JPH0449467Y2 - - Google Patents

Info

Publication number
JPH0449467Y2
JPH0449467Y2 JP1987168668U JP16866887U JPH0449467Y2 JP H0449467 Y2 JPH0449467 Y2 JP H0449467Y2 JP 1987168668 U JP1987168668 U JP 1987168668U JP 16866887 U JP16866887 U JP 16866887U JP H0449467 Y2 JPH0449467 Y2 JP H0449467Y2
Authority
JP
Japan
Prior art keywords
fuel
jet pipe
pipe
combustion air
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987168668U
Other languages
Japanese (ja)
Other versions
JPH0174429U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987168668U priority Critical patent/JPH0449467Y2/ja
Publication of JPH0174429U publication Critical patent/JPH0174429U/ja
Application granted granted Critical
Publication of JPH0449467Y2 publication Critical patent/JPH0449467Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、鋼板を加熱炉内にて高速で無酸化加
熱するのに適した無酸化バーナに関するものであ
る。 (従来の技術) 鋼板を無酸化状態で加熱する方法として、バー
ナから高温の燃焼ガスを噴射して鋼板を加熱する
直火加熱方法が良く知られている。この直火加熱
方法は、炉内を還元性ガスによつて雰囲気調整し
て、ラジアントチユーブ等を用いて間接加熱する
方法と比較して、鋼板の加熱速度が著しく速いこ
とが特徴である。 ところで、無酸化状態で、鋼板を急速加熱する
直火加熱方法として、ラジアントカツプバーナと
称される予混合型バーナを使用し、空気比が0.9
で燃焼させたガスを鋼板に衝突させる方法が米国
特許第3320085号公報で提案され、現在連続亜鉛
メツキライン用焼鈍炉に使用されている。 しかしながら、この直火式無酸化加熱方法に使
用されている無酸化バーナは、予め燃料ガスと燃
焼用空気を混合した後、この混合気体をバーナに
供給する方式である為、 逆火あるいは静電気等によつてバーナ内ある
いは配管内で爆発する危険性がある。 燃焼用空気を予熱できない。 といった欠点がある。 そこで、本出願人はこのような欠点を解決でき
る無酸化バーナを実願昭62−72412号で提案した。 すなわち、出願人が先に提出した無酸化バーナ
は、燃焼用空気噴出管とこれに貫通配置した燃料
噴出管の二重管構成された無酸化バーナの、これ
ら両噴出管の間に旋回羽根を介設すると共に、前
記燃料噴出管を空気噴出管に沿つて移動及び所定
位置での固定可能に構成し、更に燃料噴出管前端
の燃料噴出孔をバーナ中心軸に対して所要角度を
もつて開設したものである。 (考案が解決しようとする問題点) 本出願人が先に提案した無酸化バーナは従来の
バーナの欠点を解決できる優れたものではあるが
本考案者等のその後の研究、実験によれば以下に
列挙する問題が内在していることが判明した。 燃焼用空気噴出管は、その前端部内側に旋回
羽根を固着して炉に対して固定装着されている
ため、その内部の燃料噴出管を出退移動させた
場合には前記旋回羽根と燃料噴出孔との相対位
置関係が変化するので噴出燃料に対する旋回空
気の混合比が変化すると考えられること。 燃料噴出管は、その前端の外周部に噴出孔を
設けたものとしているため、燃料の送給量の変
化に応じてその噴出状態が変化しやすいと考え
られること。 本考案は先に本出願人が提案した無酸化バーナ
の優れた点はそのままで、かつ内在する問題を解
決できる無酸化バーナを提供せんとするものであ
る。 (問題点を解決するための手段) 本考案者等は、その対策として、 燃料噴出管側に旋回羽根を設けて旋回羽根と
噴出孔の相対位置を一定不変とし、更に燃焼用
空気噴出管を炉に対して移動可能にして燃料噴
出管に対して追従移動させ得るようにした。 燃料噴出管の前端内部に逆送管を内設して、
噴出孔位置を変え、燃料の噴出圧力を可及的一
定に保持させて均圧噴射させ得るようにした。
すなわち本考案は、燃焼用空気噴出管とこれに
貫通配置した燃料噴出管の間に形成した環状空
間内に、旋回羽根を前記燃料噴出管側に取り付
けることにより介設して前記燃料噴出管の前端
から噴出させる燃料流に燃焼用空気を旋回流と
して混合させ得るよう二重管構成されてなる無
酸化バーナであつて、前記燃焼用空気噴出管は
これを炉壁孔に対して、また前記燃料噴出管は
前記燃焼用空気噴出管に対して夫々軸方向の摺
動および所要位置での固定可能に構成し、かつ
前記燃料噴出管はその前端を閉塞したものとす
ると共にその前端部内側には燃料流を反転逆送
させる筒状流路を形成する逆送管を内設し、こ
の燃料噴出管の外周部に放射状に開口させる敵
数の噴出孔を前記旋回羽根の前方にバーナ中心
軸に対し所定角度をもつて開設して成ることを
要旨とする無酸化バーナである。 (作用) 本考案に係る無酸化バーナは上記した構成とし
た為、燃料は一旦燃料噴出管の前端部に衝突して
反転逆送した後噴出孔より噴出するため燃焼用空
気との混合が均一で良好となる。また燃料が一旦
燃料噴出管の前端部に衝突する際に燃料噴出管前
端部が冷却され、燃料噴出管の損焼が抑圧され
る。更に、燃焼用空気噴出管と燃料噴出管との相
対的位置および両噴出管と炉壁孔との相対的位置
を適時調整できるので、最適な加熱条件が容易に
得られ、長期間使用により、両噴出管が損傷した
場合でも新しいものに取り替えが可能となる。 (実施例) 以下本考案を添付図面に示す実施例に基づいて
説明する。 第1図は本考案に係る無酸化バーナの一実施例
を縦断面して示す正面図であり、図中1は燃焼用
空気噴出管であつて、バーナ2の挿入部近傍の鉄
皮3に設けられた取りつけ管4に螺合した止め螺
子7により炉壁5に開設した炉壁孔6に対して軸
方向に摺動可能および所定位置での固定可能に取
付けられている。 8は前記燃焼用空気噴出管1に対して軸方向の
摺動可能および所定位置での固定可能なように貫
通配置した燃料噴出管であり、これら両噴出管
1,8の間には環状空間9が形成される。なお、
10は燃料噴出管8の止め螺子を示す。 かかる構成としたため長期間の使用により燃焼
用空気噴出管1及び燃料噴出管8が例え損焼した
場合でも止め螺子7及び10を緩めて燃焼用空気
噴出管1、燃料噴出管8を取出し、新しいものに
取替えることが容易に行える。 また、燃料噴出管8は前端を閉塞したものとす
ると共にその前端部内側には燃料流を反転逆送さ
せる筒状流路を形成する逆送管12を内設してい
る。従つて、燃料噴出管8を直進する燃料はこの
逆送管12を通つて燃料噴出管8の前端部に衝突
した後、反転逆送されて燃料噴出管8外周の前端
寄りの位置に設けられた旋回羽根11の前方い放
射状に開設された燃料噴出孔13より均一に噴出
することとなる。 ところで、本考案にあつては前記放射状に開口
させる適数の噴出孔13を前記筒状流路の終端部
に近い位置でかつ前記旋回羽根11の前方に所定
の距離を存して、しかもバーナ中心軸に対して所
要の角度θをつけて開設しており、この角度θを
つけることによつて旋回羽根11によつて強い旋
回を付与された燃焼用空気と当該燃料噴出孔13
から噴出せしめられる燃料が常に一定不変の相対
関係下において良好に混合することになる。な
お、前記θは本考案者等の実験によれば燃料と燃
焼用空気の混合性を良好とするためには30〜90°
の範囲とすることが望ましい。 また、本考案に係る無酸化バーナは、燃料流を
一旦燃料噴出管8の前端に衝突させて該前端を冷
却した後燃料噴出孔13から燃焼用空気噴出管1
内に噴出させるため、炉温が極めて高い場合でも
燃料噴出管8の損焼が抑制される。 ところで、本考案に係る無酸化バーナは燃料噴
出管8の前端の位置が第1図に示すように炉壁孔
6の手前側にある場合のみならず、第1図に想像
線で示すようにバーナ火口14内に位置させたも
のであつても無酸化加熱能を有しているためによ
いのである。この場合には止め螺子7を緩めて、
燃焼用空気噴出管1と燃料噴出管8を一緒に炉壁
孔6内に移動せしめればよい。ただ炉温が極めて
高いと本考案の如く燃料流でその前端を冷却する
構造であつても燃料噴出管8の前端部の損焼が起
こる為、炉温が比較的低い状態で使用することが
望ましい。 第2図は、燃焼用空気噴出管1の出口部に、ま
た第3図は燃料噴出管8の出口部に混合燃料の噴
出面積縮小部材15を取りつけたものであり、こ
れら噴出面積縮小部材15を取りつけることによ
り、燃料と燃焼用空気との混合性が更に促進され
るとともに混合燃料の噴出速度が増加し、燃料が
より遠くまで到達するので、鋼板の還元される範
囲が広くなる。 また第4図及び第5図は、燃料噴出管前端部に
耐熱製の優れた部材16(たとえば耐熱金属、セ
ラミツク等)を設置したものであり、これら部材
16を取付けることにより燃料噴出管8の耐久性
が更に向上する。 次に本考案に係る無酸化バーナを用いて、連続
亜鉛メツキライン用焼鈍炉の一種である竪形方式
の直火式焼鈍炉の無酸化加熱帯にて鋼板の無酸化
加熱を行つた場合の実験結果について述べる。 実験は下記条件により第1図に示した無酸化バ
ーナと、比較例として本出願人が先に実願昭62−
72412号で提案した無酸化バーナを用いた場合と
の差異を調べることにより行つた。 〔実験条件〕 鋼板寸法:0.8mm×1100mm幅 鋼板移送速度:145m/分 燃料:コークス炉ガス(C.O.G.) 燃焼用空気温度:420℃ バーナへ供給する燃料の空気比:0.9 第1図のθ=90° 実験した結果を下記表に示したが、本考案の無
酸化バーナでは燃焼用空気として排ガスにより
420℃まで予熱した空気を使用でき、かつ該空気
と燃料との混合性が均一となつたため、比較例と
較べて無酸化状態で鋼板を加熱できる鋼板上限温
度が100℃高くできた。
(Industrial Application Field) The present invention relates to a non-oxidizing burner suitable for non-oxidizing heating of a steel plate at high speed in a heating furnace. (Prior Art) As a method of heating a steel plate in a non-oxidizing state, a direct flame heating method in which the steel plate is heated by injecting high temperature combustion gas from a burner is well known. This direct heating method is characterized in that the heating rate of the steel sheet is significantly faster than the method of indirectly heating the steel plate using a radiant tube or the like, in which the atmosphere inside the furnace is adjusted with a reducing gas. By the way, as a direct flame heating method for rapidly heating steel plates in a non-oxidizing state, a premixed burner called a radiant cup burner is used, and the air ratio is 0.9.
A method of colliding the gas combusted with the steel plate was proposed in US Pat. No. 3,320,085, and is currently used in annealing furnaces for continuous galvanizing lines. However, the non-oxidizing burner used in this direct-fired non-oxidizing heating method mixes fuel gas and combustion air in advance and then supplies this mixed gas to the burner, which can cause backfires, static electricity, etc. There is a risk of explosion inside the burner or piping. Combustion air cannot be preheated. There are drawbacks such as: Therefore, the present applicant proposed a non-oxidizing burner capable of solving these drawbacks in Utility Application No. 72412/1983. In other words, the non-oxidizing burner previously submitted by the applicant has a double-pipe structure consisting of a combustion air jet pipe and a fuel jet pipe extending through the same, and a swirl vane is installed between these two jet pipes. At the same time, the fuel injection pipe is configured to be movable along the air injection pipe and fixed at a predetermined position, and the fuel injection hole at the front end of the fuel injection pipe is opened at a required angle with respect to the burner central axis. This is what I did. (Problems to be solved by the invention) Although the non-oxidizing burner previously proposed by the present applicant is an excellent product that can solve the drawbacks of conventional burners, subsequent research and experiments by the present inventor et al. have shown the following: It was found that there were problems listed in the following. The combustion air jet pipe is fixedly attached to the furnace with a swirl vane fixed to the inside of its front end, so when the fuel jet pipe inside the combustion air jet pipe is moved in and out, the swirl vane and the fuel jet It is thought that the mixing ratio of the swirling air to the injected fuel changes because the relative positional relationship with the hole changes. Since the fuel injection pipe has an injection hole on the outer periphery of its front end, it is thought that the injection state is likely to change in response to changes in the amount of fuel supplied. The present invention aims to provide a non-oxidizing burner which retains the advantages of the non-oxidizing burner previously proposed by the present applicant and which can solve the inherent problems. (Means for solving the problem) As a countermeasure, the present inventors provided a swirling vane on the fuel injection pipe side so that the relative position of the swirling vane and the injection hole remained constant, and also fixed the combustion air injection pipe. It is made movable relative to the furnace so that it can be moved to follow the fuel injection pipe. A reverse feed pipe is installed inside the front end of the fuel injection pipe,
The injection hole position was changed to maintain the fuel injection pressure as constant as possible to achieve equal pressure injection.
That is, in the present invention, a swirling vane is attached to the fuel injection pipe side in an annular space formed between a combustion air injection pipe and a fuel injection pipe disposed penetrating through the combustion air injection pipe. The non-oxidizing burner is configured with a double pipe so that combustion air can be mixed as a swirling flow with the fuel flow jetted from the front end, and the combustion air jet pipe directs the combustion air to the furnace wall hole and to the furnace wall hole. The fuel injection pipes are configured to be slidable in the axial direction with respect to the combustion air injection pipes and can be fixed at desired positions, and the front ends of the fuel injection pipes are closed, and there are holes inside the front ends. A reversing pipe forming a cylindrical flow path for reversing and reversing the fuel flow is installed inside, and a number of jetting holes opening radially on the outer circumference of this fuel jetting pipe are arranged in front of the swirling vanes to form a burner central axis. This is a non-oxidizing burner that is opened at a predetermined angle to the burner. (Function) Since the non-oxidizing burner according to the present invention has the above-described structure, the fuel collides with the front end of the fuel injection pipe and is reversed and then ejected from the injection hole, so that it is evenly mixed with the combustion air. It becomes good. Moreover, once the fuel collides with the front end of the fuel injection pipe, the front end of the fuel injection pipe is cooled, and burnout of the fuel injection pipe is suppressed. Furthermore, since the relative positions of the combustion air jet pipe and the fuel jet pipe and the relative positions of both jet pipes and the furnace wall hole can be adjusted in a timely manner, optimal heating conditions can be easily obtained, and with long-term use, Even if both ejection pipes are damaged, they can be replaced with new ones. (Embodiments) The present invention will be described below based on embodiments shown in the accompanying drawings. FIG. 1 is a front view showing a longitudinal cross-section of an embodiment of the non-oxidizing burner according to the present invention. It is attached to a furnace wall hole 6 formed in the furnace wall 5 so as to be slidable in the axial direction and fixed at a predetermined position by a set screw 7 screwed into the provided mounting tube 4. Reference numeral 8 denotes a fuel injection pipe which is disposed through the combustion air injection pipe 1 so that it can be slid in the axial direction and fixed at a predetermined position. 9 is formed. In addition,
Reference numeral 10 indicates a set screw for the fuel injection pipe 8. Because of this configuration, even if the combustion air jet pipe 1 and the fuel jet pipe 8 are damaged due to long-term use, the setscrews 7 and 10 can be loosened and the combustion air jet pipe 1 and the fuel jet pipe 8 can be taken out and replaced with new ones. It can be easily replaced. The front end of the fuel injection pipe 8 is closed, and a reverse flow pipe 12 is disposed inside the front end to form a cylindrical flow path for reversely transporting the fuel flow. Therefore, the fuel traveling straight through the fuel injection pipe 8 passes through the reverse feed pipe 12 and collides with the front end of the fuel injection pipe 8, and then is reversely fed back and placed at a position near the front end of the outer periphery of the fuel injection pipe 8. The fuel is uniformly ejected from the fuel injection holes 13 that are radially opened in front of the swirl vanes 11. By the way, in the present invention, an appropriate number of jet holes 13 that open radially are located near the end of the cylindrical flow path and a predetermined distance in front of the swirling blades 11, and furthermore, the burner It is opened at a required angle θ with respect to the central axis, and by making this angle θ, the combustion air that is given a strong swirl by the swirl vane 11 and the fuel injection hole 13 are
The fuel ejected from the fuel tank always mixes well under a constant relative relationship. According to experiments conducted by the present inventors, the above-mentioned θ is 30 to 90 degrees in order to achieve good mixing of fuel and combustion air.
It is desirable that the range be within the range of Further, in the non-oxidizing burner according to the present invention, the fuel flow is once collided with the front end of the fuel jet pipe 8 to cool the front end, and then the fuel jet is passed from the fuel jet hole 13 to the combustion air jet pipe 1.
Since the fuel is ejected inward, damage to the fuel injection pipe 8 is suppressed even when the furnace temperature is extremely high. By the way, the non-oxidation burner according to the present invention can be used not only when the front end of the fuel injection pipe 8 is located in front of the furnace wall hole 6 as shown in FIG. Even if it is located inside the burner nozzle 14, it is suitable because it has non-oxidizing heating ability. In this case, loosen the set screw 7 and
The combustion air jet pipe 1 and the fuel jet pipe 8 may be moved together into the furnace wall hole 6. However, if the furnace temperature is extremely high, even if the front end is cooled by the fuel flow as in the present invention, the front end of the fuel injection pipe 8 will burn out, so it cannot be used when the furnace temperature is relatively low. desirable. 2 shows a mixed fuel jet area reducing member 15 attached to the outlet of the combustion air jet pipe 1, and FIG. 3 shows a mixed fuel jet area reducing member 15 attached to the outlet of the fuel jet pipe 8. By installing this, the miscibility of the fuel and the combustion air is further promoted, and the jetting speed of the mixed fuel is increased, so that the fuel reaches a longer distance, so that the range in which the steel plate is reduced becomes wider. In addition, FIGS. 4 and 5 show that excellent heat-resistant members 16 (for example, heat-resistant metal, ceramics, etc.) are installed at the front end of the fuel injection pipe, and by attaching these members 16, the fuel injection pipe 8 can be improved. Durability is further improved. Next, an experiment was conducted using the non-oxidizing burner of the present invention to perform non-oxidizing heating of a steel plate in the non-oxidizing heating zone of a vertical direct-fired annealing furnace, which is a type of annealing furnace for continuous galvanizing lines. We will discuss the results. The experiment was conducted under the following conditions using the non-oxidizing burner shown in Fig.
This was done by investigating the difference between using the non-oxidizing burner proposed in No. 72412. [Experimental conditions] Steel plate dimensions: 0.8 mm x 1100 mm width Steel plate transfer speed: 145 m/min Fuel: Coke oven gas (COG) Combustion air temperature: 420°C Fuel air ratio supplied to the burner: 0.9 θ in Figure 1 = The results of the 90° experiment are shown in the table below.
Since air preheated to 420°C can be used and the air and fuel are mixed uniformly, the upper limit temperature of the steel plate at which the steel plate can be heated in a non-oxidizing state can be increased by 100°C compared to the comparative example.

【表】 (考案の効果) 以上説明したように本考案に係る無酸化バーナ
は上記した構成とした為、燃料は一旦燃料噴出管
の前端部に衝突して反転逆送した後、前端より一
定位置の噴出孔より噴出することとなり、旋回羽
根の作用で強い旋回を付与された燃焼用空気との
混合性が良好となる。さらに燃料が一旦燃料噴出
管の前端部に衝突する際に噴出管前端部が冷却さ
れ、燃料噴出管の損焼が抑制される。加えて適宜
両噴出管の位置変更や燃焼用空気噴出管及び燃料
噴出管の損焼時には取り替えも可能となる。さら
に予熱空気を使用できるために省エネルギが図
れ、安全性にも優れている。
[Table] (Effects of the invention) As explained above, since the non-oxidizing burner according to the invention has the above-mentioned configuration, the fuel once collides with the front end of the fuel injection pipe and is reversed and sent back, and then is kept constant from the front end. The combustion air is ejected from the nozzle at the position, and the mixture with the combustion air, which has been given a strong swirl by the action of the swirl vane, is improved. Furthermore, once the fuel collides with the front end of the fuel injection pipe, the front end of the injection pipe is cooled, and burnout of the fuel injection pipe is suppressed. In addition, it becomes possible to change the positions of both jet pipes as appropriate, and to replace the combustion air jet pipe and the fuel jet pipe in the event of fire damage. Furthermore, since preheated air can be used, energy can be saved and safety is also excellent.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案に係る無酸化バーナの実施例を示
す断面図正面図で、第1図は第1実施例、第2〜
5図は第2〜5実施例の拡大図である。 1は燃焼用空気噴出管、2はバーナ、7,10
は止め螺子、8は燃料噴出管、11は旋回羽根、
12は逆送管、13は燃料噴出孔。
The drawings are cross-sectional front views showing embodiments of the non-oxidation burner according to the present invention, and FIG. 1 shows the first embodiment and the second to second embodiments.
FIG. 5 is an enlarged view of the second to fifth embodiments. 1 is a combustion air jet pipe, 2 is a burner, 7, 10
A locking screw, 8 a fuel injection pipe, 11 a swirl vane,
12 is a reverse feed pipe, and 13 is a fuel injection hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 燃焼用空気噴出管とこれに貫通配置した燃料噴
出管の間に形成した環状空間内に、旋回羽根を前
記燃料噴出管側に取り付けることにより介設して
前記燃料噴出管の前端から噴出させる燃料流に燃
料用空気を旋回流として混合させ得るように二重
管構成されてなる無酸化バーナであつて、前記燃
焼用空気噴出管はこれを炉壁孔に対して、また前
記燃料噴出管は前記燃焼用空気噴出管に対して
夫々軸方向の摺動および所要位置での固定可能に
構成し、かつ前記燃料噴出管はその前端を閉塞し
たものとする共にその前端部内側には燃料流を反
転逆送させる筒状流路を形成する逆送管を内設
し、この燃料噴出管の外周部に放射状に開口させ
る敵数の噴出孔を前記旋回羽根の前方にバーナ中
心軸に対し所定角度をもつて開設して成ることを
特徴とする無酸化バーナ。
Fuel jetted from the front end of the fuel jet pipe by interposing swirl vanes on the side of the fuel jet pipe in an annular space formed between a combustion air jet pipe and a fuel jet pipe extending through the fuel jet pipe. The non-oxidizing burner has a double pipe structure so that fuel air can be mixed with the flow as a swirling flow, and the combustion air jet pipe is connected to the furnace wall hole, and the fuel jet pipe is connected to the furnace wall hole. The combustion air jet pipe is configured to be slidable in the axial direction and fixed at a desired position with respect to the combustion air jet pipe, and the front end of the fuel jet pipe is closed, and a fuel flow is allowed inside the front end. A reverse feed pipe forming a cylindrical flow path for reversing and reverse feeding is installed inside, and a number of injection holes opening radially on the outer periphery of the fuel injection pipe are arranged in front of the swirling vanes at a predetermined angle with respect to the burner central axis. A non-oxidizing burner characterized in that it is opened with.
JP1987168668U 1987-11-04 1987-11-04 Expired JPH0449467Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987168668U JPH0449467Y2 (en) 1987-11-04 1987-11-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987168668U JPH0449467Y2 (en) 1987-11-04 1987-11-04

Publications (2)

Publication Number Publication Date
JPH0174429U JPH0174429U (en) 1989-05-19
JPH0449467Y2 true JPH0449467Y2 (en) 1992-11-20

Family

ID=31458044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987168668U Expired JPH0449467Y2 (en) 1987-11-04 1987-11-04

Country Status (1)

Country Link
JP (1) JPH0449467Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200643A1 (en) * 2017-01-17 2018-07-19 Siemens Aktiengesellschaft A burner tip having an air channel structure and a fuel channel structure for a burner and method of making the burner tip

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120829U (en) * 1981-01-22 1982-07-27
JPH0113224Y2 (en) * 1985-12-09 1989-04-18

Also Published As

Publication number Publication date
JPH0174429U (en) 1989-05-19

Similar Documents

Publication Publication Date Title
US4971553A (en) Burner with a cylindrical body
US5542839A (en) Temperature controlled low emissions burner
US4135874A (en) Two stage combustion furnace
JPS5819929B2 (en) Low NO↓x burner
US6206686B1 (en) Integral low NOx injection burner
CN103398379A (en) Oxygen-enriched burner
DE60014663T2 (en) INDUSTRIAL BURNER FOR FUELS
JPH0449467Y2 (en)
US2391447A (en) Radiant heater
CA1061547A (en) Method and apparatus for heating a furnace chamber
EP1714074B1 (en) A method of operating a burner, and a burner for liquid and/or gaseous fuels
KR101328255B1 (en) Burner using more than two gases having a different burning speed
GB1321926A (en) High velocity gas burner and heating furnace provided with such a gas burner
KR100876089B1 (en) Oxygen burner
US5645412A (en) Burner for low Nox multistage combustion of fuel with preheated combustion air
GB1585410A (en) Burner
JPH0474603B2 (en)
US4116611A (en) Gaseous and liquid fuel burner
JPS58107425A (en) Method of heating steel strip without oxidation and apparatus therefor
RU2298140C1 (en) Shaft type gas furnace for firing lumpy material
JP4877680B2 (en) Wire heating furnace
JPH0450481B2 (en)
CN211176787U (en) Burner with a burner head
KR20160129765A (en) Oxy fuel burner
EP3604925B1 (en) Heating device and heating method