JPH0449704A - Small antenna spatial matching system - Google Patents

Small antenna spatial matching system

Info

Publication number
JPH0449704A
JPH0449704A JP16068190A JP16068190A JPH0449704A JP H0449704 A JPH0449704 A JP H0449704A JP 16068190 A JP16068190 A JP 16068190A JP 16068190 A JP16068190 A JP 16068190A JP H0449704 A JPH0449704 A JP H0449704A
Authority
JP
Japan
Prior art keywords
dielectric
ridge waveguide
waveguide
antenna
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16068190A
Other languages
Japanese (ja)
Other versions
JP2546034B2 (en
Inventor
Toshihiko Yamagata
山形 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2160681A priority Critical patent/JP2546034B2/en
Publication of JPH0449704A publication Critical patent/JPH0449704A/en
Application granted granted Critical
Publication of JP2546034B2 publication Critical patent/JP2546034B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To use plural rectangular ridge waveguides as antenna elements and to attain a wideband and miniaturization by arranging three kinds of dielectrics provided with high-pass matching characteristic, low-pass matching characteristic, and low-pass and middle-pass matching characteristic sequentially. CONSTITUTION:A first dielectric A 11a provided with the high-pass matching characteristic at the outside is arranged on the plane of the aperture part 16 of the rectangular ridge waveguide 10a, and a second dielectric 12 provided with the low-pass matching characteristic and furthermore, a third dielectric 13 provided with the low-pass and middle-pass matching characteristic adhering on the plane of the aperture part 16 are arranged at the intermediate part. Therefore, impedance matching between the waveguide 10a and free space can be performed extending over the wideband >= one octave. Furthermore, integral fixture can be realized by forming the outside shape of the three kinds of dielectrics 11a or 11b, 12, and 13 in the same shape as that of the aperture part 16, and forming the dielectric 13 in flat plane shape, and forming the dielectric 12 in hollow structure, and employing the fit-in structure with the dielectric A 11a or the dielectric B 11b.

Description

【発明の詳細な説明】 (概 要) 3種の誘電体を用いた小形アンテナ空間整合方式に関し
、 アンテナ素子の配列ピッチに厳しい制約の受2」る広帯
域フェーズドアレイアンテナ及び小形化が必要な電界測
定用プローブを提供することをr−1的とし、 複数の矩形リッジ導波管をアンテナ素子として用いるも
のにおいて、前記ib形リッジ導波管の開口部面に、第
一誘電体Aと第二誘電体と第三誘電体の順に3種の誘電
体を配設しかつ前記第三誘電体が前記開口部に密着する
ように設け、更に前記第一誘電体Aは高域整合特性をも
ち、中間の前記第二誘電体は低域整合特性をもち、更に
前記開口部面に密着した前記第三誘電体(13)は低域
・中域整合特性をもつようにし、前記矩形リッジ導波管
と自由空間の間において1′Aクタ一ブ以上の広帯域に
わたりインピーダンス整合できるように構成す゛る。
[Detailed Description of the Invention] (Summary) Regarding a small antenna spatial matching method using three types of dielectric materials, a broadband phased array antenna that is subject to severe restrictions on the arrangement pitch of antenna elements and an electric field that requires miniaturization. The r-1 purpose is to provide a measurement probe, and in a device using a plurality of rectangular ridge waveguides as antenna elements, a first dielectric material A and a second dielectric material A are provided on the opening surface of the ib-shaped ridge waveguide. Three types of dielectrics are arranged in the order of a dielectric and a third dielectric, and the third dielectric is provided in close contact with the opening, and further, the first dielectric A has a high frequency matching characteristic, The second dielectric in the middle has low frequency matching characteristics, and the third dielectric (13) in close contact with the opening surface has low and middle frequency matching characteristics, and the rectangular ridge waveguide The structure is such that impedance matching can be performed over a wide band of 1'A-tabe or more between the 1'A vector and the free space.

また前記矩形リッジ導波管を円形リッジ導波管とした構
成にする。
Further, the rectangular ridge waveguide is configured to be a circular ridge waveguide.

〔産業上の利用分野〕[Industrial application field]

本発明は、3種の誘電体を用いた小形アンテナ空間整合
方式に関する。
The present invention relates to a small antenna spatial matching method using three types of dielectric materials.

〔従来の技術〕[Conventional technology]

第5図は矩形リッジ導波管の構成を示す図であり、ダブ
ルリッジのものである。図中、51は第一リッジ、52
は第二リッジである。
FIG. 5 is a diagram showing the configuration of a rectangular ridge waveguide, which is a double ridge waveguide. In the figure, 51 is the first ridge, 52
is the second ridge.

通常のりソジ導波管は第5図に示すように、長辺側の管
内横寸法をa、短辺側の管内縦寸法をbとし、内部長辺
上に幅Wの導体の第一リッジ51と第二リッジ52を間
隔りにて設け、所要の特性インピーダンスや通過帯域周
波数などを得るようにしたものである。
As shown in Fig. 5, a normal glue-solid waveguide has a horizontal dimension in the tube on the long side side of a, a vertical dimension in the tube on the short side side as b, and a first ridge of a conductor with a width of W on the internal long side. 51 and a second ridge 52 are provided at intervals to obtain a required characteristic impedance, passband frequency, etc.

通常、リッジ導波管の特性インピーダンスZrは、自由
空間の特性インピーダンスZo (Zo =377Ω)
より低くなり、特にダブルリッジ導波管の場合の特性イ
ンピーダンスZrは一般に200Ω前後である。従って
、リッジ導波管をそのまま空間に開放すると両特性イン
ピーダンスの200Ωと377Ωとの間の不整合により
、リッジ導波管から自由空間への電磁波の放射効率は低
いものとなる。
Usually, the characteristic impedance Zr of the ridge waveguide is the characteristic impedance Zo (Zo = 377Ω) of free space.
In particular, the characteristic impedance Zr in the case of a double ridge waveguide is generally around 200Ω. Therefore, if the ridge waveguide is opened to space as it is, the radiation efficiency of electromagnetic waves from the ridge waveguide to free space will be low due to the mismatch between the characteristic impedances of 200Ω and 377Ω.

又、周波数帯域を保ちつつ、リッジ導波管の内寸法a、
bを動作下限周波数fLにおいてλL/4(λL −C
/fL 、Cは光速)の値以下にした場合は、特性イン
ピーダンスZrが自由空間の特性インピーダンスZoの
約173(約120Ω)以下となり、リッジ導波管の開
放の状態での自由空間への電磁波の放射効率は極めて低
いものとなる。
Moreover, while maintaining the frequency band, the inner dimensions of the ridge waveguide a,
b at the lower operating limit frequency fL as λL/4(λL −C
/fL, C is the speed of light), the characteristic impedance Zr will be approximately 173 (approximately 120 Ω) or less than the characteristic impedance Zo of free space, and the electromagnetic wave will flow into free space when the ridge waveguide is open. The radiation efficiency is extremely low.

このような特性をもつりソジ導波管を用いて、アンテナ
を形成した例を第6図〜第8図に示す。
Examples in which an antenna is formed using a twisted waveguide having such characteristics are shown in FIGS. 6 to 8.

第6図はダブルリッジホーンアンテナの一例の構造図、
第7図はダブルリッジホーンアンテナの他の例の構造図
、また第8図はダブルリッジ導波管の開11部に薄膜と
誘電体を用いたアンテナの一例の構造図である。
Figure 6 is a structural diagram of an example of a double ridge horn antenna.
FIG. 7 is a structural diagram of another example of a double ridge horn antenna, and FIG. 8 is a structural diagram of an example of an antenna using a thin film and a dielectric material in the opening 11 of the double ridge waveguide.

従来、リッジ導波管と自由空間とのインピーダンス整合
には、 0) リッジ導波管の開口部64の内i1法a’、 b
’の寸法をMj形リッジ導波管の内寸法a、bより広げ
、先端の開口部64の第一 リッジ61および第二リッ
ジ62をテーバ形状にする。
Conventionally, for impedance matching between a ridge waveguide and free space, the following methods are used: 0) i1 method a', b of the opening 64 of the ridge waveguide
' is made wider than the inner dimensions a and b of the Mj-shaped ridge waveguide, and the first ridge 61 and second ridge 62 of the opening 64 at the tip are made into a tapered shape.

(第6図参照) (2)  リッジ導波管の内寸法a、bを、規定の導波
管内寸法より若干大きくするようにし、す・/ジ導波管
の根元75から開口部74までの間で第一リッジ71と
第二リッジ72の高さを徐々に小さくするようにする。
(See Figure 6) (2) Make the internal dimensions a and b of the ridge waveguide slightly larger than the specified internal dimensions of the waveguide, and In between, the heights of the first ridge 71 and the second ridge 72 are gradually reduced.

(第7図参照) (3)  リッジ導波管の開口部84の内側にアルミや
銅などを、内側に金属薄膜81、外側に誘電体82を重
ねた構造にし、インピーダンス整合を図る。
(See FIG. 7) (3) A structure is created in which aluminum, copper, or the like is layered on the inside of the opening 84 of the ridge waveguide, a metal thin film 81 is layered on the inside, and a dielectric material 82 is layered on the outside to achieve impedance matching.

(第8図参照) などがある。しかし、!11はリッジ導波管の開口寸法
を広げてインピーダンス整合を容易にしているが、開口
部640寸法は大きくなる。又(2)は通常のリッジ導
波管の形状に対し面積比を1.5〜2倍の大きさにして
いるが、やはりλL/4程度寸法のリッジ導波管に対す
る広帯域インピーダンス整合は得られない。なお(3)
は形状を小形化したとき、インピーダンス変化幅が大き
いため広曽域インビダンス整合が得られなくなる。
(See Figure 8). but,! 11 widens the aperture size of the ridge waveguide to facilitate impedance matching, but the aperture 640 size becomes larger. In addition, in (2), the area ratio is 1.5 to 2 times larger than that of a normal ridge waveguide, but broadband impedance matching cannot be obtained for a ridge waveguide with a size of about λL/4. do not have. Note (3)
When the shape is made smaller, wide-range impedance matching cannot be achieved because the impedance variation range is large.

一般にアンテナの小形化と広帯域化は相反する技術であ
る。特に、下限周波数を低くすればする程小形化が回能
となる。
In general, miniaturization of antennas and broadbandization are contradictory technologies. In particular, the lower the lower limit frequency is, the more miniaturization becomes possible.

第9図にフェーズドアレイアンテナの構成を示す。第9
図においてのアンテナ素子90は、第6図〜第8図に示
すアンテナの複数個を平面上に直列に並べたもである。
FIG. 9 shows the configuration of a phased array antenna. 9th
An antenna element 90 in the figure is a plurality of antennas shown in FIGS. 6 to 8 arranged in series on a plane.

一般にフェーズドアレイアンテナではアンテナ素子間の
配列間1qdが次の条件を満足していない場合、メイン
ビーム以夕(の方向に不要ビーム(グレーティングと称
し、メインビームと同レベル)が発生ずる。第9図の直
線配列のフェーズド7レイアンテナにおいて、不要ビー
ムが発生しないための配列間隔dの条件は、 ハ で与えられる。
Generally, in a phased array antenna, if the distance between the antenna elements (1qd) does not satisfy the following conditions, an unnecessary beam (referred to as a grating and at the same level as the main beam) will be generated in the direction beyond the main beam. In the linearly arranged phased 7-ray antenna shown in the figure, the condition for the arrangement interval d to prevent generation of unnecessary beams is given by C.

なおここで、λH:c/(イ (Cは光速)fH:動作
上限周波数 十〇:ビーム走査範囲 弐(1)が示すように、間隔dはλ8が小さくなる(周
波数が人になる)はど小となり、このため周波数帯域を
確保しよ・)とすれば、アンテナに対する形状寸法の制
約も大となってくる。
Here, λH: c/(a) (C is the speed of light) fH: Operating upper limit frequency 10: Beam scanning range 2 As shown in (1), the interval d becomes smaller as λ8 becomes smaller (the frequency becomes human) If the frequency band is to be secured for this reason, the shape and dimensions of the antenna will be restricted.

例えば、周波数帯域2:1.ビーム走査範囲上30°の
とき、不要ビームを発生しない直線配列の配列ピッチd
は、d=0.67λ、 =0.332.如何に設定する
必要があり、アンテナ素子は小形化を強いられる。
For example, frequency band 2:1. Arrangement pitch d of linear array that does not generate unnecessary beams when the beam scanning range is 30°
is d=0.67λ, =0.332. How should it be set, and the antenna element is forced to be miniaturized?

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、高帯域化したフェーズドアレイアンテナのアン
テナ素子は寸法」−において大きな制約を受け、かつア
ンテナ素子のインピーダンス整合は帯域が広くなればな
るほど困難になるという課題がある。
Therefore, there are problems in that the antenna elements of phased array antennas with higher bandwidths are subject to significant restrictions in terms of dimensions, and impedance matching of antenna elements becomes more difficult as the bandwidth becomes wider.

本発明は、アンテナ素子の配列ピッチに厳しい制約の受
ける広帯域フェーズドアし・イアンテナ及び小形化が必
要な電界測定用プローブを捉供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a broadband phased antenna that is subject to severe restrictions on the array pitch of antenna elements, and an electric field measurement probe that requires miniaturization.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、複数の矩形リッジ導波管1Oaをアンテナ素
子として用いるものにおいて、前記矩形リッジ導波管1
0aの開l]部16面に、11aの第一誘電体Aと第二
誘電体12と第三誘電体13の順に31!の誘電体を配
設しかつ前記第三誘電体13が前記開口部16に密着す
るように設け、更に前記11,1の第一誘電体Aは高域
整合特性をもち、中間の前記第二誘電体12は低域整合
特性をもち、更に前記開口部16面に密着した前記第三
誘電体13は低域・中域整合特性をもつようにし、前記
矩形リッジ導波管10aと自由空間の間において1オク
タ一ブ以上の広帯域にわたりインピーダンス整合ができ
るように構成する。
The present invention uses a plurality of rectangular ridge waveguides 1Oa as an antenna element, in which the rectangular ridge waveguide 1Oa
The first dielectric A, the second dielectric 12, and the third dielectric 13 of 11a are arranged in the order of 31! The third dielectric 13 is provided in close contact with the opening 16, and the first dielectric A of the first dielectric 11,1 has a high frequency matching characteristic, The dielectric 12 has a low-frequency matching characteristic, and the third dielectric 13, which is in close contact with the surface of the opening 16, has a low- and middle-frequency matching characteristic. The configuration is such that impedance matching can be performed over a wide band of one octave or more between the two.

また、前記矩形リッジ導波管10aを円形リッジ導波管
10bとした構成とする。
Further, the rectangular ridge waveguide 10a is configured to be a circular ridge waveguide 10b.

〔作 用〕[For production]

本発明では第1図に示す如き構成において、矩形リッジ
導波管10aの開口部16面に、外側に高域整合特性を
もつ11aの第一誘電体Aを配設し、中間には低域整合
特性をもつ第二誘電体12を配設し、更に前記開口部1
6面に密着して低域・中域整合特性をもつ第三誘電体(
13)を配設している。
In the present invention, in the configuration shown in FIG. 1, the first dielectric material A of 11a having high-frequency matching characteristics is disposed on the outside of the opening 16 of the rectangular ridge waveguide 10a, and the first dielectric material A of 11a having high-frequency matching characteristics is disposed in the middle. A second dielectric 12 having matching characteristics is provided, and the opening 1
A third dielectric material (
13) are installed.

従って、前記矩形リッジ導波管10aと自由空間の間に
おいて1オクタ一ブ以上の広帯域にわたりインピーダン
ス整合が可能になる。
Therefore, impedance matching is possible over a wide band of one octave or more between the rectangular ridge waveguide 10a and free space.

また、矩形リッジ導波管10aを第2図の円形リッジ導
波管10bに置き換えることにより、前記矩形リッジ導
波管10aを用いた場合と同一特性を得るようにしてい
る。
Furthermore, by replacing the rectangular ridge waveguide 10a with the circular ridge waveguide 10b shown in FIG. 2, the same characteristics as those obtained when the rectangular ridge waveguide 10a is used can be obtained.

更に、3種の各誘電体11aまたは11b、 12.1
30外形を前記開口部16と同一形状とし、かつ前記第
三誘電体13は平面板状に、前記第二誘電体12は中空
構造として前記11aの第一誘電体Aまたはl l b
の第一誘電体Bと嵌め合い構造にして−・体層固定を可
能にしている。
Furthermore, each of the three types of dielectrics 11a or 11b, 12.1
30 has the same external shape as the opening 16, the third dielectric 13 has a flat plate shape, and the second dielectric 12 has a hollow structure, so that the first dielectric A of the 11a or l l b
It has a structure in which it fits with the first dielectric material B, thereby making it possible to fix the body layer.

〔実 施 例〕〔Example〕

第1図は本発明の構成を示す図であり、矩形リッジ導波
管の場合について記載する。また第2図は本発明の一実
施例の構成を示す図であり、円形リッジ導波管の場合に
ついて記載する。なお第1図と第2図において、fa)
は分解斜視図、fblは要部平面図(その1 ) 、(
C)は要部平面図(その2)、(d)はA−A’断面図
である。更に、第3図は本発明の一実施例の詳細構造を
示す図であり、前記第2図に対応し7ている。そして、
第4図は本発明の他の実施例の詳細構造を示す図であり
、第3図の変形である。
FIG. 1 is a diagram showing the configuration of the present invention, and the case of a rectangular ridge waveguide will be described. FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, and the case of a circular ridge waveguide will be described. In addition, in Figures 1 and 2, fa)
is an exploded perspective view, fbl is a plan view of main parts (part 1), (
C) is a principal part plan view (part 2), and (d) is a sectional view taken along line AA'. Furthermore, FIG. 3 is a diagram showing a detailed structure of an embodiment of the present invention, and corresponds to FIG. 2 described above. and,
FIG. 4 is a diagram showing the detailed structure of another embodiment of the present invention, which is a modification of FIG. 3.

図中、10aは矩形リッジ導波管、lObは円形リッジ
導波管である。また11a(又は11b)は高域整合用
の第一誘電体A(又は第一誘電体B)、!2は低域整合
用の第二誘電体、13は低域〜中域整合用の第三誘電体
である。なお14は第一 リッジ、15は第ごり・/ジ
、16は開口部である。更に、17は誘電体の固定用の
ねじ、1)3はねし、止め用穴、19は貫通穴1.20
は電界壁、21は磁壁、22は切削部である。
In the figure, 10a is a rectangular ridge waveguide, and lOb is a circular ridge waveguide. Moreover, 11a (or 11b) is a first dielectric material A (or first dielectric material B) for high frequency matching,! 2 is a second dielectric for low frequency matching, and 13 is a third dielectric for low to middle frequency matching. Note that 14 is a first ridge, 15 is a first ridge, and 16 is an opening. Furthermore, 17 is a screw for fixing the dielectric, 1) 3 is a screw, a fixing hole, and 19 is a through hole 1.20.
2 is an electric field wall, 21 is a domain wall, and 22 is a cutting portion.

第1図はソj、−ズドアレイアンテナを実yするための
アンテナ全周を示し7、矩形リッジ導波管10aと自由
空間との間の急激なインピーダンス変化を避けるために
、3種の11aの第−m電体A(又は11bの第一誘電
体B)と第74誘電体12および第一゛誘電体13を用
いている。
Figure 1 shows the entire circumference of the antenna for implementing a horizontal array antenna 7. In order to avoid sudden impedance changes between the rectangular ridge waveguide 10a and the free space, three types of antennas 11a are used. The m-th electric body A (or the first dielectric B of 11b), the 74th dielectric 12, and the first dielectric 13 are used.

第1図1a)に示す如く、矩形リッジ導波管10aはダ
ブルリッジタイプであり、又内寸法a、bば月。
As shown in FIG. 1a), the rectangular ridge waveguide 10a is a double ridge type, and has internal dimensions a and b.

//4以1ミとして、基本モード1゛E、。のカットオ
フ周波数を0.8〜0.9 fL (fl は動作下限
周波数)となる様に矩形リッジ導波管10aの内寸法a
、  bw、hを決定する。この矩形リッジ導波管10
aの特性インピーダンスZrは、自由空間の特性インピ
ーダンスZoに対し約173〜1/4となる。TIi形
リブリッジ導波管10a口部16面側の第一・リッジ1
4と第二リッジ15の先端は、自由空間とのインピーダ
ンス整合を行いやずくするため、若干部分を削り取る。
//4 to 1mi, basic mode 1゛E,. The inner dimension a of the rectangular ridge waveguide 10a is adjusted so that the cutoff frequency of 0.8 to 0.9 fL (fl is the lower limit frequency of operation).
, bw, h. This rectangular ridge waveguide 10
The characteristic impedance Zr of a is about 173 to 1/4 of the characteristic impedance Zo of free space. First ridge 1 on the mouth 16 side of the TIi type bridge waveguide 10a
4 and the tips of the second ridge 15 are slightly partially shaved off in order to achieve impedance matching with the free space.

この3種の11aの第一・誘電体A(又は11bの第一
・誘電体B)と第二誘電体J2および第三誘電体13の
構成は第1図(a)、(lil、 (C)に示すように
、第三誘電体13は開口部16に密着させるようにし、
又1.1 aの第一誘電体A(又は11bの第一誘電体
B)と第三誘電体13は、第二誘電体12を中心にして
第三誘電体13を内側にしかつ11aの第−F電体A(
又は11bの第一誘電体B)を夕(側にした嵌め合い構
造にする。11aの第一誘電体A(又は11bの第一誘
電体B)、第二誘電体12.第二誘電体13の比誘電率
は異なった値とし、11aの第一誘電体A(又は11b
の第一・誘電体B)の比誘電率ε1は低めの値とし7、
第三誘電体13の比誘電率ε3は高めの値とし、かつ第
二誘電体12の比誘電率ε、はε1とε3の中間の値(
ε、くεzくε3)に設定する。
The configurations of the first dielectric A of these three types 11a (or the first dielectric B of 11b), the second dielectric J2, and the third dielectric 13 are shown in FIG. 1(a), (lil, (C ), the third dielectric 13 is brought into close contact with the opening 16,
In addition, the first dielectric A of 1.1a (or the first dielectric B of 11b) and the third dielectric 13 are arranged such that the second dielectric 12 is in the center and the third dielectric 13 is inside, and the third dielectric 13 of 11a is -F electric body A (
Or have a fitting structure in which the first dielectric B) of 11b is on the side. The first dielectric A of 11a (or the first dielectric B of 11b), the second dielectric 12, and the second dielectric 13. have different dielectric constants, and the first dielectric A of 11a (or 11b
The relative permittivity ε1 of the first dielectric material B) is set to a low value7,
The relative permittivity ε3 of the third dielectric 13 is set to a high value, and the relative permittivity ε of the second dielectric 12 is set to an intermediate value between ε1 and ε3 (
Set to ε, kuεzkuε3).

なお、3種の誘電体である11aの第一誘電体Aと第二
二、誘電体12および第三誘電体13との固定は、11
aの第一・誘電体Aと第二誘電体12とは嵌め合い固定
し2、また11aの第一誘電体Δど第一誘電体12と第
三誘電体13および第三誘電体13と矩形リッジ導波管
1 (l it との同定は、例えば接着によるものと
する。
Note that fixing of the first dielectric A of the three types of dielectrics 11a, the second dielectric 12, and the third dielectric 13 is as follows.
The first dielectric A and the second dielectric 12 of a are fitted and fixed 2, and the first dielectric Δ of 11a, the first dielectric 12, the third dielectric 13, and the third dielectric 13 are rectangular. The identification with the ridge waveguide 1 (l it ) is, for example, by adhesion.

第2図は)J、−=ズ1゛アレイアンデナに第1図のも
のを用いたときよりも更にフェーズ1゛アLノイアンう
〜すの素子配列性を向−1−さセるためアンテナ全周を
円形としたものである。
In Fig. 2, the entire antenna is designed to improve the element arrangement of the phase 1 antenna even more than when the one shown in Fig. 1 is used for the J, -=Z1 array antenna. It has a circular circumference.

リッジ導波管の構造はアンテナ全周に合わ−U、導波管
内部の磁壁に丸味を持たゼた円形り・7ジ導波管構造で
ある。そして円形リッジ導波管10bの開口部16は、
3種の11aの第一・誘電体A(又は11bの第一誘電
体B)と第二誘電体12および第三誘電体13との固定
を考慮し2、円形リッジ導波管10bの外側および円形
リッジ導波管10bの内部の磁壁21お。1、び3種の
11aの第一・誘電体A(又は11[〕の第一誘電体B
Bと第二誘電体12および第三誘電体13の形状を円形
構造とし°ζいる。また3種の11aの第一誘電体A(
又は11bの第一・誘電体B)と第一誘電体12および
第三誘電体13の円形リッジ導波管1011の開口部■
6との固定は、ねじ17とねし止め用穴18と貫通穴1
9を用いて行う。この場合、第2図(a)、 +1))
、 fc)、 +d+に示す如く、1円形す、/ジ導波
管10bの開L1部16の電界壁20の夕(側の切削部
22を例えば平面になるように削り取り、3種の11a
の第一誘電体Δ(又は11bの第一誘電体113 )と
第ニア誘電体12および第三誘電体13の取りつけスペ
ースを確保する。削り取った切削部22には、円形リッ
ジ導波管1. Ol:+の内部にねじ17が挿入されな
いように穴18を5−☆ける。このような構造にするこ
とに。凱り、円形リッジ導波管10b−=の3種の11
aの第一・誘電体A(又は11bの第一誘電体B)と第
−二−誘電体12および第三誘電体13の固定が確実に
行うことができ、フェーズドアレイアンテナの素子配列
性を向」ユさせることができる。
The structure of the ridge waveguide is a circular 7-D waveguide structure in which the domain wall inside the waveguide is rounded and the domain wall inside the waveguide is rounded. The opening 16 of the circular ridge waveguide 10b is
Considering the fixation of the first dielectric A of three types 11a (or the first dielectric B of 11b), the second dielectric 12, and the third dielectric 13, the outside of the circular ridge waveguide 10b and Domain wall 21 inside circular ridge waveguide 10b. 1, and 3 types of 11a's first dielectric A (or 11[]'s first dielectric B
B, the second dielectric 12, and the third dielectric 13 have a circular structure. In addition, the first dielectric material A of three types of 11a (
Or the opening of the circular ridge waveguide 1011 of the first dielectric B) of 11b, the first dielectric 12 and the third dielectric 13 ■
6 is fixed using the screw 17, the screw hole 18, and the through hole 1.
9. In this case, Fig. 2(a), +1))
, fc), +d+, the cut portion 22 on the side of the electric field wall 20 of the open L1 portion 16 of the circular waveguide 10b is cut off to become a flat surface, and three types of 11a are cut out.
A space for mounting the first dielectric Δ (or the first dielectric 113 of 11b), the near dielectric 12, and the third dielectric 13 is secured. A circular ridge waveguide 1. Hole 18 is drilled 5-☆ to prevent screw 17 from being inserted inside Ol:+. I decided to have a structure like this. 11 of three types of round ridge waveguide 10b-=
The first dielectric A of a (or the first dielectric B of 11b), the second dielectric 12 and the third dielectric 13 can be securely fixed, and the element arrangement of the phased array antenna can be improved. It is possible to make people look towards you.

第3図(こおいて、円形リッジ導波管10bの切回形の
寸法7!i1.  !!3□は91X5mmであり、動
作ト限周波数f、においでl:11は0.24λLmm
、#32は0.16λ)、になるように形成した変形の
円形リッジ導波管1 Ol::+と3種の11aの第一
誘電体A(又は11bの第一誘電体B)と第二誘電体1
2オ9よび第三誘電体13とで構成される。また第一・
す・7ジ14と第一リッジ15の横幅Wは2市、また間
隔りは0.5〜・O,6■であり、周波数帯域は8〜・
18GHzである。
Fig. 3 (Here, the dimensions 7!i1.!!3□ of the rounded shape of the circular ridge waveguide 10b are 91 x 5 mm, the operating limit frequency f, and the odor l: 11 are 0.24λLmm.
, #32 is 0.16λ), the modified circular ridge waveguide 1 Ol::+, the first dielectric A of 11a (or the first dielectric B of 11b) of three types, and the first dielectric B of 11b. dielectric 1
2 and 9 and a third dielectric 13. Also the first
The width W of the first ridge 14 and the first ridge 15 is 2 cm, the interval is 0.5 to 0.6 cm, and the frequency band is 8 to 6 cm.
It is 18GHz.

、:こで円形リッジ導油管10bの遮断周波数の値は、
基本モードTE、Oでfcl。=6.7 G Hy、 
、高次干−r′I″E20でf Czo =45G H
zである。なお円形リッジ導波管lObの特性インピー
ダンスZrは、8 、18G Hzにおいて各々130
Ωと78Ωである。11aの第一誘電体Aと第二誘電体
12と第三誘電体13は、前記特性インピーダンスZr
を8〜18C”、I Hzの広帯域にわたり、自由空間
の特性インビダンスZo  (Zo −377)と整合
させるために用いられる。 11aの第−誘電体へと第
二誘電体12のイれぞれは厚めを変えることにより、周
波数帯域内の定在波比(以下VSWRとも称す)を劣化
させることなくアンテナのビー1、幅を変えることがで
きる。この構成により、円形リッジ導波管10bにより
実現したアンテナ素子の外寸法I、oは直径10mm 
(0,27λ1.)となる。なお11aの第一誘電体A
の長さ7!i15は2 ””” 511111,7! 
:16は4ニ5mmであり、また第三誘電体13の厚み
el、は0.5 =−0,8mmである。このIlaの
第−誘電体へと第二誘電体12と第三誘電体13の固定
は、2木のねじ17にて行う。
, : Here, the value of the cutoff frequency of the circular ridge oil guide pipe 10b is:
Basic mode TE, fcl in O. =6.7 G Hy,
, f Czo = 45G H at high order dryness - r′I″E20
It is z. The characteristic impedance Zr of the circular ridge waveguide lOb is 130 at 8 and 18 GHz, respectively.
Ω and 78Ω. The first dielectric A, second dielectric 12, and third dielectric 13 of 11a have the characteristic impedance Zr.
is used to match the characteristic impedance Zo (Zo −377) of free space over a wide band of 8 to 18 C”, I Hz. By changing the thickness of the antenna, the width of the antenna can be changed without deteriorating the standing wave ratio (hereinafter also referred to as VSWR) within the frequency band.With this configuration, the width of the antenna can be changed using the circular ridge waveguide 10b. The external dimensions I and o of the antenna element are 10 mm in diameter.
(0,27λ1.). Note that the first dielectric material A of 11a
The length is 7! i15 is 2 “”” 511111,7!
:16 is 4×5 mm, and the thickness el of the third dielectric 13 is 0.5=-0.8 mm. The second dielectric 12 and the third dielectric 13 are fixed to the second dielectric of Ila using two screws 17.

本実施例によれば1.前記(1)弐から、同周波数帯域
においてビーノ、走査範囲が±306を越えるフェーズ
ドアし/イアンテナの実現が可能になる。
According to this embodiment: 1. From (1) 2 above, it becomes possible to realize a phased antenna whose scanning range exceeds ±306 in the same frequency band.

実測値はつぎの通り、 V SWR−=−=−2: 1以下 アンテナ利得 −0aBi以上<taax 7 d 1
3 i)ビーム幅  −=70〜150 なお第4図は、第3図の第一誘電体11aの形状を第一
誘電体11bに変えたものであり、その特性は第3図の
ものとほぼ同一である。
The actual measured values are as follows: VSWR-=-=-2: Antenna gain of 1 or less -0aBi or more <taax 7 d 1
3 i) Beam width -=70 to 150 In Fig. 4, the shape of the first dielectric 11a in Fig. 3 is changed to the first dielectric 11b, and its characteristics are almost the same as those in Fig. 3. are the same.

なお補足説明をする乙こ、この種のリッジ導波管に対し
、例えば1種の誘電体を用いて導波管の開口部を覆いイ
ンピーダンス整合さセた場合、1オクタ一ブ程度の整合
周波数を得ることは極めて困■である(VSWR281
種度の周波数帯域)。
As a supplementary explanation, for this type of ridge waveguide, if the opening of the waveguide is covered with one type of dielectric and impedance matching is achieved, the matching frequency will be approximately one octave. It is extremely difficult to obtain (VSWR281
frequency band of species degree).

また2柿の誘電体を用いて導波管の開口部を覆−4,た
場合、形状及び誘電率等の適切な選択により、lオクタ
ーブ程度の周波数帯域が確保される場合もある。この場
合、リッジ導波管の開口部の誘電体の大きさがりソジ導
波管間Lj部の周囲力量に大きくなってしまうため、フ
ェーズドアレ・fアンテナの素子配列に制約が生じる(
即ら、導波管のり(・1をできるだけ小さくし2ても、
誘電体の外寸が大きくなるので、所望の配列ピッチが得
られなくなる場合が発生する。)。
Furthermore, when the opening of the waveguide is covered with a dielectric material such as 2-4, a frequency band of approximately 1 octave may be secured by appropriately selecting the shape, dielectric constant, etc. In this case, the size of the dielectric at the opening of the ridge waveguide increases and the surrounding force of the Lj section between the solid waveguides becomes large, resulting in restrictions on the element arrangement of the phased array/f antenna (
That is, even if the waveguide glue (・1 is made as small as possible and 2 is
Since the outer dimensions of the dielectric become larger, there are cases where it becomes impossible to obtain the desired arrangement pitch. ).

し、かし1、第1図〜第4図に記載しまた本発明の力武
を採用することにより、導波管外寸と誘電体舊=j−は
同一にできるため、フェーズドアレイアンテナの素子配
列の制約性が大きく向l−させることができる。
However, by adopting the features described in Figures 1 to 4 and according to the present invention, the outer dimensions of the waveguide and the dielectric body = j- can be made the same, so that the elements of the phased array antenna can be Arrangement constraints can be greatly improved.

また、誘電体夕(寸が小さ(なる分、即ち、フェズトア
レ・イアンテナの各アンテナ素子の誘電体同志の距齢が
大きくなる分、各アンテナ素子同志の近接により発生す
る相!f−f′−渉(相互結合)も小さくすることがで
きる。
In addition, as the dielectric array becomes smaller (that is, the distance between the dielectrics of each antenna element of the fez array antenna becomes larger), the phase generated due to the proximity of each antenna element! - The interference (mutual coupling) can also be reduced.

〔発明の効果〕〔Effect of the invention〕

以−ト、の説明から明らかなように本発明によれば、導
波管−・の誘電体の固定が確実にできかつ小形にできる
ため、フェーズドアレイアンテナの素子配列性を向−1
ニさせることができる。
As is clear from the following explanation, according to the present invention, the dielectric of the waveguide can be reliably fixed and the waveguide can be made compact, which improves the element arrangement of the phased array antenna.
can be made to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示す図、 第2図は本発明の一実施例の構成を示す図、第3図は本
発明の一実施例の詳細構造を示す図、第4図は本発明の
他の実施例の詳細構造を示す図、 第5図は矩形リッジ導波管の構成を示す図、第6図はダ
ブルリ・ノジホーンアンテナの一例の構造図、 第7図はダブルリッジホーンアンテナの他の例の構造図
、 第8図はりソジ導波管の開口部に薄膜と誘電体を用いた
アンテナの一例の構造図、 第9図はフェーズドアレイアンテナの構成を示す図 である。 図において、 10aは矩形リッジ導波管、 10bは円形リッジ導波管、 11aは第一誘電体A、 11bは第一誘電体B、 12は第二誘電体、 13は第三誘電体、 16は開口部、 (c+ を号平市図(者1212) ネト46g8/1−フζ井(りづ^イ→[rEそズトT
図第2図 tc)平4子平市図(÷/+2) 4:i5ρ月のオ算Aをネ↑Gり 第1w /137 10すgH針 ゝ17.ML IQ)  イνり市1 G召 13辱二耽任 cbr i−冴717+ 2十’i’l”Rfl’Pts ’1Jt45’lq’
;、■aJiite:’FTi@41g! yP形゛人、〕、゛114/IjJ1造114/IjJ
1 造会ン 9−7ノLソ〉シ゛才、 〉アンテアの一イ列(清、造図 ts 6 図
FIG. 1 is a diagram showing the configuration of the present invention, FIG. 2 is a diagram showing the configuration of an embodiment of the present invention, FIG. 3 is a diagram showing the detailed structure of an embodiment of the present invention, and FIG. FIG. 5 is a diagram showing the structure of a rectangular ridge waveguide, FIG. 6 is a structural diagram of an example of a double ridge horn antenna, and FIG. 7 is a diagram showing a detailed structure of another embodiment of the invention. Figure 8 is a structural diagram of another example of an antenna that uses a thin film and dielectric material in the opening of a beam-shaped waveguide. Figure 9 is a diagram showing the configuration of a phased array antenna. . In the figure, 10a is a rectangular ridge waveguide, 10b is a circular ridge waveguide, 11a is a first dielectric A, 11b is a first dielectric B, 12 is a second dielectric, 13 is a third dielectric, 16 is the opening, (c+ No. 1212) Neto 46g8/1-F
Figure 2 tc) Hei 4 Ko Taira city map (÷/+2) 4:i5ρ month's O calculation A ↑G 1st w /137 10sgH needle も17. ML IQ) Iνri city 1 G call 13 insult 2 indulgence cbr i-Sae 717+ 20'i'l"Rfl'Pts '1Jt45'lq'
;,■aJiite:'FTi@41g! yP form゛人、゛114/IjJ1 114/IjJ
1 Zōkai 9-7 no L So〉shi゛sai,〉Anthea's first line (Qing, Zozu ts 6 fig.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の矩形リッジ導波管(10a)をアンテナ素
子として用いるものにおいて、 前記矩形リッジ導波管(10a)の開口部(16)面に
、第一誘電体A(11a)と第二誘電体(12)と第三
誘電体(13)の順に3種の誘電体を配設しかつ前記第
三誘電体(13)が前記開口部(16)に密着するよう
に設け、更に前記第一誘電体A(11a)は高域整合特
性をもち、中間の前記第二誘電体(12)は低域整合特
性をもち、更に前記開口部(16)面に密着した前記第
三誘電体(13)は低域・中域整合特性をもつようにし
、前記矩形リッジ導波管(10a)と自由空間の間にお
いて1オクターブ以上の広帯域にわたりインピーダンス
整合ができることを特徴とする小形アンテナ空間整合方
式。
(1) In an antenna element using a plurality of rectangular ridge waveguides (10a), a first dielectric material A (11a) and a second dielectric material Three types of dielectrics are arranged in the order of a dielectric (12) and a third dielectric (13), and the third dielectric (13) is provided in close contact with the opening (16), and The first dielectric A (11a) has high-frequency matching characteristics, the second dielectric (12) in the middle has low-frequency matching characteristics, and the third dielectric (11a) in close contact with the opening (16) surface 13) A small antenna spatial matching system characterized in that it has low-range and middle-range matching characteristics and can perform impedance matching over a wide band of one octave or more between the rectangular ridge waveguide (10a) and free space.
(2)前記請求項1項に記載する矩形リッジ導波管(1
0a)を円形リッジ導波管(10b)としたことを特徴
とする小形アンテナ空間整合方式。
(2) The rectangular ridge waveguide (1
A small antenna spatial matching system characterized in that 0a) is a circular ridge waveguide (10b).
JP2160681A 1990-06-18 1990-06-18 Small antenna space matching method Expired - Fee Related JP2546034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2160681A JP2546034B2 (en) 1990-06-18 1990-06-18 Small antenna space matching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2160681A JP2546034B2 (en) 1990-06-18 1990-06-18 Small antenna space matching method

Publications (2)

Publication Number Publication Date
JPH0449704A true JPH0449704A (en) 1992-02-19
JP2546034B2 JP2546034B2 (en) 1996-10-23

Family

ID=15720168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2160681A Expired - Fee Related JP2546034B2 (en) 1990-06-18 1990-06-18 Small antenna space matching method

Country Status (1)

Country Link
JP (1) JP2546034B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162631A (en) * 1995-12-06 1997-06-20 Fujitsu Ltd Antenna
JP2001168635A (en) * 1999-09-29 2001-06-22 Tokimec Inc Dielectric rod antenna
WO2001056114A1 (en) * 2000-01-27 2001-08-02 Tokimec Inc. Dielectric rod antenna
JP2006311408A (en) * 2005-05-02 2006-11-09 Yokowo Co Ltd Wide band antenna
WO2017105549A1 (en) * 2015-12-16 2017-06-22 Raytheon Company Ultra-wideband rf/optical aperture
JP2017207464A (en) * 2016-05-17 2017-11-24 アンリツ株式会社 Antenna measuring system and antenna measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564902A (en) * 1979-06-22 1981-01-19 Mitsubishi Electric Corp Antenna unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564902A (en) * 1979-06-22 1981-01-19 Mitsubishi Electric Corp Antenna unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162631A (en) * 1995-12-06 1997-06-20 Fujitsu Ltd Antenna
JP2001168635A (en) * 1999-09-29 2001-06-22 Tokimec Inc Dielectric rod antenna
WO2001056114A1 (en) * 2000-01-27 2001-08-02 Tokimec Inc. Dielectric rod antenna
JP2006311408A (en) * 2005-05-02 2006-11-09 Yokowo Co Ltd Wide band antenna
WO2006118324A1 (en) * 2005-05-02 2006-11-09 Yokowo Co., Ltd. Wide band antenna
US8068064B2 (en) 2005-05-02 2011-11-29 Yokowo, Co., Ltd. Wide band antenna
WO2017105549A1 (en) * 2015-12-16 2017-06-22 Raytheon Company Ultra-wideband rf/optical aperture
JP2017207464A (en) * 2016-05-17 2017-11-24 アンリツ株式会社 Antenna measuring system and antenna measuring method

Also Published As

Publication number Publication date
JP2546034B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
US7498896B2 (en) Waveguide to microstrip line coupling apparatus
US5115217A (en) RF tuning element
US6426722B1 (en) Polarization converting radio frequency reflecting surface
JP6409986B2 (en) Broadband antenna radiating element and method for manufacturing broadband antenna radiating element
CN108539410A (en) A kind of stacking micro-strip UHF antenna
US5138289A (en) Noncontacting waveguide backshort
JP3026171B2 (en) Antenna device
JPH0449704A (en) Small antenna spatial matching system
JPS63224404A (en) Patch antenna
GB2236625A (en) Monopole antenna.
JPH1041737A (en) Dual mode horn antenna
JP3169972B2 (en) Waveguide-microstrip line converter
EP0187671B1 (en) Primary radiator for circularly polarized wave
JPS5829204A (en) Microstrip antenna loaded with variable capacity active element
JP3188174B2 (en) Folded waveguide
JP3668649B2 (en) Primary radiator
US4675623A (en) Adjustable cavity to microstripline transition
JPS604603B2 (en) Transmission mode converter
JPS642281B2 (en)
RU2019008C1 (en) Waveguide-horn radiator
JP2592539B2 (en) Small antenna device
JPH05283915A (en) Waveguide-microstrip line converter
KR940000797B1 (en) Broadband continuously flared noreh phase-array radiating element with controlled return loss contour
JPH03123871A (en) Cell for measurement of wind range
RU2052877C1 (en) Wide-band aerial

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees