JPH0449722B2 - - Google Patents

Info

Publication number
JPH0449722B2
JPH0449722B2 JP59255232A JP25523284A JPH0449722B2 JP H0449722 B2 JPH0449722 B2 JP H0449722B2 JP 59255232 A JP59255232 A JP 59255232A JP 25523284 A JP25523284 A JP 25523284A JP H0449722 B2 JPH0449722 B2 JP H0449722B2
Authority
JP
Japan
Prior art keywords
weight
polyvinyl chloride
parts
tetrahydrofuran
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59255232A
Other languages
Japanese (ja)
Other versions
JPS61133509A (en
Inventor
Hiroshi Sato
Shogo Kobayashi
Norio Takahata
Masakatsu Sato
Shohei Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Seisen Co Ltd
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd, Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Nippon Seisen Co Ltd
Priority to JP25523284A priority Critical patent/JPS61133509A/en
Publication of JPS61133509A publication Critical patent/JPS61133509A/en
Publication of JPH0449722B2 publication Critical patent/JPH0449722B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、絶縁電線、特に耐損傷性の優れたポ
リ塩化ビニル組成物を被覆した絶縁電線に関する
ものである。 〔従来の技術〕 機器内配線等に使用される絶縁電線は、長期の
実用に耐える優れた機械的及び電気的特性はもち
ろん、苛酷な配線あるいは補修作業に耐えられる
強靭性や耐損傷性、端末絶縁体の剥離性等種々の
特性が要求される。 これらに使われる絶縁材料は種々のものが適用
されているが、中でもポリ塩化ビニルは各特性の
バランスがとれ、しかも難燃性で着色が自由にで
き、安価で加工性が良好であるなど他の材料にな
いいくつかの特徴をもつていることから最も多く
使われている。 ポリ塩化ビニルを用いた機器内配線用の絶縁電
線としては、ポリ塩化ビニルの上にさらにナイロ
ンを被覆したビニル−ナイロン2重絶縁線あるい
は半硬質ポリ塩化ビニル組成物単独を被覆した半
硬質ビニル線が実用されている。 〔発明が解決しようとする問題点〕 このうちビニル−ナイロン2重絶縁線は、外部
にナイロンを施しているため機械的強度特に耐摩
耗性、耐カツトスルー性に優れている反面、2重
絶縁であるため2重押出など製造工程が必要であ
り、当然価格上昇はさけられない。また、最近の
ように機器の小型軽量化に伴う線材の細線化要求
に対して自ずと限界がある。一方、半硬質ビニル
線は、これら2重絶縁線の欠点を解消するもの
の、ナイロンに比べて機械的、熱的特性が劣るた
め、ハーネスされた結束線から1〜数本引抜いて
配線等を行う場合、線間の摩擦力のため絶縁体が
損傷したり、場合によつては、導体断線に至る事
故が少なくなかつた。 本発明は、上記に基づいてなされたもので、著
しく摩擦力の小さいポリ塩化ビニル組成物の被覆
を設けることによつて、結束線中から1〜数本引
抜き使用する場合においても、導体断線はもちろ
ん絶縁体損傷を大幅に軽減では、しかも優れた機
械強度有する新規な絶縁電線を提供するものであ
る。 〔問題点を解決するための手段〕 本発明の絶縁電線は、テトラヒドロフラン不溶
ゲル分10〜70重量%で残りがテトラヒドロフラン
可溶分である部分架橋ポリ塩化ビニル樹脂100重
量部に対し、可塑剤を40重量部以下、脂肪酸モノ
アミドを少なくとも0.2重量部含有する樹脂組成
物を導体周上に被覆して成ることを特徴とするも
のである。 本発明においては、部分架橋ポリ塩化ビニル樹
脂における架橋部分は粒として組成物および成形
体中に存在し、この粒の存在によつて押出成形体
の表面には微小凹凸が現われ、脂肪酸モノアミド
の滲出と相俟つて優れたすべり性(静止摩擦係数
および動摩擦係数)が発揮され、また、電線同志
が熱融着しにくくなる。 本発明において、テトラヒドロフラン不溶ゲル
分をもつ部分架橋ポリ塩化ビニル樹脂は、塩化ビ
ニルの重合系にジアリルフタレート、ジアリルマ
レート、トリアリルシアヌレート、トリアリルト
リメリテート、トリメチロールプロパントリメタ
クリレート、ジビニルベンゼン等の多官能性モノ
マ添加し、任意量のゲル分を生成せしめるように
重合する方法によつて製造されるものである。 本発明においては、ゲル分が10〜70重量%のも
のを使用する必要があり、10重量%未満のもので
は所望する特性、例えば表面研磨系数等が得られ
ず、70重量%を越えると加工性に問題が生ずるこ
とになる。 この加工性には当然残部のテトラヒドロフラン
可溶部の重合度等も関係するが、これら残部の重
合度は特に加工性に問題なければ限定しないが一
般的には平均重合度は3000以下が好ましい。 本発明においては、ゲル分100%の架橋ポリ塩
化ビニル樹脂を作つておき、一般のテトラヒドロ
フランに可溶なポリ塩化ビニル樹脂と混合してテ
トラヒドロフラン不溶ゲル分が10〜70重量%の範
囲となるようにすることも可能である。 また、テトラヒドロフラン不溶ゲル分が10〜70
重量%の範囲であれば、塩化ビニルとエチレン、
プロピレン、塩化ビニリデン、酢酸ビニル等との
共重合体、またはエチレン−酢酸ビニル、塩素化
ポリエチレン等とのグラフト共重合体であつても
よく、さらにはポリ塩化ビニルとエチレン−酢酸
ビニル、ニトリルゴム、塩素化ポリエチレン、ア
クリロニトリル−ブタジエン−スチレン等とのブ
レンドも含まれる。 可塑剤としては、ジ−n−オクチルフタレー
ト、ジ−2−エチルヘキシルフタレート、ジイソ
デシルフタレート、ジトリデシルフタレート等の
フタル酸エステル、ジオクチルアジペート、ジオ
クチルマゼレート、ジオクチルセバケート等の脂
肪酸エステル、トリクレジルホスフエート、トリ
オクチルホスフエート等のりん酸エステル、エポ
キシ化大豆油、エポキシ樹脂等のエポキシ化物
質、アジピン酸、セバスチン酸のポリエステル
類、トリオクチルトリメリテート、トリ−n−オ
クチルトリメリテート等のトリメリツト酸エステ
ル等があげられ、これは単独使用あるいは併用が
可能である。 可塑剤の含有量は、40重量部以下にする必要が
あり、40重量部を越えると機械的特性が低下し、
十分な耐損傷性を達成できない。40重量部以下で
あれば特に限定しないが、好ましくは20〜40重量
部である。 本発明において、脂肪酸モノアミドとしてはエ
ルシルアミドおよびオレイルアミド等があげら
れ、これらはいずれもポリ塩化ビニルの有する優
れた特性をほとんど害さず摩擦抵抗を低下させる
ものである。 これは、ポリ塩化ビニル被覆の表面に薄い脂肪
酸モノアミドの滲出による膜膜が形成されるため
であり、脂肪酸モノアミドは揮発性が小さいので
長期間にわたつてこの性能を保持し続けることが
できる。脂肪酸モノアミドの添加量を0.2重量部
以上としたのは、これ未満では摩擦抵抗を低下す
る効果はほとんどないからである。 その上限は、使用するポリ塩化ビニルの性質、
ポリ塩化ビニル可塑剤の混合割合等によつて変化
するため特に定しないが、脂肪酸モノアミドは滑
性硬化がきわめて大きいため、大量の添加は混
練、押出加工性が著しく低下させてしまうので、
3重量部程度が上限で考えられる。 本発明においては、上記成分以外に、鉛塩、有
機錫系安定剤等の各種安定剤、ステアリン酸金属
塩等の各種金属石鹸類、フエノール系酸化防止剤
等の各種酸化防止剤、ハロゲン、りん化合物等の
各種難燃剤、三酸化アンチモン、ホウ酸亜鉛等の
難燃助剤、クレー、炭酸カルシウム、水酸化アル
ミニウム等の充填剤類、着色剤、紫外線吸収剤、
その他通常の塩化ビニル組成物に使用される各種
の配合剤の添加が可能である。 〔実施例〕 第1表の各例に示すような配合に基づいた組成
物により作成した成形品の各種特性を測定した。 その結果を第1表の下欄に示す。 特性の測定は次によつた。 (1) 静摩擦係数、動摩擦係数:プレス成型した1
mm×30mm×100mmのシートを2枚重ね合わせ第
1図のように20℃で1850gの荷重をのせ500
mm/minの速さで移動したときの静止および動
摩擦系数を式(1)および(2)より求めた。 第1図において、1はレール、2はスライデ
イングブロツク、31,32は試料シート、4
は荷重、5はモータ、6はロードセル、7はチ
ヤートなどの記録計である。 静止摩擦係数(μs)=静止摩擦力(Fs)/荷重(W) …(1) 動摩擦係数(μk)=動摩擦力(Fk)/荷重(W) …(2) (2) 耐損傷性:導体室0.5mmのスズメツキ軟銅線
に厚さ0.3mmに被覆した外径1.1mmの絶縁電線を
用いた。 試験は、第2図のように試料電線で直径20cm
の輪を作り、その中に一方の同じ試料電線を入
れ、1100gの荷重を加えてすべらせる操作を繰
り返し、心線導体露出までの回数を求めた。 第2図において、10は試料電線で輪、11
はそれに通した試料電線、12は荷重である。 (3) 融着性:(2)と同様にして作成した電線を直径
20mmφの金属棒上に電線が接触するように巻
き、150℃で1時間加熱した後絶縁体同士の融
着を観察した。なお、融着しないものを○、融
着したものを×とした。
[Industrial Field of Application] The present invention relates to an insulated wire, particularly an insulated wire coated with a polyvinyl chloride composition having excellent damage resistance. [Conventional technology] Insulated wires used for internal wiring in equipment, etc. not only have excellent mechanical and electrical properties that can withstand long-term practical use, but also have toughness, damage resistance, and terminal resistance that can withstand harsh wiring or repair work. Various properties such as peelability of the insulator are required. Various insulating materials are used for these, but among them, polyvinyl chloride has a good balance of properties, is flame retardant, can be colored freely, is inexpensive, and has good processability. It is the most commonly used material because it has several characteristics that other materials do not have. Insulated wires for internal wiring in devices using polyvinyl chloride include vinyl-nylon double insulated wires made of polyvinyl chloride coated with nylon, or semi-rigid vinyl wires coated with a semi-rigid polyvinyl chloride composition alone. is being put into practice. [Problems to be solved by the invention] Among these, the vinyl-nylon double insulated wire has excellent mechanical strength, particularly abrasion resistance, and cut-through resistance because it is coated with nylon on the outside. Because of this, manufacturing processes such as double extrusion are necessary, which naturally increases the price. In addition, there is a natural limit to the recent demand for thinner wires as equipment becomes smaller and lighter. On the other hand, although semi-rigid vinyl wire eliminates the drawbacks of these double insulated wires, it has inferior mechanical and thermal properties compared to nylon, so one or several wires must be pulled out from the harnessed wire for wiring. In many cases, the friction between the wires caused damage to the insulation, and in some cases, the conductor broke. The present invention has been made based on the above, and by providing a coating made of a polyvinyl chloride composition with extremely low frictional force, conductor breakage will not occur even when one or several wires are pulled out from a bundle. Of course, the present invention provides a new insulated wire that significantly reduces insulation damage and has excellent mechanical strength. [Means for solving the problem] The insulated wire of the present invention is produced by adding a plasticizer to 100 parts by weight of a partially crosslinked polyvinyl chloride resin having a tetrahydrofuran-insoluble gel content of 10 to 70% by weight and the remainder being a tetrahydrofuran-soluble content. It is characterized in that the conductor is coated with a resin composition containing 40 parts by weight or less and at least 0.2 parts by weight of fatty acid monoamide. In the present invention, the crosslinked portion of the partially crosslinked polyvinyl chloride resin is present in the composition and the molded article as particles, and the presence of these grains causes minute irregularities to appear on the surface of the extrusion molded article, resulting in exudation of fatty acid monoamide. In combination with this, excellent sliding properties (static friction coefficient and dynamic friction coefficient) are exhibited, and the electric wires are less likely to be thermally fused together. In the present invention, the partially crosslinked polyvinyl chloride resin having a gel content insoluble in tetrahydrofuran includes diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl trimellitate, trimethylolpropane trimethacrylate, and divinylbenzene in the vinyl chloride polymerization system. It is manufactured by a method in which a polyfunctional monomer such as the following is added and polymerized to produce an arbitrary amount of gel content. In the present invention, it is necessary to use a gel with a gel content of 10 to 70% by weight; if it is less than 10% by weight, desired properties such as surface polishing properties cannot be obtained, and if it exceeds 70% by weight, processing is required. Sexual problems will arise. This processability is naturally related to the degree of polymerization of the remaining tetrahydrofuran soluble portion, but the degree of polymerization of the remaining portion is not particularly limited unless there is a problem with processability, but it is generally preferred that the average degree of polymerization is 3000 or less. In the present invention, a crosslinked polyvinyl chloride resin with a gel content of 100% is prepared and mixed with a general polyvinyl chloride resin soluble in tetrahydrofuran so that the gel content insoluble in tetrahydrofuran is in the range of 10 to 70% by weight. It is also possible to In addition, the tetrahydrofuran-insoluble gel content is 10 to 70.
Vinyl chloride and ethylene, within the weight% range.
It may be a copolymer with propylene, vinylidene chloride, vinyl acetate, etc., or a graft copolymer with ethylene-vinyl acetate, chlorinated polyethylene, etc. Furthermore, it may be a copolymer with polyvinyl chloride and ethylene-vinyl acetate, nitrile rubber, etc. Blends with chlorinated polyethylene, acrylonitrile-butadiene-styrene, etc. are also included. Examples of plasticizers include phthalic acid esters such as di-n-octyl phthalate, di-2-ethylhexyl phthalate, diisodecyl phthalate, and ditridecyl phthalate, fatty acid esters such as dioctyl adipate, dioctyl mazerate, and dioctyl sebacate, and tricresyl phosphate. ate, phosphoric acid esters such as trioctyl phosphate, epoxidized soybean oil, epoxidized substances such as epoxy resin, polyesters of adipic acid and sebastic acid, trioctyl trimellitate, tri-n-octyl trimellitate, etc. Examples include trimellitic acid ester, which can be used alone or in combination. The content of plasticizer must be 40 parts by weight or less; if it exceeds 40 parts by weight, the mechanical properties will deteriorate.
Inability to achieve sufficient damage resistance. There is no particular limitation as long as it is 40 parts by weight or less, but it is preferably 20 to 40 parts by weight. In the present invention, fatty acid monoamides include erucylamide and oleylamide, all of which reduce frictional resistance without substantially impairing the excellent properties of polyvinyl chloride. This is because a thin film is formed on the surface of the polyvinyl chloride coating due to oozing of fatty acid monoamide, and since fatty acid monoamide has low volatility, it can continue to maintain this performance over a long period of time. The reason why the amount of fatty acid monoamide added is set to 0.2 parts by weight or more is because if it is less than this, there is almost no effect of lowering the frictional resistance. The upper limit depends on the nature of the polyvinyl chloride used,
It is not specified because it changes depending on the mixing ratio of polyvinyl chloride plasticizer, etc., but since fatty acid monoamide has extremely high slip hardening, adding a large amount will significantly reduce kneading and extrusion processability.
The upper limit is considered to be about 3 parts by weight. In the present invention, in addition to the above ingredients, various stabilizers such as lead salts and organotin stabilizers, various metal soaps such as stearic acid metal salts, various antioxidants such as phenolic antioxidants, halogens, phosphorus, etc. Various flame retardants such as compounds, flame retardant aids such as antimony trioxide and zinc borate, fillers such as clay, calcium carbonate, and aluminum hydroxide, colorants, ultraviolet absorbers,
Various other compounding agents used in ordinary vinyl chloride compositions can also be added. [Example] Various properties of molded articles made from compositions based on the formulations shown in each example in Table 1 were measured. The results are shown in the lower column of Table 1. The characteristics were measured as follows. (1) Static friction coefficient, dynamic friction coefficient: Press molded 1
Two sheets of mm x 30 mm x 100 mm are stacked together and a load of 1850 g is placed at 20℃ as shown in Figure 1.
The static and dynamic friction coefficients when moving at a speed of mm/min were determined from equations (1) and (2). In Fig. 1, 1 is a rail, 2 is a sliding block, 31 and 32 are sample sheets, and 4 is a sliding block.
is a load, 5 is a motor, 6 is a load cell, and 7 is a recorder such as a chart. Static friction coefficient (μs) = Static friction force (Fs) / Load (W) …(1) Dynamic friction coefficient (μk) = Dynamic friction force (Fk) / Load (W) …(2) (2) Damage resistance: Conductor An insulated wire with an outer diameter of 1.1 mm coated with a 0.3 mm thick annealed copper wire with a chamber size of 0.5 mm was used. The test was conducted using a sample wire with a diameter of 20 cm as shown in Figure 2.
A loop was made, one of the same sample wires was inserted into the loop, and the sliding operation was repeated while applying a load of 1100 g, and the number of times until the core conductor was exposed was determined. In Fig. 2, 10 is a sample wire, and 11 is a ring.
is the sample electric wire passed through it, and 12 is the load. (3) Fusion property: The diameter of the electric wire made in the same manner as (2)
The wires were wound around a 20 mmφ metal rod so that they were in contact with each other, and after heating at 150°C for 1 hour, the fusion of the insulators was observed. Incidentally, those that were not fused were rated as ○, and those that were fused were rated as ×.

【表】【table】

【表】 第1表からも明らかな通り、本発明の範囲にあ
る実施例1〜5では各特性においてバランスのと
れたものなつている。 これに対し、比較例1はテトラヒドロフラン不
溶ゲル分の含有量が規定値以下のもので、耐損傷
性が悪い。比較例2はテトラヒドロフランに不溶
ゲル分の含有量が規定値以上のものであるが、加
工性が悪く、試料の作成ができなかつた。比較例
3は、可塑剤の含有量が規定値を上回るものであ
るが、耐損傷性が劣る。 比較例4は、エルシルアミドの含有量が規定値
以下のものであり、耐損傷性が劣る。 〔発明の効果〕 以上の発明から明らかな通り、本発明によれば
ポリ塩化ビニル組成物の有する安価で、加工性が
よく、難燃性で、自由に着色でき、諸特性を全く
損なわずに絶縁体損傷や導体断線等の事故を解消
できるバランスのとれた新規な絶縁電線が得られ
る。
[Table] As is clear from Table 1, Examples 1 to 5 within the scope of the present invention have well-balanced properties. On the other hand, in Comparative Example 1, the content of tetrahydrofuran-insoluble gel was less than the specified value, and the damage resistance was poor. In Comparative Example 2, the content of gel insoluble in tetrahydrofuran was higher than the specified value, but the processability was poor and a sample could not be prepared. In Comparative Example 3, the content of plasticizer exceeds the specified value, but the damage resistance is poor. In Comparative Example 4, the content of erucylamide was less than the specified value, and the damage resistance was poor. [Effects of the Invention] As is clear from the above-mentioned invention, according to the present invention, the polyvinyl chloride composition is inexpensive, has good processability, is flame retardant, can be freely colored, and does not impair its various properties. A new well-balanced insulated wire that can eliminate accidents such as damage to the insulation and disconnection of the conductor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本発明の試料についての
摩擦抵抗測定装置及び耐損傷性試験方法を示す説
明図である。 31,32…試料シート、10…試料電線の
輪、11…試料電線。
FIGS. 1 and 2 are explanatory diagrams showing a frictional resistance measuring device and a damage resistance testing method for samples of the present invention. 31, 32...sample sheet, 10...sample electric wire loop, 11...sample electric wire.

Claims (1)

【特許請求の範囲】[Claims] 1 テトラヒドロフラン不溶ゲル分10〜70重量%
で残りがテトラヒドロフラン可溶分である部分架
橋ポリ塩化ビニル樹脂100重量部に対し可塑剤を
40重量部以下、脂肪酸モノアミドを少なくとも
0.2重量部含有する樹脂組成物を導体周上に被覆
して成ることを特徴とする絶縁電線。
1 Tetrahydrofuran insoluble gel content 10-70% by weight
Add a plasticizer to 100 parts by weight of partially crosslinked polyvinyl chloride resin, the remainder of which is tetrahydrofuran soluble content.
40 parts by weight or less, at least fatty acid monoamide
An insulated wire comprising a conductor coated with a resin composition containing 0.2 parts by weight.
JP25523284A 1984-12-03 1984-12-03 Insulated wire Granted JPS61133509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25523284A JPS61133509A (en) 1984-12-03 1984-12-03 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25523284A JPS61133509A (en) 1984-12-03 1984-12-03 Insulated wire

Publications (2)

Publication Number Publication Date
JPS61133509A JPS61133509A (en) 1986-06-20
JPH0449722B2 true JPH0449722B2 (en) 1992-08-12

Family

ID=17275863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25523284A Granted JPS61133509A (en) 1984-12-03 1984-12-03 Insulated wire

Country Status (1)

Country Link
JP (1) JPS61133509A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011113707A1 (en) 2010-03-17 2011-09-22 Exxonmobil Chemical Patents Inc. Plasticiser blends and compositions and articles made therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119690A (en) * 1978-03-08 1979-09-17 Hitachi Cable Ltd Jumper wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119690A (en) * 1978-03-08 1979-09-17 Hitachi Cable Ltd Jumper wire

Also Published As

Publication number Publication date
JPS61133509A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
US4123585A (en) Polymeric composition comprising a halide polymer, an ethylene terpolymer and an alkyl acrylate copolymer
CA2563137C (en) Non-lead jacket for non-metallic sheathed electrical cable
US5756570A (en) Electrical grade polyvinyl chloride resin composition stabilized with a non-lead stabilizer
US4058471A (en) Plasticized polymeric compositions based on vinyl chloride polymers
JPH0570243B2 (en)
JPH06251636A (en) Transmission medium of insulation coating and cable
US5270366A (en) Lead stabilized, flexible polymeric blends containing polyvinylchloride
US4797323A (en) Flame retardant wire with high insulation resistance
US4693937A (en) Flame retardant wire with high insulation resistance
US3623940A (en) Insulated wire and manufacture thereof
JPS61501803A (en) Stabilization of PVC body
JPS61133506A (en) Insulated wire
US4026852A (en) High temperature polyvinyl chloride compositions
US4648986A (en) Compositions based on mixtures of ethylene-ethyl acrylate copolymers and ethylene-vinyl acetate-vinyl chloride terpolymers
CA1290879C (en) Compositions based on mixtures of ethylene-ethyl acrylate copolymersand ethylene-vinyl acetate-vinyl chloride terpolymers
JPH0449722B2 (en)
JPH0474803B2 (en)
JPH0551628B2 (en)
JP3943795B2 (en) Polyvinyl chloride composition and electric wire cable using the same
JPS6147008A (en) Jumper wire
JPH1143568A (en) Vinyl chloride-based resin composition and its cable
AU568802B2 (en) Flame retardant wire with high insulation resistance
JPS61133508A (en) Insulated wire
JPH01141929A (en) Flame-retardant composition
SU1767542A1 (en) Method for manufacturing flexible electric cable