JPH022982A - Nuclear reactor protecting method - Google Patents

Nuclear reactor protecting method

Info

Publication number
JPH022982A
JPH022982A JP63145749A JP14574988A JPH022982A JP H022982 A JPH022982 A JP H022982A JP 63145749 A JP63145749 A JP 63145749A JP 14574988 A JP14574988 A JP 14574988A JP H022982 A JPH022982 A JP H022982A
Authority
JP
Japan
Prior art keywords
output
reactor
scram
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63145749A
Other languages
Japanese (ja)
Inventor
Akihiro Hirose
廣瀬 昭廣
Teruo Fujisawa
藤沢 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP63145749A priority Critical patent/JPH022982A/en
Publication of JPH022982A publication Critical patent/JPH022982A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To contrive the accuracy of a local output peaking protection by finding output peaking coefficient from the output of a predeterminated area and the average output of a nuclear reactor and modifying a scram preset value so as not to exceed the thermal limit of fuel. CONSTITUTION:An area output detecting circuit 21 average-operates the output of neutron detectors 3a-3d of the same area and the same power source to find the output of each local area. A total output detecting circuit 23 average- operates local area output to find total output signal value 31. Further high value selecting circuit 23 finds maximum output value 32 and both the values are divided by a divider 24 to find maximum output peaking coefficient. A function generator 25 modifies a scram preset value 24 according to the increase and the decrease of the output peaking coefficient by the thermal limit of fuel. When the preset value 34 is compared with a signal 31 by a comparator 28 and drops down to the same value of the signal 31, a scram signal is output to a nuclear reactor protecting device. Further, when the preset value 34 is lowered by multiplying the preset value 34 by a gain 29, compared with the signal 31 by the comparator 30 and drops down to the same value of the signal 31, a control rod pulling stop command is output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電所の原子炉に係り、特に原子炉の局
部的な出力ピーキングレベルの上昇を検知し、抑制する
ことによって、原子炉の安全性及びプラントの運転信頼
性を確保するのに好適な原子炉の保護方式及びその装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nuclear reactor in a nuclear power plant, and in particular detects and suppresses a rise in the local power peaking level of a nuclear reactor. The present invention relates to a nuclear reactor protection system and its device suitable for ensuring safety and plant operation reliability.

〔従来の技術〕[Conventional technology]

原子炉を保護するためには、原子炉の出力を常に監視し
、かつ、原子炉の安全性を損うおそれのある異常な過渡
変化や誤動作を検知し、原子炉停止系等を適切に作動さ
せることによって、過大な原子炉出力の発生を抑え、燃
料被覆管が損傷するのを防ぐ必要がある。
In order to protect a nuclear reactor, it is necessary to constantly monitor the reactor output, detect abnormal transient changes or malfunctions that may impair the safety of the reactor, and appropriately operate the reactor shutdown system. By doing so, it is necessary to suppress the generation of excessive reactor power and prevent damage to the fuel cladding.

従来の装置は、特開昭61−172096号に記載のよ
うに、原子炉を十文字に4つの領域に分割し、各領域毎
の出力を監視することによって、各領域間の出力分布の
異常を検知し、原子炉の保護動作を行なっていた。即ち
、各領域の熱出力は、原子炉の当該領域内にある中性子
検出器からの局部的な熱中性子束信号を平均演算する領
域出力監視装置(以下RPMと言う。)で求め、このR
PMを以下のように構成して保護動作を行なっていた。
As described in JP-A-61-172096, conventional equipment divides a nuclear reactor into four regions in a cross pattern and monitors the output in each region to detect abnormalities in the power distribution between each region. It was detected and protective actions were taken to protect the reactor. That is, the thermal output of each region is determined by a region output monitoring device (hereinafter referred to as RPM) that calculates the average of local thermal neutron flux signals from neutron detectors in that region of the reactor, and this R
The PM was configured as shown below to perform protection operations.

(1)4領域を各々独立に監視する場合、各領域に各々
4個(合計16個)のRPMを設け、2組ずつ互いに独
立になるように構成し、RPMの出力信号が所定のスク
ラム設定値を超えて1out of 2twiceの原
子炉保護系論理回路が動作した時、スクラム信号を発信
する。これにより、各領域内における部分的な出力上昇
に対して保護動作を行う。
(1) When monitoring four areas independently, each area is equipped with four RPMs (16 in total), and each two sets are configured to be independent from each other, so that the output signal of the RPM is set according to the predetermined scram setting. When the reactor protection system logic circuit exceeds the value and operates 1 out of 2 twice, a scram signal is sent. Thereby, a protective operation is performed against a partial increase in output within each region.

(2)冷却材喪失事故のように2領域ずつ独立に監視す
る場合、第1.第2領域、又は第3.第4領域毎に、各
々の4個(合計8個)のRPMを設け、RPMの出力信
号が所定のスクラム設定値を超えて2out of 4
  の原子炉保護系論理回路が動作した時、スクラム信
号を発信する。これにより、2領域内における部分的な
出力上昇に対して保護動作を行う。
(2) When monitoring two areas independently, such as in the case of a loss of coolant accident, 1. The second area, or the third area. Four RPMs (total 8) are provided for each fourth region, and if the output signal of the RPM exceeds a predetermined scram setting value, 2 out of 4
When the reactor protection system logic circuit operates, a scram signal is sent. As a result, a protective operation is performed against a partial increase in output within the two regions.

また、上記スクラム設定値は、原子炉の出力分布の歪に
係わらず、固定である。
Further, the scram setting value is fixed regardless of the distortion of the power distribution of the reactor.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、原子炉の炉心を中心にして4領域に分
割し、各領域内の中性子束レベルの平均値を監視して、
原子炉の保護並びに出力制御を行う構成とし、かつ、ス
クラム設定値を固定としており局部的な出力ピーキング
に対する保護について配慮がされていなかった。そのた
め、以下の問題点があった。
The above conventional technology divides the reactor core into four regions, monitors the average value of the neutron flux level in each region, and
The structure was designed to protect the reactor and control output, and the scram setting value was fixed, so no consideration was given to protection against local output peaking. Therefore, there were the following problems.

(1)制御棒の誤引き抜等により、原子炉の出力が局部
的に上昇しても、中性子束レベルが平均化されているた
め、RPMの出力信号がスクラム設定値まで上昇せず、
保護動作が行なわない。
(1) Even if the reactor output increases locally due to incorrect withdrawal of a control rod, the RPM output signal will not rise to the scram setting value because the neutron flux level is averaged.
Protective operation does not occur.

従って引抜いた制御棒近傍の燃料被覆管が損傷するおそ
れがある。通常運転時の引抜きは、制御棒の位置が不揃
いにならないよう予め規定された順序で引抜かれるが、
運転員の誤操作や機器の単一誤動作等を考慮すると、1
本の制御棒を連続的に引抜かれる事象も考える必要があ
る。
Therefore, there is a risk that the fuel cladding tube near the pulled out control rod may be damaged. During normal operation, the control rods are pulled out in a predetermined order to avoid misalignment of the control rods.
Considering operator error, single malfunction of equipment, etc., 1
It is also necessary to consider the phenomenon in which the control rods of books are continuously pulled out.

(2)制御棒引抜き時、制御棒近傍の温度上昇に伴い、
減速材の中性子束吸収断面積が減少し、正の減速材温度
反応度が投入される。これにより、安全上の設計裕度が
比較的小さい原子炉においては、他の出力係数が負であ
っても制御棒の引抜きを停止した後に、出力が局部的に
上昇し続ける事象が発生する。RPMの出力信号は前記
(1)と同様に設定値まで上昇しないため、引抜いた制
御棒近傍の燃料被覆管が損傷するおそれがある。減速材
温度反応度により出力が局部的に上昇する現象について
図に示す。
(2) When the control rod is pulled out, as the temperature near the control rod increases,
The moderator's neutron flux absorption cross section is reduced and a positive moderator temperature reactivity is introduced. As a result, in a nuclear reactor with a relatively small design margin for safety, even if other output coefficients are negative, an event occurs in which the output locally continues to increase after control rod withdrawal is stopped. Since the RPM output signal does not rise to the set value as in (1) above, there is a risk that the fuel cladding near the withdrawn control rod may be damaged. The figure shows the phenomenon in which the output locally increases due to moderator temperature reactivity.

本発明の目的は、原子炉の局部的な出力ピーキングに対
する保護を適確に行い、安全性及び運転信頼性の高い原
子炉保護方式及びその装置を提供することにある。
An object of the present invention is to provide a nuclear reactor protection system and its device that properly protects a nuclear reactor against local power peaking and has high safety and operational reliability.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、RPMで監視する範囲を中性子検出器のバ
イパス(不使用)による悪影響がない領域まで細分化し
、各領域出力を得られる構成とすると共に、以下の手段
のどれかを設ける、又は組合せて保護動作を行うことに
より達成される。
The above purpose is to subdivide the range monitored by RPM into areas where bypassing (not using) the neutron detector will have no adverse effects, creating a configuration in which output from each area can be obtained, and providing one of the following means, or a combination thereof. This is achieved by performing a protective operation.

(1)原子炉の出力分布の歪を表わす出力ピーキング係
数((原子炉の最大出力)/(原子炉の平均圧力))と
限界出力との関係は、燃料の熱的な制限から第3図に示
すように予め決められる。
(1) The relationship between the power peaking coefficient ((maximum reactor power)/(average pressure of the reactor)), which represents the distortion of the power distribution of the reactor, and the limit power is determined from the thermal limitations of the fuel as shown in Figure 3. It is predetermined as shown in .

即ち、ピーキング係数が大きい時原子炉の限界出力は小
さく、ピーキング係数が小さい時原子炉の限界出力が大
きくなることに着目し、各領域出力と全出力を求め、両
者の比をとって各領域毎の出力ピーキング係数を求める
手段と、その係数、即ち歪の増減に応じて原子炉のスク
ラム設定値を増減させる手段を設ける。
In other words, by focusing on the fact that when the peaking coefficient is large, the reactor's limit output is small, and when the peaking coefficient is small, the reactor's limit output is large, the output for each region and the total output are determined, and the ratio of the two is taken to calculate the output for each region. Means for determining the output peaking coefficient for each output peaking coefficient, and means for increasing or decreasing the scram set value of the reactor in accordance with the coefficient, that is, the increase or decrease in strain are provided.

(2)制御棒引抜停止後において、減速材温度反応度に
よる局所的な出力の上昇分と、前記出力ピーキング係数
との関係は、原子炉の特性から、第4図に示すように予
め決められる。即ち出力ピーキング係数が小さい時、制
御棒の引抜きが停止した場合の出力上昇分は小さいが、
出力ピーキング係数が大きくなるに従って、制御棒引抜
き停止後の出力上昇分は大きくなることに着目し、前記
出力ピーキング係数を求める手段と、その係数の増減に
応じて、制御棒引抜き停止後における出力の上昇分を加
味して原子炉のスクラム設定値を増減する手段を設ける
(2) After control rod withdrawal is stopped, the relationship between the local power increase due to moderator temperature reactivity and the power peaking coefficient is determined in advance from the reactor characteristics as shown in Figure 4. . In other words, when the output peaking coefficient is small, the increase in output when control rod withdrawal is stopped is small, but
Focusing on the fact that as the output peaking coefficient increases, the amount of increase in output after the control rod stops being pulled out increases, and the method for determining the output peaking coefficient and the increase or decrease in the coefficient, the output after the control rod stops being pulled out is calculated. A means will be provided to increase or decrease the reactor scram setting value in consideration of the increase.

〔作用〕[Effect]

上記技術的手段は、燃料の熱的な制限、あるいは減速材
温度反応度による出力上昇を考慮し、局部的な出力ピー
キング係数、即ち出力分布の局部的な歪に応じて原子炉
のスクラム設定値を変更する。従って、制御誤引抜等に
より1本の制御棒が連続的に引抜かれ、局部的な出力ピ
ーキングが発生した場合においても、第5図に示すよう
に、スクラム設定値が低下し、出力ピーキングレベルが
燃料の許容設計限界に一到達する前に確実にスクラム信
号を出力して保護動作を行い安全性を確保する。
The above technical means takes into account the power increase due to the thermal limitations of the fuel or the temperature reactivity of the moderator, and adjusts the scram setting value of the reactor according to the local power peaking coefficient, that is, the local distortion of the power distribution. change. Therefore, even if one control rod is continuously pulled out due to erroneous control, etc., and local output peaking occurs, the scram set value will decrease and the output peaking level will decrease, as shown in Figure 5. To ensure safety by reliably outputting a scram signal and performing a protective operation before the fuel reaches its allowable design limit.

また、上記技術的手段は、制御棒引抜き事象において、
原子炉のスクラムを可能な限り回避してプラントの運転
信頼性を向上させるため、局部的な出力ピーキング係数
に応じて制御棒引抜き停止レベルの設定値並びに前段警
報設定値を変更させる手段としても適用することができ
る。
In addition, the above technical means, in a control rod withdrawal event,
In order to avoid reactor scrams as much as possible and improve plant operational reliability, it is also applied as a means to change the control rod withdrawal stop level setting and early alarm setting according to the local output peaking coefficient. can do.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。第2図において、制御棒制御装置4は制御棒駆動
機構5を動作させ、原子炉1内の制御棒を上下に駆動し
て原子炉の出力を調整する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In FIG. 2, a control rod control device 4 operates a control rod drive mechanism 5 to drive the control rods in the reactor 1 up and down to adjust the output of the reactor.

制御棒2は原子炉内にほぼ均一に配置され、運転員の手
動操作により1本ずつ、又は数本ずつ挿入。
The control rods 2 are arranged almost uniformly within the reactor, and are inserted one by one or several at a time by manual operation by the operator.

引抜きを行うことができる。また、ポイズン濃度制御装
置8は減速材循環ループ9を介して、原子炉内のポイズ
ン濃度を増減し、原子炉の出力を調整する。原子炉1内
の中性子検出器3は、原子炉の半径方向並びに軸方向に
ほぼ均一に配置され、周辺の中性子束に比例した信号を
出力する。この検出器の電源は原子炉保護装置7と同様
にA−Dの4系統に均等に区分されている。
Can be extracted. Further, the poison concentration control device 8 increases or decreases the poison concentration within the reactor via the moderator circulation loop 9, and adjusts the output of the reactor. Neutron detectors 3 in the nuclear reactor 1 are arranged substantially uniformly in the radial and axial directions of the reactor, and output signals proportional to the surrounding neutron flux. The power supply for this detector is equally divided into four systems A to D, similar to the reactor protection device 7.

中性子束計測装置6は中性子検出器3からの信号をもと
に原子炉の出力を常に監視し、原子炉の安全を損うおそ
れのある異常な過渡変化や誤動作を検知した時、制御棒
制御装置5へ制御引抜停止指令を出力する。また原子炉
保護装置7ヘスクラム信号を出力する6原子炉保護装置
7では、スクラム信号により原子炉保護系論理回路が動
作した時、制御棒駆動機構5にある電磁クラッチを外し
、制御棒2を落下させて、原子炉をスクラムさせる。
The neutron flux measurement device 6 constantly monitors the output of the reactor based on the signal from the neutron detector 3, and when it detects abnormal transient changes or malfunctions that may impair the safety of the reactor, controls the control rods. A control extraction stop command is output to the device 5. In addition, in the reactor protection device 7, which outputs the scram signal, when the reactor protection system logic circuit is activated by the scram signal, the electromagnetic clutch in the control rod drive mechanism 5 is disengaged, and the control rod 2 is dropped. and scram the reactor.

なお、原子炉の出力分布を適確に把握し、安全性を高め
るためには、可能な限り狭い領域の出力を監視できるこ
とが望ましい。本実施例では半径方向の4つの中性子検
出器で囲まれた領域毎に監視する構成としている。これ
は、1領域内における中性子検出器のバイパス(不使用
)許容数が予め決められた数似上となる範囲で可能な限
り狭い領域を選定したものであり、原子炉保護系の電源
構成や論理回路構成等を考慮して決められる。
Note that in order to accurately understand the power distribution of a nuclear reactor and improve safety, it is desirable to be able to monitor the power in as narrow a range as possible. In this embodiment, a configuration is adopted in which each area surrounded by four radial neutron detectors is monitored. This is a region that is as narrow as possible within a range where the allowable number of bypasses (non-use) of neutron detectors in one region is similar to a predetermined number, and the power supply configuration of the reactor protection system and It is determined by considering the logic circuit configuration, etc.

次に、中性子束計i1+1J装置6の動作を第1図によ
り説明する。領域出力検出回路21は同一領域でかつ、
同一電源の中性子検出器3a〜3dの出力を平均演算し
、各局所領域の出力を求める。全出力検出回路23は局
所領域出力を平均演算し、平均出力値31を求める。ま
た、高値選択回路22は、最大出力値32を求めて1両
者を除算器24で除算し、最大出力ピーキング係数33
を求める。
Next, the operation of the neutron flux meter i1+1J device 6 will be explained with reference to FIG. The area output detection circuit 21 is in the same area and
The outputs of the neutron detectors 3a to 3d of the same power source are averaged to determine the output of each local area. The total output detection circuit 23 averages the local region outputs to obtain an average output value 31. Further, the high value selection circuit 22 calculates the maximum output value 32 and divides both by 1 by the divider 24, and the maximum output peaking coefficient 33
seek.

関数発生器25は燃料の熱的な制限による第4図の関係
に基づき、出力ピーキング係数の増減に応じて、スクラ
ム設定値を変更するものである。また関係発生器26は
、減速材温度反応度による第5図の関係に基づくもので
あり、関数発生器25の出力から関数発生器26の出力
を減算器27で引くことによって、制御棒引抜停止後に
おける減速材温度反応度による出力上昇分だけスクラム
設定値を下げることになる。このスクラム設定値34は
全出力信号31と比較器28で比較され、全出力信号3
1と同じ値まで低下した時、第6図に示すように原子炉
保護装置7ヘスクラム信号を出力する。
The function generator 25 changes the scram set value in accordance with an increase or decrease in the output peaking coefficient based on the relationship shown in FIG. 4 due to thermal limitations of the fuel. The relationship generator 26 is based on the relationship shown in FIG. The scram set value will be lowered by the amount of output increase due to later moderator temperature reactivity. This scram setting value 34 is compared with the total output signal 31 by the comparator 28, and the total output signal 3
When the value drops to the same value as 1, the reactor protection device 7 outputs a scram signal as shown in FIG.

また、スクラム設定値34にゲイン29を掛けて、設定
値を下げ全出力信号34と比較器30で比較し、この設
定値が全出力信号34と同じ値まで低下した時、制御棒
引抜停止指令を出力する構成としている。これにより、
スクラムに至る頻度が著しく小さくなる0本実施例によ
れば、局部的な出力ピーキングを適確に検知し、制御棒
引抜停止又はスクラム動作を行うことができ、プラント
の運転信頼性及び安全性が著しく向上する。
Also, the scram set value 34 is multiplied by the gain 29, the set value is lowered, and the total output signal 34 is compared with the comparator 30, and when this set value has decreased to the same value as the total output signal 34, a control rod withdrawal stop command is issued. It is configured to output. This results in
According to this embodiment, local output peaking can be accurately detected, control rod withdrawal can be stopped or scram operation can be performed, and the operational reliability and safety of the plant can be improved. Significantly improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果がある。 According to the present invention, there are the following effects.

(1)原子炉の局部的な出力ピーキングを適確に検知し
、そのピーキング係数に応じて、スクラム。
(1) Accurately detect local power peaking in the reactor and perform scram according to the peaking coefficient.

設定値を変更する機能を付加したことによって、万一局
部的な出力ピーキングが発生しても、燃料の許容設計限
界に達する前に確実にスクラムさせることができるため
、安全性が著しく向上する。
By adding the function to change the set value, even if a local power peak occurs, it can be reliably scrammed before the fuel reaches its allowable design limit, significantly improving safety.

(2)原子炉の局部的な出力ピーキングを適確に検知し
、そのピーキング係数に応じて、制御棒引抜停止レベル
を変更する機能を付加したことによって、局部的なピー
キングが発生しても、制御棒を停止して低いレベルに抑
え、スクラム発生の確率を低下させたことによって、プ
ラントの運転信頼性が著しく向上した。
(2) By adding a function that accurately detects local power peaking in the reactor and changes the control rod withdrawal stop level according to the peaking coefficient, even if local peaking occurs, By shutting down the control rods and keeping them at a low level, reducing the probability of scram occurrence, the operational reliability of the plant was significantly improved.

(3)出力ピーキング係数に応じたスクラム設定値等の
変更は、燃料の熱的な制限及び減速材温度反応度による
影響の両方を考慮しているため、原子カプラントにおけ
る用途は広い。
(3) Changing the scram set value etc. according to the output peaking coefficient takes into account both the thermal limitations of the fuel and the influence of moderator temperature reactivity, so it has a wide range of applications in atomic couplers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の詳細な説明図、第3図は出力
ピーキング係数と原子炉出力との関係説明図、第4図は
出力ピーキング係数と制御棒停止後の出力上昇値との関
係説明図、第5図は本発明の詳細な説明図、第6図は減
速材温度反応度による出力上昇の現象説明図である。 21・・・領域出力検出回路、22・・・高値選択回路
、23・・・全出力検出回路、24・・・除算器、25
・・・関数発生器、26・・・関数発生器、27・・・
減速器、28・・・比較器、29・・・ゲイン、30・
・・比較器、31・・・全出力信号、32・・・最大領
域出力信号、33・・・出力ピーキング係数、34・・
・スクラム設定値。 第2因 第3 図 第4図 第5図
Figures 1 and 2 are detailed explanatory diagrams of the present invention, Figure 3 is an explanatory diagram of the relationship between the power peaking coefficient and the reactor output, and Figure 4 is a diagram showing the relationship between the power peaking coefficient and the output increase value after the control rods are stopped. FIG. 5 is a detailed explanatory diagram of the present invention, and FIG. 6 is an explanatory diagram of the phenomenon of output increase due to moderator temperature reactivity. 21... Area output detection circuit, 22... High value selection circuit, 23... Full output detection circuit, 24... Divider, 25
...Function generator, 26...Function generator, 27...
Decelerator, 28... Comparator, 29... Gain, 30.
...Comparator, 31...Full output signal, 32...Maximum area output signal, 33...Output peaking coefficient, 34...
・Scrum setting values. 2nd cause 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1、原子炉の出力を炉心中における制御棒の位置調整に
より制御する原子炉において、あらかじめ決められた領
域の出力と、原子炉の平均出力とから出力ピーキング係
数、すなわち出力分布の歪を求める手段を有し、かつ前
記出力ピーキング係数の変化に対応して、燃料の熱的な
制限を超えないように原子炉のスクラム設定値の変更手
段を有することを特徴とする原子炉保護方式。 2、原子炉のあらかじめ決められた領域の出力が、特許
請求の範囲第1項におけるスクラム設定値を超えないよ
うに、制御棒引抜停止レベル又は警報レベルの設定値の
変更手段を有することを特徴とする原子炉保護方式。 3、原子炉の出力を炉心中における制御棒の位置調整と
、減速材中に含まれる液体ポイズンの濃度調整とを併用
して制御する原子炉において、あらかじめ決められた領
域の出力と、原子炉の平均出力とから出力ピーキング係
数、すなわち出力分布の歪を求める手段を有し、かつ、
下記(イ)(ロ)のいずれかあるいは両方の手段を有す
ることを特徴とする原子炉保護方式。 (イ)前記出力ピーキング係数の変化に対応して、燃料
の熱的な制限を超えないように原子炉のスクラム設定値
を変更する手段。 (ロ)減速材温度反応度による制御棒引抜停止後の出力
上昇分を考慮し、出力ピーキング係数に対応して、スク
ラム設定値を変更する手段。 4、原子炉のあらかじめ決められた領域の出力が特許請
求の範囲第3項におけるスクラム設定値を超えないよう
に、制御棒引抜停止レベル、又は警報レベルの設定値の
変更手段を有することを特徴とする原子炉保護方式。
[Claims] 1. In a nuclear reactor in which the output of the reactor is controlled by adjusting the position of control rods in the reactor core, the output peaking coefficient, that is, the output An atomic bomb characterized by having means for determining distortion of the distribution, and having means for changing the scram set value of the reactor in response to a change in the output peaking coefficient so as not to exceed the thermal limit of the fuel. Furnace protection method. 2. It is characterized by having means for changing the set value of the control rod withdrawal stop level or the alarm level so that the output in a predetermined area of the reactor does not exceed the scram set value in claim 1. Reactor protection method. 3. In a nuclear reactor where the output of the reactor is controlled by adjusting the position of control rods in the reactor core and adjusting the concentration of liquid poison contained in the moderator, the output in a predetermined range and the means for determining the output peaking coefficient, that is, the distortion of the output distribution from the average output of
A nuclear reactor protection system characterized by having either or both of the following means (a) and (b). (a) Means for changing the scram set value of the reactor in response to the change in the power peaking coefficient so as not to exceed the thermal limit of the fuel. (b) Means for changing the scram set value in accordance with the output peaking coefficient, taking into account the increase in output after control rod withdrawal stops due to moderator temperature reactivity. 4. It is characterized by having means for changing the set value of the control rod withdrawal stop level or the alarm level so that the output in a predetermined area of the reactor does not exceed the scram set value in claim 3. Reactor protection method.
JP63145749A 1988-06-15 1988-06-15 Nuclear reactor protecting method Pending JPH022982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63145749A JPH022982A (en) 1988-06-15 1988-06-15 Nuclear reactor protecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63145749A JPH022982A (en) 1988-06-15 1988-06-15 Nuclear reactor protecting method

Publications (1)

Publication Number Publication Date
JPH022982A true JPH022982A (en) 1990-01-08

Family

ID=15392265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63145749A Pending JPH022982A (en) 1988-06-15 1988-06-15 Nuclear reactor protecting method

Country Status (1)

Country Link
JP (1) JPH022982A (en)

Similar Documents

Publication Publication Date Title
US20210225538A1 (en) Methods for protection of nuclear reactors from thermal hydraulic/neutronic core instability
JPS5852196B2 (en) Reactor control device
EP0696032B1 (en) Transient adjusted overpower protection system
JPH0227639B2 (en)
KR940003801B1 (en) Controlling a nuclear reactor with dropped control rods
KR20130139908A (en) Reactor shutdown trip algorithm
JP7026019B2 (en) Reactor shutdown equipment, nuclear plant and reactor shutdown method
US5631937A (en) Method and apparatus for protecting a PWR from departure from nucleate boiling and hot leg boiling
JP6606005B2 (en) Control rod operation monitoring system
JP2005061951A (en) Control rod withdrawal monitor
JPH022982A (en) Nuclear reactor protecting method
EP0228857B1 (en) Dropped control rod protection insensitive to large load loss
JP3875838B2 (en) Method and apparatus for monitoring power increase during reactor start-up
JP2006010705A (en) Control rod drawing monitoring device, and control rod controller
JPH05256978A (en) Nuclear reactor protection device
WO2018131106A1 (en) Control rod operation monitoring system and control rod operation monitoring method
KR101070560B1 (en) Calculator for core protection of nuclear reactor and method thereof
JP3757648B2 (en) Control rod pull-out monitoring device and control rod control device
JPS59180480A (en) Fault detector for neutron detector
JPH053558B2 (en)
JP2022142929A (en) Nuclear reactor monitor method and nuclear reactor monitor device
JPH01301196A (en) Nuclear reactor safety protection device
JP2019207131A (en) Device and method for protecting nuclear reactor of fast reactor
JPS5810718B2 (en) How to control the operation of a nuclear reactor
JPS5931033B2 (en) Control rod withdrawal monitoring device