JPH0449676B2 - - Google Patents

Info

Publication number
JPH0449676B2
JPH0449676B2 JP58228452A JP22845283A JPH0449676B2 JP H0449676 B2 JPH0449676 B2 JP H0449676B2 JP 58228452 A JP58228452 A JP 58228452A JP 22845283 A JP22845283 A JP 22845283A JP H0449676 B2 JPH0449676 B2 JP H0449676B2
Authority
JP
Japan
Prior art keywords
control rod
region
core
rod withdrawal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58228452A
Other languages
Japanese (ja)
Other versions
JPS60120289A (en
Inventor
Masahisa Oohashi
Hiroyuki Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58228452A priority Critical patent/JPS60120289A/en
Publication of JPS60120289A publication Critical patent/JPS60120289A/en
Publication of JPH0449676B2 publication Critical patent/JPH0449676B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は原子炉の中性子検出装置、特に出力運
転中に通常的に制御棒を駆動させる原子炉の制御
棒引抜停止装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a neutron detection device for a nuclear reactor, and particularly to a control rod withdrawal and shutdown device for a nuclear reactor that normally drives control rods during power operation.

〔発明の背景〕[Background of the invention]

従来の原子炉の制御棒引抜停止装置の例を第1
図を用い説明する。第1図の炉心中に配置された
中性子検出器の信号は最大値選択回路により、そ
の最大値LPM(MAX)が選択される。次にこの
LPM(MAX)の値は制御棒引抜停止判定装置に
伝達され、RSM設定値V0と比較され、LPM
(MAX)がV0より大きい場合は制御棒引抜停止
信号が発せられ制御棒駆動装置の駆動を停止させ
ていた。この従来の制御棒引抜停止装置の構成は
炉心が比較的小さい原子炉に対しては有効であつ
たが、炉心が大型になつた場合、制御棒引抜時に
制御棒近傍の出力が上昇するが炉心全体の出力上
昇は遅れるため、制御棒近傍の中性子検出器が故
障し接続をはずされている場合、有効に制御棒引
抜停止信号を発生できない場合が考えられる。
The first example of a control rod withdrawal and stop device for a conventional nuclear reactor is shown below.
This will be explained using figures. The maximum value LPM (MAX) of the signal of the neutron detector placed in the reactor core shown in FIG. 1 is selected by the maximum value selection circuit. Then this
The value of LPM (MAX) is transmitted to the control rod withdrawal stop judgment device, compared with the RSM set value V 0 , and LPM
When (MAX) was greater than V 0 , a control rod withdrawal stop signal was issued to stop the control rod drive device. The configuration of this conventional control rod withdrawal and stop device was effective for reactors with relatively small cores, but when the core becomes large, the power near the control rods increases when the control rods are withdrawn, but the Since the increase in overall output is delayed, if a neutron detector near the control rod has failed and is disconnected, it may not be possible to effectively generate a control rod withdrawal stop signal.

また従来の原子炉の制御棒引抜停止装置の他の
例を第2図で説明する。
Another example of a conventional nuclear reactor control rod withdrawal and stop device will be described with reference to FIG.

第2図の原子炉の炉心は1/4象限毎に4領域に
区分し、第1領域の中性子検出器信号は加算装置
により加算されP1(t)が定められる。他の領域
のPも同様に求められる。ここでtは時刻であり
P1は第1領域の中性子検出器加算結果を示す。
制御棒引抜停止装置RSMの校正時刻をt0とする
と時刻t0におけるP1(t0)はRSM校正装置に伝達
される。次にRSM校正装置は原子炉の主蒸気流
量等の各種流量や各部温度測定結果から求められ
る炉心で発生している炉心全出力測定値と炉心プ
ロセス計算機によつて計算された炉心径方向出力
分布をもとに第1領域から第4領域までのそれぞ
れの領域の出力を求める。第1領域の例で示す
と、第1領域の求められた領域出力PR1(t0)を
用い、次式で校正係数α1を求める。
The core of the nuclear reactor shown in FIG. 2 is divided into four regions in each 1/4 quadrant, and the neutron detector signals in the first region are added by an adding device to determine P 1 (t). P in other areas can be found in the same way. Here t is time
P 1 indicates the neutron detector addition result of the first region.
Assuming that the calibration time of the control rod withdrawal and stop device RSM is t 0 , P 1 (t 0 ) at time t 0 is transmitted to the RSM calibration device. Next, the RSM calibration device uses the core total power measurement value generated in the reactor core, which is determined from various flow rates such as the reactor's main steam flow rate and the temperature measurement results of each part, and the core radial power distribution calculated by the core process calculator. Based on this, the output of each region from the first region to the fourth region is determined. Taking the example of the first region, the calibration coefficient α 1 is determined using the following equation using the determined region output PR 1 (t 0 ) of the first region.

α1=PR1(t0)/P1(t0) ここで求められたα1は次回の校正まで第1領域
RSMの校正係数として用いる。よつて第1領域
の中性子検出器を用いた従来の制御棒引抜停止装
置(RSM装置)は次式で表わされる。
α 1 = PR 1 (t 0 )/P 1 (t 0 ) The α 1 obtained here will remain in the first region until the next calibration.
Used as a calibration coefficient for RSM. Therefore, the conventional control rod withdrawal and stop device (RSM device) using a neutron detector in the first region is expressed by the following equation.

第1領域のRSM信号R1(t)は R1(t)=P1(t)×α1 次に炉心内の4領域のRSM信号R1(t)〜R4
(t)の最大値がR(t)naxが最大値選択回路によ
り選択される。最終的にこのR(t)naxがRSM設
定値R0と比較されR(t)naxの方がR0よりも大と
なつた場合、制御棒引抜停止信号が発生した。こ
の従来のRSMは領域毎の領域出力検出装置RPM
と同一の信号であるため、RSMとRPMの信号を
共有化できるという利点があつた。しかしこの従
来のRSMでは領域毎の出力がほとんど違わない
1/4回転対象炉心とか、小型の炉心では問題がな
かつたが、炉心が大型化した場合や1/4回転対象
炉心ではなく1/4象限の出力が異なる場合は領域
毎にRSM信号発生までの出力上昇幅が大幅に異
なり、初期低出力領域で制御棒が引抜かれる事象
が生じた場合RSM信号発生が遅れるという問題
があつた。特に炉心を多領域に区分し、各領域の
出力を自動で常時制御している場合、各領域の制
御棒誤引抜が同時に生じることが考えられ、第2
図のようなRSMでは領域間でRSM発生までの出
力上昇幅にバラツキが生じ望ましくない。
The RSM signal R 1 (t) in the first region is R 1 (t) = P 1 (t) × α First, the RSM signal R 1 ( t ) to R 4 in the four regions in the core
The maximum value of (t) is R(t) nax is selected by the maximum value selection circuit. Finally, this R(t) nax was compared with the RSM set value R0 , and when R(t) nax was larger than R0 , a control rod withdrawal stop signal was generated. This conventional RSM is a region output detection device RPM for each region.
This has the advantage that the RSM and RPM signals can be shared. However, with this conventional RSM, there was no problem with small cores such as 1/4 rotation target cores where the output differs little in each region, but when the core becomes larger or 1/4 rotation target core instead of 1/4 rotation core When the output of the quadrants is different, the range of output increase until the RSM signal is generated differs greatly depending on the area, and there is a problem that the generation of the RSM signal is delayed if the control rod is pulled out in the initial low output area. In particular, when the reactor core is divided into multiple regions and the output of each region is automatically and constantly controlled, it is conceivable that control rods in each region will be erroneously withdrawn at the same time.
In the RSM shown in the figure, there is undesirable variation in the amount of output rise until RSM occurs between regions.

以上、第1図、第2図に示した従来の制御棒を
自動制御で駆動させている原子炉のRSMで炉心
が大型化し制御棒引抜きが局所的に著しい上昇を
伴う場合、あるいは炉心を大型化し各領域の出力
が通常状態で大きく異なる場合にはRSM信号に
遅れあるいはバラツキが生じ望ましくなかつた。
As shown above, in the RSM of a nuclear reactor in which conventional control rods are driven under automatic control as shown in Figures 1 and 2, when the core becomes large and the control rod withdrawal is accompanied by a significant rise locally, or when the reactor is When the output of each region differs greatly under normal conditions, delays or variations in the RSM signal occur, which is undesirable.

よつて炉心を大型化し複数の領域に分け出力を
制御棒により自動制御する必要のある原子炉で制
御棒異常駆動時に直ちに制御棒引抜を停止させる
ことができるRSMの発明が望まれていた。
Therefore, it has been desired to invent an RSM that can immediately stop control rod withdrawal in the event of an abnormal operation of a control rod in a nuclear reactor where the core is enlarged and the reactor core is divided into multiple regions and the output must be automatically controlled by control rods.

〔発明の実施例〕[Embodiments of the invention]

以下第3図を用い本発明の実施例について示
す。第3図は原紙炉内の燃料重合体が600体以上
の大型の圧力管型原子炉での制御棒引抜停止装置
を示す図である。圧力管型原子炉ではキセノン振
動を制御するために炉心を複数領域に区分してそ
れぞれの領域の出力を制御する必要がある。また
制御棒の誤引抜に対しても炉心が大型化した場合
は複数の領域に区分し、それぞれの領域出力を監
視することにより制御棒引抜を停止させる必要が
ある。
An embodiment of the present invention will be described below using FIG. FIG. 3 is a diagram showing a control rod withdrawal and stop device for a large-scale pressure tube nuclear reactor in which the number of fuel polymers in the raw paper reactor is 600 or more. In pressure tube reactors, in order to control xenon oscillations, it is necessary to divide the core into multiple regions and control the output of each region. In addition, in order to prevent the control rods from being withdrawn accidentally, if the core becomes large, it is necessary to divide the core into multiple regions and stop the withdrawal of control rods by monitoring the output of each region.

第3図では径方向1/4象限毎の4領域と炉心中
央の領域の計5領域で中性子を検出する制御棒引
抜停止装置の構成としている。第3図の領域1の
中性子検出器の信号は加算装置により加算され、
Pt′(t)が求められる。ここでPt′は加算装置か
らの信号であり、tは時刻を示す。このPt′(t)
はRSM校正装置に送られる。RSMの校正は炉心
全出力計測装置TPMの値TPM(t0)用いてRSM
校正係数αを求めることにより実施する。校正係
数αは次式で求める。
In Figure 3, the control rod withdrawal and stop device is configured to detect neutrons in a total of five areas: four areas in each 1/4 quadrant in the radial direction and the area in the center of the reactor core. The signals of the neutron detector in region 1 of FIG. 3 are added by an adding device,
P t '(t) is found. Here, P t ' is a signal from the adder, and t indicates time. This P t ′(t)
is sent to the RSM calibration device. The RSM is calibrated using the value TPM (t 0 ) of the core total power measuring device TPM.
This is done by finding the calibration coefficient α. Calibration coefficient α is calculated using the following formula.

α1=TPM(t0)/Pt i(t0) ここで α:RSM校正係数 i:領域番号 TPM:炉心全出力計測装置の信号 t0:校正時刻 Rt:領域別中性子検出器加算信号 次に各領域の校正係数αiは各領域毎のRSM計
算装置に送られ各領域毎にRSM信号を求める。
各領域毎のRSM値であるRi(t)は次式で求め
る。
α 1 = TPM (t 0 )/P t i (t 0 ) where α: RSM calibration coefficient i: Region number TPM: Signal of core total power measurement device t 0 : Calibration time R t : Neutron detector addition by region Signal Next, the calibration coefficient α i of each region is sent to an RSM calculation device for each region to obtain an RSM signal for each region.
R i (t), which is the RSM value for each region, is determined by the following equation.

Ri(t)=Pt i(t)×αi この方式は具体的には炉心全出力が80%の場合
RSM校正を実施したとすると領域間に出力のず
れがある場合でもすべてのRSM値を80とするも
のである。すなわちRSMの制御棒引抜停止信号
発生設定値を105とするとすべての領域に対し公
平な出力上昇の制限をもうけることになり、定格
100に対し、各領域ほぼ5%の出力上昇で制御棒
引抜停止信号が発生することになる。従来の領域
出力そのものを利用した場合は領域間で4%程度
ずれがあり定格出力時102の領域では3%の出力
上昇で、98の領域では7%の出力上昇が出た問題
を本実施例では解消できたことになる。第3図の
実施例では各領域別のRSM値は最大値選択回路
によりR(t)naxが選択され制御棒引抜信号設定
値R0よりR(t)naxが大の場合は制御棒引抜停止
信号を発生させる構成としている。
R i (t) = P t i (t) × α iThis method specifically applies when the total core power is 80%.
If RSM calibration is performed, all RSM values will be set to 80 even if there is a difference in output between regions. In other words, if the RSM control rod withdrawal stop signal generation setting value is set to 105, a fair limit on output increase will be set for all areas, and the rated
100, a control rod withdrawal stop signal will be generated when the output increases by approximately 5% in each region. This example solves the problem that when using the conventional area output itself, there is a deviation of about 4% between the areas, and at the rated output, the output increases by 3% in the area of 102, and the output increases by 7% in the area of 98. This means that it has been resolved. In the embodiment shown in Fig. 3, the RSM value for each region is R(t) nax selected by the maximum value selection circuit, and control rod withdrawal is stopped if R(t) nax is greater than the control rod withdrawal signal set value R0 . It is configured to generate a signal.

〔発明の効果〕〔Effect of the invention〕

本発明により炉心を複数の領域に区分し、各領
域の出力を自動的に制御する必要のある原子炉に
おいて、制御棒誤引抜発生時に各領域公平に出力
上昇を検出し安全に制御棒引抜を停止させると同
時に制御棒引抜停止誤信号の発生を防止すること
ができ原子炉の稼動率を向上させることができ
る。
According to the present invention, in a nuclear reactor where the reactor core is divided into multiple regions and the output of each region needs to be automatically controlled, when a control rod is accidentally withdrawn, the output increase in each region is detected fairly and the control rod can be withdrawn safely. At the same time as stopping the control rod, it is possible to prevent the generation of an erroneous control rod withdrawal stop signal, thereby improving the operating rate of the reactor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の制御棒引抜停止装置の
構成図、第3図は本発明の実施例の制御棒引抜停
止装置の構成図である。
1 and 2 are block diagrams of a conventional control rod withdrawal stop device, and FIG. 3 is a block diagram of a control rod withdrawal stop device according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 原子炉の中性子検出装置において、原子炉の
炉心を複数の領域に区分し、任意の校正時刻にお
ける各領域の平均出力と炉心出力の比を校正時刻
以降の各領域平均出力に乗算した信号を用い、炉
心全領域共通の制御棒引抜停止の設定値と比較、
判定することにより、設定値を超過した場合は制
御棒引抜停止信号を発生させることを特徴とする
中性子検出装置。 2 特許請求の範囲第1項記載の中性子検出装置
において、領域の境界に制御棒が配置されている
場合、複数の区分領域に重複した、領域境界制御
棒周囲の領域の平均出力と炉心出力の任意の校正
時刻における比を、境界制御棒の周囲領域の平均
出力に乗算した信号を用い、炉心全領域共通の制
御棒引抜停止の設定値と比較、判定することによ
り、設定値を超過した場合は制御棒引抜停止信号
を発生させることを特徴とする中性子検出装置。 3 特許請求の範囲第1項及び第2項記載の中性
子検出装置において中性子装置の信号は任意の校
正時刻の炉心の熱バランスから求められた炉心全
出力と、その時刻における領域中の中性子検出器
の値の平均値との比を校正時刻以降の領域中の中
性子検出器の平均値に乗算することにより求め、
その制御棒引抜停止信号が炉心全領域共通の制御
棒引抜停止の設定値を越えた場合、制御棒引抜停
止信号を発生させることを特徴とする中性子検出
装置。
[Claims] 1. In a neutron detection device for a nuclear reactor, the reactor core is divided into a plurality of regions, and the ratio of the average power of each region to the core power at a given calibration time is calculated as the average of each region after the calibration time. Using the signal multiplied by the output, compare it with the control rod withdrawal stop setting value common to all areas of the reactor core.
A neutron detection device characterized in that it generates a control rod withdrawal stop signal when a set value is exceeded by making a determination. 2. In the neutron detection device according to claim 1, when control rods are arranged at the boundaries of regions, the average power and core power of the region around the region boundary control rods overlap in a plurality of divided regions. By using a signal obtained by multiplying the ratio at any calibration time by the average output of the area surrounding the boundary control rod, and comparing it with the control rod withdrawal stop setting value common to all areas of the reactor core, it is determined that the set value is exceeded. is a neutron detection device characterized by generating a control rod withdrawal stop signal. 3 In the neutron detection device according to claims 1 and 2, the signal of the neutron device is the total power of the reactor obtained from the heat balance of the core at any calibration time and the neutron detectors in the area at that time. Calculated by multiplying the average value of the neutron detector in the area after the calibration time by the ratio of the value of
A neutron detection device that generates a control rod withdrawal stop signal when the control rod withdrawal stop signal exceeds a control rod withdrawal stop setting value common to all regions of the reactor core.
JP58228452A 1983-12-05 1983-12-05 Neutron detector Granted JPS60120289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58228452A JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58228452A JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Publications (2)

Publication Number Publication Date
JPS60120289A JPS60120289A (en) 1985-06-27
JPH0449676B2 true JPH0449676B2 (en) 1992-08-12

Family

ID=16876711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58228452A Granted JPS60120289A (en) 1983-12-05 1983-12-05 Neutron detector

Country Status (1)

Country Link
JP (1) JPS60120289A (en)

Also Published As

Publication number Publication date
JPS60120289A (en) 1985-06-27

Similar Documents

Publication Publication Date Title
JPH04335197A (en) Apparatus and method for monitoring output vibration range for nuclear reactor
JPS5852196B2 (en) Reactor control device
US4440715A (en) Method of controlling nuclear power plant
US6477218B1 (en) Control system of nuclear power plant, and control method thereof
JPH0449676B2 (en)
JP2007232712A (en) Method of recovering operation margin for overheat delta temperature and overpower delta temperature, and nuclear reactor system using the same
JP3875838B2 (en) Method and apparatus for monitoring power increase during reactor start-up
JPH05256978A (en) Nuclear reactor protection device
JP6856577B2 (en) Reactor protection device for fast reactors and reactor protection method
KR101070560B1 (en) Calculator for core protection of nuclear reactor and method thereof
JPS5933866B2 (en) Control rod withdrawal monitoring device
JP3316825B2 (en) Automatic reactor power adjustment system for boiling water reactor
JPWO2018131106A1 (en) Control rod motion monitoring system and control rod motion monitoring method
JPH01301196A (en) Nuclear reactor safety protection device
JPH07253495A (en) Digital rod block monitor
JP3621589B2 (en) Boiling water nuclear power plant operating area restriction system
JPS59180480A (en) Fault detector for neutron detector
JPH0198995A (en) Method and device for monitoring drawing-out of control rod
JPH022982A (en) Nuclear reactor protecting method
JPH0713671B2 (en) Reactor scrum circuit
JP2000065983A (en) Reactor water level instrumentation interlock device
JPS63234197A (en) Nuclear-reactor protective device
JPS6129798A (en) Controller for flow rate at core for nuclear power plant
JPH0690307B2 (en) Reactor protection method and device
JPH053557B2 (en)