge cycle, followed by a heat cycle from -15℃ for 24 hours to 45℃ for 24 hours. It is a layered one. Such a life test was conducted to compare the degree of progress of deterioration and the state of deformation of the current collector after the end of its life.
第9図に評価結果を示す。図から明らかな如く
本発明によるバイポーラ形電極を使用した電池
(本発明品)は、寿命が従来型の電極を使用した
もの(従来品)より約40%長くなつており極めて
良好な結果を示している。また、寿命試験終了後
電池を解体し両電池の集電体の変形具合(伸びの
状況)を調べた結果、従来型のものは著しく変形
しており活物質の脱落も顕著であつた。 Figure 9 shows the evaluation results. As is clear from the figure, the battery using the bipolar electrode according to the present invention (product of the present invention) has a lifespan approximately 40% longer than that using the conventional electrode (conventional product), showing extremely good results. ing. Further, after the life test, the batteries were disassembled and the deformation (elongation) of the current collectors of both batteries was examined. As a result, the conventional type was significantly deformed and the active material was noticeably falling off.
第1図は実車試験に供した電池のエキスパンド
格子の形状を示しaは試験前、bは試験後の平面
図、第2図は実車試験終了後の電池の従来のバイ
ポーラ形電極における集電体の変形状況を示しa
は平面図、bはA−A′線に沿う断面図、第3図、
第4図は本発明によるバイポーラ形電極の集電体
用複合材料の製造方法を示した斜視図、第5図は
本発明によるバイポーラ形電極の集電体用複合材
料の断面図、第6図は本発明によるバイポーラ形
電極の構造の一例を示しaは平面図、bはB−
B′線に沿う断面図、cはC部拡大図、第7図、
第8図は本発明によるバイポーラ形電極の集電体
として用いた複合材料におけるフアイバーの配置
状況の一例を示した要部斜視図、第9図は本発明
の効果を評価した電池の寿命特性を示す曲線図で
ある。
3は樹脂枠、4はめつき槽、5はめつき液、7
は母型、8は電着層、9はフイラメント、11は
複合材料、12は集電体、13は樹脂格子、14
は陽極活物質、15は陰極活物質。
Figure 1 shows the shape of the expanded lattice of the battery subjected to the actual vehicle test, a is the plan view before the test, b is the plan view after the test, and Figure 2 is the current collector in the conventional bipolar electrode of the battery after the actual vehicle test. Indicates the deformation status of a
is a plan view, b is a sectional view along line A-A', Fig. 3,
FIG. 4 is a perspective view showing a method for manufacturing a composite material for a current collector of a bipolar electrode according to the present invention, FIG. 5 is a sectional view of the composite material for a current collector of a bipolar electrode according to the present invention, and FIG. 1 shows an example of the structure of a bipolar electrode according to the present invention, a is a plan view, and b is a B-
A cross-sectional view along line B', c is an enlarged view of part C, Fig. 7,
Fig. 8 is a perspective view of the main parts showing an example of the arrangement of fibers in the composite material used as the current collector of the bipolar electrode according to the present invention, and Fig. 9 shows the life characteristics of the battery in which the effects of the present invention were evaluated. FIG. 3 is a resin frame, 4 is a plating tank, 5 is a plating liquid, 7
8 is a matrix, 8 is an electrodeposited layer, 9 is a filament, 11 is a composite material, 12 is a current collector, 13 is a resin grid, 14
15 is an anode active material, and 15 is a cathode active material.
Claims (1)
トリツクスの材料より高い引張り強さを有するフ
イラメントを偏在させて配列した複合材料を集電
体となし、該集電体のフイラメントを偏在させた
側の表面に陽極活物質を、反対側の表面に陰極活
物質を配置したことを特徴とする鉛蓄電池用バイ
ポーラ形電極。 2 フイラメントを集電体厚さの1/2以上の厚さ
の部分に偏在させた特許請求の範囲第1項記載の
鉛蓄電池用バイポーラ形電極。 3 フイラメントを集電体の厚さ方向に互いに直
交するように配列した特許請求の範囲第1項また
は第2項記載の鉛蓄電池用バイポーラ形電極。 4 めつき槽に浸漬した母型を陰極として該母型
に所定厚さのPbの電着層を形成する工程、 次いで前記Pbの電着層を有する母型にフイラ
メントを巻き付けると同時にPbを電着してフイ
ラメントとPbの所定厚さの複合層を形成して、
一方の表面側にフイラメントを偏在させて配列し
たPbベースの複合材料を得る工程、 次いで前記複合材料を集電体として、フイラメ
ントを偏在させた側に陽極活物質を、その反対側
に陰極活物質を配置する工程からなることを特徴
とする、 鉛蓄電池用バイポーラ形電極の製造法。 5 母型を回転させながらPbの電着およびフイ
ラメントの巻き付けを行なう特許請求の範囲第4
項記載の鉛蓄電池用バイポーラ形電極の製造法。[Claims] 1 A current collector is a composite material in which filaments having a higher tensile strength than the material of the matrix are unevenly distributed in a Pb or Pb alloy matrix, and the filaments of the current collector are unevenly distributed. A bipolar electrode for a lead-acid battery, characterized in that an anode active material is disposed on one side of the electrode, and a cathode active material is disposed on the other side. 2. The bipolar electrode for a lead-acid battery according to claim 1, wherein the filament is unevenly distributed in a portion having a thickness of 1/2 or more of the thickness of the current collector. 3. A bipolar electrode for a lead-acid battery according to claim 1 or 2, wherein the filaments are arranged perpendicularly to each other in the thickness direction of the current collector. 4 Step of forming an electrodeposited layer of Pb of a predetermined thickness on the matrix using the matrix immersed in a plating bath as a cathode, then winding a filament around the matrix having the electrodeposited layer of Pb and simultaneously electrolyzing Pb. to form a composite layer of a predetermined thickness of filament and Pb.
A step of obtaining a Pb-based composite material in which filaments are unevenly distributed and arranged on one surface side, and then, using the composite material as a current collector, an anode active material is placed on the side where the filaments are unevenly distributed, and a cathode active material is placed on the opposite side. A method for manufacturing a bipolar electrode for a lead-acid battery, comprising the step of arranging a bipolar electrode for a lead-acid battery. 5 Claim 4, in which Pb is electrodeposited and the filament is wound while rotating the matrix.
A method for manufacturing a bipolar electrode for a lead-acid battery as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187092A JPS5978470A (en) | 1982-10-25 | 1982-10-25 | Bipolar electrode for lead storage battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187092A JPS5978470A (en) | 1982-10-25 | 1982-10-25 | Bipolar electrode for lead storage battery and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5978470A JPS5978470A (en) | 1984-05-07 |
JPH0449756B2 true JPH0449756B2 (en) | 1992-08-12 |
Family
ID=16199960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57187092A Granted JPS5978470A (en) | 1982-10-25 | 1982-10-25 | Bipolar electrode for lead storage battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5978470A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2747351B2 (en) * | 1990-01-16 | 1998-05-06 | 旭化成工業株式会社 | Column / beam joint structure |
-
1982
- 1982-10-25 JP JP57187092A patent/JPS5978470A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5978470A (en) | 1984-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1496556B1 (en) | Lead-based alloy for lead-acid battery, grid for lead-acid battery and lead-acid batterry | |
EP1717896B1 (en) | Lead acid battery | |
KR100655020B1 (en) | Leadbased alloy for leadacid battery grid | |
US5120620A (en) | Binary lead-tin alloy substrate for lead-acid electrochemical cells | |
KR101272879B1 (en) | Grid for lead-acid battery with electroconductive polymer coating | |
KR20010110488A (en) | A method for making positive grids and lead-acid cells and batteries using such grids | |
US3933524A (en) | Antimony plating of lead-acid storage batteries grids | |
JP2004527066A (en) | Lead-acid batteries and anode plates and alloys therefor | |
US2713079A (en) | Battery plate | |
JP3662940B2 (en) | Lead-acid battery cell and anode plate and alloys used in these | |
Perkins | Materials and mechanisms determining the performance of lead-acid storage batteries an invited review | |
JPH0449756B2 (en) | ||
US4873161A (en) | Positive paste with lead-coated glass fibers | |
US7658774B2 (en) | Method of producing lattice body for lead storage battery, and lead storage battery | |
JPH03285263A (en) | Collector for lead-acid battery | |
US4456666A (en) | Titanium wire reinforced lead composite electrode structure | |
Yang et al. | Industrial Validation of Lead-plated Aluminum Negative Grid for Lead-acid Batteries | |
US20190319311A1 (en) | Lead acid battery with titanium core grids having titanium suboxide coating | |
JPH10223211A (en) | Lead-acid battery and manufacture therefor | |
CN117476949A (en) | Composite foil, battery pole piece and battery | |
JPH03147262A (en) | Collector for lead-acid battery | |
Prengaman | 6 Current Collectors, Battery Grids, and Lead-Acid Batteries | |
JPH03152872A (en) | Manufacture of sealed lead-acid storage battery | |
JPH03149754A (en) | Manufacture of sealed lead-acid battery |