JPS6129798A - Controller for flow rate at core for nuclear power plant - Google Patents

Controller for flow rate at core for nuclear power plant

Info

Publication number
JPS6129798A
JPS6129798A JP15099984A JP15099984A JPS6129798A JP S6129798 A JPS6129798 A JP S6129798A JP 15099984 A JP15099984 A JP 15099984A JP 15099984 A JP15099984 A JP 15099984A JP S6129798 A JPS6129798 A JP S6129798A
Authority
JP
Japan
Prior art keywords
flow rate
core
coolant
nuclear power
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15099984A
Other languages
Japanese (ja)
Inventor
門田 一雄
末岡 嘉隆
森 宜征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP15099984A priority Critical patent/JPS6129798A/en
Publication of JPS6129798A publication Critical patent/JPS6129798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Flow Control (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は原子力発電所の炉心流量制御Il装置に係わり
、特に炉心冷却材流路における冷却材の流れの乱れにJ
:り冷却材の流量変動を検出し、これに基づぎ流量 i
lJ ’aIを行なう原子力発電所の炉心流量制御装置
に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a core flow rate control Il device for a nuclear power plant, and particularly to a system for controlling the flow of coolant in a core coolant flow path.
: Detects the flow rate fluctuation of the coolant, and based on this, the flow rate i
The present invention relates to a core flow rate control device for a nuclear power plant that performs lJ'aI.

[発明の技術的背景とその問題点] 一般に、原子力発電所では、炉心冷却材流路が非常に複
雑であり、かつ並列流路を形成することから冷却材の流
れの状態が変化すると、ポンプの回転数が一定であって
も冷却材流ωに小さな突然変動が生ずるおそれがある。
[Technical background of the invention and its problems] In general, in nuclear power plants, the core coolant flow path is very complex and forms parallel flow paths, so when the coolant flow condition changes, the pump Even if the rotational speed is constant, small sudden fluctuations may occur in the coolant flow ω.

このような冷却材流量の突然変動は、炉心部における炉
心冷却材温度分布に対し゛、冷却材の炉心通過時間程疫
の短時間のうちに変化をもたらし、これに基づく反応度
変化により中性子束の変動をもたらす。
Such a sudden change in the coolant flow rate causes a change in the core coolant temperature distribution in the reactor core within a short period of time as the coolant passes through the core, and the resulting change in reactivity causes the neutron flux to change. results in fluctuations.

この中性子束の変動は、さらに冷却材温度の変動をもた
らし、これによる反応度効見により中性子束の変動は、
当初の反応度外乱が補償されるまで続き、一般にピーク
状の変動を引き起こす。
This variation in neutron flux further causes variation in coolant temperature, and due to the reactivity effect caused by this, variation in neutron flux is
This continues until the initial reactivity disturbance is compensated for, generally causing peak-like fluctuations.

例えば原子力発電所において、2つの冷却材流路があり
、それぞれ1台の冷却材駆動ポンプと何層する複数台の
流体系とからなり、炉容器内を再循環する流れが作られ
ている場合について考える。
For example, in a nuclear power plant, there are two coolant channels, each consisting of one coolant-driven pump and multiple fluid systems in several layers, creating a flow that recirculates within the reactor vessel. think about.

このような系統にa3いて冷却材駆動ポンプの出口配管
は、途中に分岐部が配設されでいる。この分岐部におけ
る流れに渦が発生ずると、この分岐部に圧損が生じ、冷
却材駆動ポンプの回転数が同じであつCも冷7j′l材
流量が変動することとなる。
In such a system, the outlet piping of the coolant-driven pump in a3 is provided with a branch part in the middle. When a vortex is generated in the flow at this branch, a pressure loss occurs at this branch, and even when the rotation speed of the coolant drive pump is the same, the flow rate of the cold 7j'l material changes.

従って、定格運転中に渦のある状態、すなわち、圧損の
大きい状態で運転していたとすると、何らかの原因によ
り、この分岐部に渦のない状態、すなわち、圧損の小さ
い状態への遷移が生ずると、冷却材流量が突然変動的に
増大し、これが炉心流量の突然変動的増大を引き起こす
こととなる。
Therefore, if the operation is in a state where there is a vortex during rated operation, that is, a state where the pressure drop is large, and for some reason a transition occurs at this branch part to a state where there is no vortex, that is, a state where the pressure drop is small, The coolant flow rate suddenly increases, which causes a sudden and variable increase in the core flow rate.

例えば、沸騰水形原子炉では、炉心流量の変化は炉心内
の蒸気泡の情の変化をもたらし、その結果として中性子
束の変化をもたらす。このため、炉心流量の突然変動的
増大は中性子束の突然変動的増加をもICらし、中性子
束高によるアラームひい°Cはスクラムを引き起こす可
能性がある。
For example, in a boiling water reactor, changes in core flow rate result in changes in the behavior of steam bubbles within the reactor core, resulting in changes in neutron flux. Therefore, a sudden fluctuating increase in core flow rate can also cause a sudden fluctuating increase in neutron flux to cause IC, and an alarm or °C due to high neutron flux can cause a scram.

このようなスクラムは、発電プラントの稼働率の低下を
もたらし好ましくないため、従来からこのような事態を
避けることかできる装置が望まれている。
Since such scrams are undesirable because they cause a decrease in the operating rate of the power plant, there has been a desire for a device that can avoid such a situation.

なお、第6図は前述した冷却材流量の突然変動による中
性子束の変化を示すもので、曲線aは中性子束の変化を
、曲線すは冷却材流量の突然変動を示している。
Note that FIG. 6 shows the change in neutron flux due to the aforementioned sudden change in the coolant flow rate, where the curve a shows the change in the neutron flux, and the curve 2 shows the sudden change in the coolant flow rate.

[発明の目的] 本発明はかかる従来の事情に対処し′Cなされl〔もの
で、炉心冷却材流路における冷却材の流れの乱れにより
冷却材の流量変動を確実に検出し、これに基づい゛C炉
心流量を適正に制御することのできる原子力発電所の炉
心流罪制御装置を提供しようとするものである。
[Object of the Invention] The present invention has been made in order to cope with the conventional situation. It is an object of the present invention to provide a core control device for a nuclear power plant that can appropriately control the core flow rate.

[発明の概要] すなわち本発明は、炉心冷却材流路における冷却材の流
れの乱れにより冷却材の流量変動を検出し流量変動信号
を出力する流罪変動検出手段と、前記流量変動信号を入
力し前記流め変動を補償するための流量補償信号を流量
制御系に出力する流量設定値補償手段とを備えたことを
特徴とする原子力発電所の炉心流罪制御装置である。
[Summary of the Invention] That is, the present invention includes a flow rate fluctuation detection means for detecting a flow rate fluctuation of coolant due to turbulence in the flow of coolant in a core coolant flow path and outputting a flow rate fluctuation signal, and a flow rate fluctuation signal inputted to the flow rate fluctuation signal. The present invention is a reactor core drift control device for a nuclear power plant, comprising a flow rate set value compensating means for outputting a flow rate compensation signal to a flow rate control system to compensate for the flow fluctuation.

[発明の実施例J 以F本発明の詳細を図面に示づ一実施例について説明す
る。
[Embodiment J of the Invention Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の原子力発電所の炉心流罪制御装置の一
実施例を示ずもので、この原子力発電所の炉心流量制御
賛同は流量変動検出手段3、流量設定値補償手段71お
よび圧力設定点変更信号発生手段5とから主体部分がt
1成されている。
FIG. 1 shows an embodiment of the nuclear power plant core flow control system of the present invention, and this nuclear power plant core flow rate control is performed by flow rate fluctuation detection means 3, flow rate set value compensating means 71, and pressure setting. The main part from the point change signal generating means 5 is t.
1 has been completed.

図においC符号6は再循環ポンプに接続される再循環配
管を示してa3す、この再循環配管6は分岐L7から複
数に分岐され、それぞれジェットポンプに接続されてい
る。
In the figure, reference numeral C 6 indicates a recirculation pipe connected to a recirculation pump a3. This recirculation pipe 6 is branched into a plurality of parts from a branch L7, and each is connected to a jet pump.

分岐部7には、この分岐部7における流れの状態、例え
ば渦の有無を検出するA E (A cousticE
n+1ssion )センサ8が配設されている。この
AEセンザ8は分岐部7に生ずる音を検出し、この音を
音響信号として流量変動検出手段3に出力する。
The branching part 7 has an AE (Acoustic
n+1ssion) A sensor 8 is provided. This AE sensor 8 detects the sound generated in the branching section 7 and outputs this sound as an acoustic signal to the flow rate fluctuation detection means 3.

流量変動検出手段3はAEセンリ8からの音響信号を入
力し、この信号に基づいて分岐部7における渦の有無を
判断する。
The flow rate fluctuation detection means 3 inputs the acoustic signal from the AE sensor 8, and determines the presence or absence of a vortex in the branch portion 7 based on this signal.

すなわち、分岐部7における流れの状態によりAEセン
ザ8の出力が変化するため、特定の周波数帯を選んでそ
の信号の大小を判@することにより、分岐部7に渦が発
生していることを検出することがrきる。
In other words, since the output of the AE sensor 8 changes depending on the state of the flow in the branch 7, by selecting a specific frequency band and determining the magnitude of the signal, it is possible to detect whether a vortex is occurring in the branch 7. It can be detected.

そして、この流量変動検出手段3は、例えば渦有りの状
態から渦無しへの状態への遷移を迅速に判断し、流量変
動信号S1を流量設定値補償手段4および圧力設定点変
更信号発生手段5へ出力する。
The flow rate fluctuation detection means 3 quickly determines the transition from a state with a vortex to a state without a vortex, for example, and sends a flow rate fluctuation signal S1 to a flow rate set value compensating means 4 and a pressure set point change signal generating means 5. Output to.

流量設定値補償手段4は流量変動信号S1を入力し、流
量補償信号S2を流量制御系9に出力する。
The flow rate set value compensating means 4 inputs the flow rate fluctuation signal S1 and outputs a flow rate compensation signal S2 to the flow rate control system 9.

すなわち、例えば分岐部7に渦有りの状態から渦無しの
状態への遷移が発生した場合には、突然変動的に増大す
る炉心流量の大きさはほぼ定まっているため、これを補
償するための予め定められた量の流量補償信号S2を流
量制御系9に出力する。
That is, for example, when a transition occurs from a state with a vortex to a state without a vortex in the branching section 7, the magnitude of the sudden and fluctuating increase in the core flow rate is almost fixed, so it is necessary to take steps to compensate for this. A predetermined amount of flow rate compensation signal S2 is output to the flow rate control system 9.

圧力設定点変更信号発生手段5は流量変動信号S1を入
力し、予め定められた波形の圧力設定点変更信号$3を
圧力制御系10の圧力設定点に印加する3゜ 以上のように構成された原子力発電所の炉心流齢制tI
l装置では、ΔEセンサ8からの音費信号を入力した流
量変動検出手段3により、例えば分岐部7の渦有りの状
態から渦無しの状態への遷移が検出されると、この流量
変動検出手段3から流用設定値補償手段4に流M変動信
号S1が出力され、この流量変動信号S1を入力した流
量設定値補償手段4により流量制御系9に流量補償信号
$2が出力される。これにより再循環ポンプ速度が減少
され、分岐部7の流れの渦無し状態への遷移によって生
ずる再循環流量の突然変動的増加が抑制される。
The pressure set point change signal generating means 5 receives the flow rate fluctuation signal S1 and applies a pressure set point change signal $3 having a predetermined waveform to the pressure set point of the pressure control system 10. Core aging system for nuclear power plants
In the L device, when the flow rate fluctuation detection means 3 inputting the sound signal from the ΔE sensor 8 detects, for example, a transition from a state with a vortex to a state without a vortex in the branch part 7, this flow rate fluctuation detection means 3 outputs a flow M fluctuation signal S1 to the diversion set value compensating means 4, and the flow rate set value compensating means 4, which has input this flow rate fluctuation signal S1, outputs a flow rate compensation signal $2 to the flow rate control system 9. This reduces the recirculation pump speed and suppresses sudden fluctuations in the recirculation flow rate caused by the transition of the flow in the branch 7 to a vortex-free state.

第2図はこのような再循環系の流量設定値変更時の応答
を承りもので、図において曲線Cは中性子束の変動を、
曲Fildは再循環流量の変動を示している。図から明
らかなように中性子束は、再循環流量の設定値変更に対
しC約3〜4秒の遅れr追従している。
Figure 2 shows the response when the flow rate setting value of the recirculation system is changed.
The song Field shows the variation in recirculation flow rate. As is clear from the figure, the neutron flux follows the change in the set value of the recirculation flow rate with a delay r of about 3 to 4 seconds.

さらに、この実施例では、流量変動検出手段3から流量
変動信号S1を入力した圧力設定点変更信号発生手段5
ににり突然変動的流量変化の中性子束増大に至る影響を
緩和するため、一時的にル力設定点を下げる肚力設定点
変更信号S3が圧力制御系10の圧力設定点へ出力され
る。
Further, in this embodiment, the pressure set point change signal generating means 5 receives the flow rate fluctuation signal S1 from the flow rate fluctuation detecting means 3.
In order to alleviate the effects of sudden fluctuating flow rate changes leading to increased neutron flux, a force set point change signal S3 that temporarily lowers the force set point is output to the pressure set point of the pressure control system 10.

すなわち、このように圧力設定点を下げることににり炉
心内の蒸気泡が増大し、負の反応度効果により中性子束
増大を抑制Jることができる。
That is, by lowering the pressure set point in this way, the steam bubbles in the reactor core increase, and the increase in neutron flux can be suppressed due to the negative reactivity effect.

第3図は圧力設定点を変更したときの中性子束の応答を
示すもので、図において曲線eは中性子束の変動を、曲
線「は原子炉圧力の変動を示し°(いる。図から明らか
なように、圧力設定点変更から約1〜2秒の遅れで中性
子束が応答することが判る。
Figure 3 shows the response of the neutron flux when the pressure set point is changed. It can be seen that the neutron flux responds with a delay of about 1 to 2 seconds after the pressure set point change.

第4図は以上のように構成された原子力発電所の炉心流
量制御装置において、2%/秒の速痘ぐ再−環流用に外
乱が加わった場合の原子)J発電所の応答を承りもので
、図において曲線りは中性子束の変動を、曲線htよ再
循環流量の変動を示しCいる。
Figure 4 shows the response of the nuclear power plant when a disturbance is applied to the core flow control system of the nuclear power plant configured as described above for rapid recirculation at a rate of 2%/sec. In the figure, the curved line C indicates the variation in the neutron flux, and the curve ht indicates the variation in the recirculation flow rate.

図から明らかなように以、ト述べた原子力発電所の炉心
流量制御装置によれば、中性子束の変動を非常に小さく
抑制することができ、スクラムを確実に回避することか
できる。
As is clear from the figure, according to the core flow rate control device for a nuclear power plant described above, fluctuations in neutron flux can be suppressed to a very small level, and scrams can be reliably avoided.

第5図は本発明の原子力発電所の炉心流量制御装置の他
の実施例を示すもので、この実施例では一対の流量変動
検出手段3a 、3bが配設されており、片方の流量変
動検出手段3aにはA系の分岐部7に配rされるΔ[セ
ンリ8からの信号が、他方の流ω変動検出手段3わには
B系の分岐部7にNiされるΔFセンサ8からの信号が
入力される。
FIG. 5 shows another embodiment of the nuclear power plant core flow rate control device of the present invention. In this embodiment, a pair of flow rate fluctuation detection means 3a and 3b are provided, and one of the flow rate fluctuation detection means 3a and 3b is provided. The means 3a receives a signal from the Δ[sensor 8] which is distributed to the branch section 7 of the A system, and the signal from the ΔF sensor 8 which is distributed to the branch section 7 of the B system. A signal is input.

そしにれら一対の流量変動検出手段3a13bから流1
変動信号S1が同時に出力されたときのみ再41i環流
量 J3よσ月−力設定点の変更が行なわれる。
Then, the flow 1 is detected from the pair of flow rate fluctuation detection means 3a13b.
Only when the fluctuation signal S1 is output at the same time, the recirculation flow rate J3 and the force setting point are changed.

゛すなわち、一般にA系おJ:びB系の2つの再循環流
路においで、偶然同時に流量の変動がケじたときに炉心
流量の突然変動が非常に大きくなり、中性子束高による
スクラムの可能性が増大するが、以上のように構成され
た炉心流1制御装置では、このにうなときに限り前述し
た制御動作を行なうことができる。
゛In other words, in general, when fluctuations in flow rate occur simultaneously in the two recirculation channels of system A and J: and B, the sudden fluctuation in core flow rate becomes extremely large, and scram due to high neutron flux occurs. Although the possibility increases, the core flow 1 control device configured as described above can perform the above-mentioned control operation only in this case.

なお、以−し述べた実施例では、再循環流路の分岐部7
の流れの状態を検出する手段として、AEセンサ8を用
いた例について説明したが、本発明はかかる実施例に限
定されるものeはなく、例えば加速度計により検出する
ことも可能である。さらに分岐部7の差圧を直接測定す
ることによっても可能であり、また冷却材流路の流量測
定にJ、り検出することも可能である。
In addition, in the embodiment described below, the branch part 7 of the recirculation flow path
Although an example has been described in which the AE sensor 8 is used as a means for detecting the state of the flow, the present invention is not limited to such an embodiment, and detection can also be performed using an accelerometer, for example. Furthermore, it is also possible to directly measure the differential pressure in the branch portion 7, and it is also possible to detect it by measuring the flow rate in the coolant flow path.

[発明の効果] 以上述べたように本発明の原子力発電所の炉心流量制御
装置によれば、炉心冷却材流路における冷却材の流れの
乱れにより冷却材の流動変動が生じたときにも中性子束
の変動を最小限に抑制することができ、原子炉のスクラ
ムを有効に回避することができる。
[Effects of the Invention] As described above, according to the core flow rate control device for a nuclear power plant of the present invention, neutrons can be suppressed even when coolant flow fluctuations occur due to turbulence in the coolant flow in the core coolant flow path. Fluctuations in the flux can be suppressed to a minimum, and scrams in the nuclear reactor can be effectively avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原子力発電所の炉心流量制御装置の一
実施例を示J−ブロック抱、第2図は再循環流量設定値
変更時の応答を示すグラフ、第3図1は圧力設定J1.
;変更11&の応答を示すグラフ、第4図は第1図に示
した原子力発電所の炉心流量制御装置装置による丙@環
流単突然変動時の応答を示1グラフ、第5図は本発明の
原子力発電所の炉心流量制御装置装置の伯の実施例を示
ずブ[1ツク図、第6則は流量変動による中性子束の変
動を示すグラフである。 3.3a、3h ・・・・・・・・・流量変動検出手段 4・・・・・・・・・・・・流量署定値補償手段5・・
・・・・・・・・・・圧力設定点変更信号発生手段9−
−−−・・・−・・・・流量制御系10・・・・・・・
・・・・・圧力制御系S1・・・・・・・・・・・・流
量変動信号S2−・・・・・・・・・・・流Φ?ili
償信号S3・・・・・・・・・・・・圧力設定点変更(
M号代理人弁理士   須 山 仏 − 代置 第2図 第3図 第4図 第6図 畦         廠 く       ロ
Figure 1 shows an embodiment of the core flow control system for a nuclear power plant according to the present invention. Figure 2 shows a graph showing the response when changing the recirculation flow rate set value. J1.
; Figure 4 is a graph showing the response of change 11 &; Figure 4 is a graph showing the response to a single sudden fluctuation in C@recirculation by the nuclear power plant core flow control system shown in Figure 1; Figure 5 is a graph showing the response of the present invention. This is a block diagram showing an example of a core flow control system for a nuclear power plant. The sixth law is a graph showing fluctuations in neutron flux due to fluctuations in flow rate. 3.3a, 3h...Flow rate fluctuation detection means 4...Flow rate constant value compensation means 5...
......Pressure set point change signal generation means 9-
---...-...Flow control system 10...
・・・・・・Pressure control system S1・・・・・・・・・Flow rate fluctuation signal S2-・・・・・・・・・・・・Flow Φ? ili
Compensation signal S3・・・・・・・・・Pressure set point change (
Patent Attorney No. M Patent Attorney Suyama - Substitute Figure 2 Figure 3 Figure 4 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)炉心冷却材流路における冷却材の流れの乱れによ
り冷却材の流量変動を検出し流量変動信号を出力する流
量変動検出手段と、前記流量変動信号を入力し前記流量
変動を補償するための流量補償信号を流量制御系に出力
する流量設定値補償手段とを備えたことを特徴とする原
子力発電所の炉心流量制御装置。
(1) Flow rate fluctuation detection means for detecting coolant flow rate fluctuations due to disturbances in the flow of coolant in the core coolant flow path and outputting a flow rate fluctuation signal; and a means for inputting the flow rate fluctuation signal to compensate for the flow rate fluctuations. 1. A reactor core flow rate control device for a nuclear power plant, comprising: flow rate set value compensating means for outputting a flow rate compensation signal to a flow rate control system.
(2)流量変動検出手段は流量変動を冷却材流路におけ
る渦の有無により検出する特許請求の範囲第1項記載の
原子力発電所の炉心流量制御装置。
(2) The core flow rate control device for a nuclear power plant according to claim 1, wherein the flow rate fluctuation detection means detects the flow rate fluctuation based on the presence or absence of a vortex in the coolant flow path.
JP15099984A 1984-07-20 1984-07-20 Controller for flow rate at core for nuclear power plant Pending JPS6129798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15099984A JPS6129798A (en) 1984-07-20 1984-07-20 Controller for flow rate at core for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15099984A JPS6129798A (en) 1984-07-20 1984-07-20 Controller for flow rate at core for nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6129798A true JPS6129798A (en) 1986-02-10

Family

ID=15509069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15099984A Pending JPS6129798A (en) 1984-07-20 1984-07-20 Controller for flow rate at core for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6129798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128898U (en) * 1988-02-25 1989-09-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128898U (en) * 1988-02-25 1989-09-01

Similar Documents

Publication Publication Date Title
JPS6129798A (en) Controller for flow rate at core for nuclear power plant
US4654186A (en) Device for determination of the power of a pressurized water nuclear reactor
US4297581A (en) Method for the fast and accurate identification of core power in nuclear reactors
JPH09171093A (en) Method and apparatus for protecting pressurized water reactor from departure from nucleate boiling and boiling in high temperature pipe
JPS6130796A (en) Controller for flow rate at core for nuclear reactor
JPS61213692A (en) Output core flow controller for nuclear power plant
KR101070560B1 (en) Calculator for core protection of nuclear reactor and method thereof
JPS6180095A (en) Controller for water level of nuclear reactor
JPS61215404A (en) Control device for steam turbine
JPS6176993A (en) Method and device for controlling feed water to nuclear reactor
JP3108487B2 (en) Reactor operating area monitoring device
JPS6148797A (en) Core flow controller for nuclear power plant
JPS62208708A (en) Transient change tracking type digital filter
JPS62105091A (en) Turbine controller
JPS62139905A (en) Turbine controller
JPH05240997A (en) Reactor water supply control device
JPS62134594A (en) Protective device for nuclear reactor
JPS61128194A (en) Recirculating flow controller for nuclear reactor
JPS5960393A (en) Reactor water level measuring device
JPS61253494A (en) Controller for control rod of nuclear reactor
JPS5940197A (en) Device for monitoring and protecting cavitation in jet pump
JPS61110097A (en) Controller for water level in nuclear reactor
JPS61796A (en) Method of detecting breaking of nuclear reactor
JPS6175295A (en) Control system of boiling water type nuclear power plant
JPS63234197A (en) Nuclear-reactor protective device