JPS58107425A - Method of heating steel strip without oxidation and apparatus therefor - Google Patents

Method of heating steel strip without oxidation and apparatus therefor

Info

Publication number
JPS58107425A
JPS58107425A JP20669581A JP20669581A JPS58107425A JP S58107425 A JPS58107425 A JP S58107425A JP 20669581 A JP20669581 A JP 20669581A JP 20669581 A JP20669581 A JP 20669581A JP S58107425 A JPS58107425 A JP S58107425A
Authority
JP
Japan
Prior art keywords
air
burner
steel strip
copper strip
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20669581A
Other languages
Japanese (ja)
Other versions
JPS6221051B2 (en
Inventor
Shuzo Fukuda
福田 脩三
Masahiro Abe
阿部 正広
Michio Nakayama
道夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20669581A priority Critical patent/JPS58107425A/en
Publication of JPS58107425A publication Critical patent/JPS58107425A/en
Publication of JPS6221051B2 publication Critical patent/JPS6221051B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Abstract

PURPOSE:To perform the efficient unoxidizing heat-treatment of a steel strip, in direct flame-type unoxidizing heat-treatment in an apparatus for continuously annealing the steel strip or the like, by making a nozzle for gas fuel movable in a radiant burner and setting the injection angle of air at a specified value. CONSTITUTION:When a steel strip is heated under an unoxidized condition in a continuous annealing oven, a continuous hot-dip zinc-coating apparatus or the like for the steel strip, it is heated by a radiant burner. At the side wall 11a of a burner tile forming the combustion chamber C for a cylindrical burner 11, a plurality of openings 13 for ejecting air A are provided with an angle theta of 60 deg. at most to he connection of the side wall 11a of the tile. Burner nozzles 12 provided with a plurality of openings 14 for ejecting gas fuel F are slidable provided along the axial line, and their top ends are set close to the rear wall 11b of the titled. Combustion is performed by controlling the flow ratio of the air A to the fuel F above 1.5 and the ratio of air below 1.0, to heat the entire inner surface of the combustion chamber C. Consequently, the steel strip is heated under an unoxidized condition with excellent thermal efficiency without the need to previously mix air and fuel.

Description

【発明の詳細な説明】 この発明は銅帯の無酸化加熱方法及びその装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for non-oxidizing heating of a copper strip.

銅帯の連続焼鈍炉、連続溶融亜鉛メッキ設備(CGL)
等における直火式無酸化加熱の従来手法として、一般的
な拡散バーナ或いは高速ジェットバーナを使用し、火炎
を銅帯へ慎突させ対流伝熱を主として加熱する方法及び
ラジアントバーナを使用し、バーナタイル内面を高温化
することによ多、との面小らの放射伝熱を主体として加
熱する方法がある。
Continuous annealing furnace for copper strips, continuous galvanizing equipment (CGL)
Conventional direct-fire non-oxidation heating methods, such as those in There is a method of heating the tile by raising the temperature of the inner surface of the tile, mainly through radiation heat transfer from side to side.

高速ジェットバーナは、第1図に示す如く、燃焼室1で
燃焼させ、絞られた吐出孔2から高温のガスジェットを
噴出して、対流伝熱を主として加熱するもので、被加熱
物温度が比較的低い範囲で高熱流束が得られる特性を有
している。
As shown in Fig. 1, the high-speed jet burner burns in a combustion chamber 1, ejects a high-temperature gas jet from a narrowed discharge hole 2, and heats the object mainly by convection heat transfer. It has the characteristic of obtaining high heat flux in a relatively low range.

一方燃焼反応途中の火炎が銅帯に直接II央するので、
その中に存在するO、、O,OH等にょ9、無酸化と云
えども黴蒙化は避けられない。
On the other hand, the flame during the combustion reaction hits the copper strip directly, so
Even if the O, O, OH, etc. present in it are non-oxidized, molding is unavoidable.

ラジアントバーナは、急速燃焼反応を行なわせるため、
空気と燃料ガスとを予め温合したffI&金気を、第2
図に示す如く、バーナタイルの半球状凹部3で急速燃焼
させ、バーナタイル内面を高温化して、放射伝熱を主と
して加熱するもので、被加熱物温度が高温度の領域で高
い熱流束が得られる特性を有している。一方このバーナ
で、空気比をt、O32を下で燃焼させることによ)、
燃焼ガス中にCO,H,等の還元性の未燃成分が含まれ
るので、この燃焼ガスが銅帯に接して無酸化加熱するこ
とができるのは勿論、銅帯に生じた酸化膜を還元するこ
とができる。
Radiant burners perform rapid combustion reactions, so
The ffI & metallic air, which has been heated in advance with air and fuel gas, is heated in the second
As shown in the figure, rapid combustion is carried out in the hemispherical recess 3 of the burner tile, the inner surface of the burner tile is heated, and heating is mainly done by radiation heat transfer, which results in high heat flux in areas where the temperature of the heated object is high. It has the characteristics of On the other hand, in this burner, by burning O32 at an air ratio of t,
Since the combustion gas contains reducing unburned components such as CO, H, etc., this combustion gas can not only contact the copper strip and heat it without oxidation, but also reduce the oxide film formed on the copper strip. can do.

ラジアントづ−すは、上記のように無酸化加熱に好適の
バーナであるが、予混合方式であるための多くの欠点を
有している。即ち、高温に予熱した空気を燃料ガスに予
め混合することは危険であシ、空気予熱のために排ガス
の顕熱回ればならない。また空気を予熱することは火炎
温度を高めるのに有効であシ、一方火炎温度を高めるこ
とは上述のCo 、 H,等による還元作用に効果的で
あるが、空気予熱ができないので、無酸化加熱の観点か
らも好ましいものではない。
Although Radiant-Su is a burner suitable for non-oxidative heating as described above, it has many drawbacks because it is a premixing method. That is, it is dangerous to premix air preheated to a high temperature with fuel gas, and the sensible heat of the exhaust gas must be used to preheat the air. Also, preheating the air is effective in increasing the flame temperature, while increasing the flame temperature is effective for reducing the above-mentioned Co, H, etc., but since air preheating is not possible, non-oxidizing It is also not preferable from the viewpoint of heating.

更に予混合器、安全装置としての逆火防止器等が不可欠
とな〕、設備費が高くなる問題がある。
Furthermore, a premixer, a flashback preventer as a safety device, etc. are indispensable], which raises the problem of increased equipment costs.

ラジアントバーナを使用したCGLの加熱炉を第3図憂
こ示す。この加熱炉は、第1ゾーン4、第2ゾーン1及
び第3ゾーン6の3ゾーンからなる3帯式加熱炉で、第
1ゾーン4及び第2・/−ン5では銅帯の温度が相対的
に低く、銅帯の酸化速度が遭いため、比較的低い温度範
囲で高熱流束が得られる対流伝熱を主とした拡散バーナ
を使用しておシ、燃焼空気は排ガスを熱源とする予熱器
1で予熱している。第3ゾーンdでは、加熱されて弱酸
化の状態で入ってくる銅帯を還元させると共に、高温度
領域で高い熱流束が得られる放射伝熱を主としたラジア
ントバーナを使用している。このバーナには予混合器8
で混合された混倉気が、逆火防止器−を通って送給され
ている。上記のように省エネルギを図るため銅帯の温度
に応じて伝熱機構の異なるバーナを使用しているので配
管設備が複雑とな)、また燃焼制御装置もそれぞれ別個
に必要となるので、設備上のマイナス面が多い。
Figure 3 shows a CGL heating furnace using a radiant burner. This heating furnace is a three-zone heating furnace consisting of three zones: a first zone 4, a second zone 1, and a third zone 6. In the first zone 4 and the second zone 5, the temperature of the copper strip is relative. Since the oxidation rate of the copper strip is low and the oxidation rate of the copper strip is low, we use a diffusion burner that mainly uses convection heat transfer to obtain high heat flux in a relatively low temperature range, and the combustion air is preheated using exhaust gas as a heat source. Preheat in vessel 1. In the third zone d, a radiant burner mainly using radiant heat transfer is used to reduce the heated and slightly oxidized copper strip that comes in, and to obtain a high heat flux in a high temperature region. This burner has a premixer 8
The mixed warehouse air is fed through a flashback preventer. As mentioned above, in order to save energy, burners with different heat transfer mechanisms are used depending on the temperature of the copper strip, so the piping equipment is complicated), and separate combustion control devices are required for each, so the equipment There are many negative aspects to the above.

この発明は上記のような実情に鑑みてなされたものであ
って、その目的は空気と燃料ガスの予混合を必要としな
いバーナによ)鋼帯を無酸化加熱する方法及びその装置
を提供しようとするものである。
This invention was made in view of the above-mentioned circumstances, and its purpose is to provide a method and apparatus for non-oxidizing heating of a steel strip (using a burner) that does not require premixing of air and fuel gas. That is.

この発明の鋼帯の無酸化加熱方法の特徴は、円IIl漆
のバーナタイル側壁から空気を旋回流が生ずるように吐
出すると共曇こ燃料ガスをバーナ中心から軸心方向に垂
直に放射状に吐出し且つ上記空気と燃料ガスとの吐出流
速比を1.5以上とすると共に空気比を1.0以下とし
て加熱することであシ、また加熱装置は、円筒形のバー
ナタイル側壁に側壁接線に対して最大60度の角度で空
気吐出孔を設けると共に、燃料ガスをバーナ中心から軸
心方向に垂直に放射状に吐出するガス吐出孔を有するバ
ーナノズルをそのガス吐出孔の位置を上記空気吐出孔に
対し相対位置が変えられるように軸心方向にスライド可
能に設けたものである。
The feature of the non-oxidation heating method of steel strip of this invention is that when air is discharged from the side wall of the circle IIl lacquered burner tile so as to generate a swirling flow, a cloudy fuel gas is discharged radially from the center of the burner perpendicularly to the axial direction. In addition, the heating device should be heated at a discharge flow velocity ratio of air and fuel gas of 1.5 or more and an air ratio of 1.0 or less, and the heating device should be attached to the side wall of the cylindrical burner tile along a tangent to the side wall. A burner nozzle is provided with an air discharge hole at a maximum angle of 60 degrees to the burner, and the burner nozzle has a gas discharge hole that discharges fuel gas radially perpendicularly to the axial direction from the center of the burner. It is provided so as to be slidable in the axial direction so that the relative position can be changed.

以下この発明の一実施例を第4図、第5図によ)説明す
る。図中11は、燃焼室Cを形成する一端開放の円筒形
バーナの本体で、バーナ中心にバーナノズル11が軸心
方向にスライド可能に設けられている。バーナ本体J7
のバーナタイル側1111&には燃焼室CK開口する空
気Aの吐出孔11が円周方向に複数鋼設けられており、
この吐出孔13はタイル儒1! J J aの接線に対
する角度Iが最大60度の範囲内であけられている。バ
ーナノズル11の先端部には燃料ガスFを軸心方向に垂
直に放射状に吐出する複数のガス吐出孔14が設けられ
ている。
An embodiment of the present invention will be described below with reference to FIGS. 4 and 5. In the figure, reference numeral 11 denotes a main body of a cylindrical burner with one end open forming a combustion chamber C, and a burner nozzle 11 is provided at the center of the burner so as to be slidable in the axial direction. Burner body J7
A plurality of discharge holes 11 for air A that open the combustion chamber CK are provided in the burner tile side 1111 & in the circumferential direction,
This discharge hole 13 is tile 1! The angle I with respect to the tangent to J J a is within a maximum range of 60 degrees. A plurality of gas discharge holes 14 are provided at the tip of the burner nozzle 11 to discharge the fuel gas F radially perpendicularly to the axial direction.

而して、第4図に示す如くバーナノズル12を引込め、
ガス吐出孔14の位置をタイル4[11bに近づけて、
空気吐出孔IJよシ夷にした■の状態で、空気の吐出流
束v1  と燃料ガスの吐出流速V1  との比をVa
/V、≧1.5として燃焼させることKよシ、燃料ガス
rと空気ムとの混合が十分になされ、バーナタイル後面
JJbのすぐ近くから火炎が形成され、更に吐出空気に
よシ火炎が急速旋回されて、燃焼室Cの内壁全面が加熱
されるようになる。これによ)従来のラジアントバーナ
と同様の放射伝熱支配形の伝熱特性を得ることができる
。また燃焼反応を完了した高温の燃焼ガ♂が急速旋回さ
れて銅帯に一突することによシ対流伝熱も促進される。
Then, as shown in FIG. 4, retract the burner nozzle 12,
Move the position of the gas discharge hole 14 closer to the tile 4 [11b,
In the state shown in (■) where the air discharge hole IJ is different from the one shown in FIG.
/V, ≧1.5K, the fuel gas r and the air mixture are sufficiently mixed, a flame is formed immediately near the rear surface of the burner tile JJb, and a flame is further formed by the discharged air. The rapid rotation causes the entire inner wall of the combustion chamber C to be heated. As a result, heat transfer characteristics dominated by radiation heat transfer, similar to those of conventional radiant burners, can be obtained. Furthermore, convective heat transfer is also promoted by the high temperature combustion gas that has completed the combustion reaction being rapidly swirled and colliding with the copper strip.

そして、空気比1.O以下で燃焼させることにょ)、高
温燃焼ガス中のCo、H,等の未燃成分で、酸化してい
る銅帯を還元させて銅帯を無酸化で効率よく加熱するこ
とができる。
And air ratio 1. By burning at less than O), the oxidized copper strip can be reduced with unburned components such as Co, H, etc. in the high temperature combustion gas, and the copper strip can be efficiently heated without oxidation.

この場合、空気吐出孔11の側壁接線に対する角度−を
徐々に大きくしていくと、旋回領域が小さく且つ個々の
吐出孔1jからの噴流で旋回流が乱され、好ましい旋回
火炎が得られなくなるので、その上限値は60度として
いる。また逆に角度−を徐々に小さくした場合、零度に
近づくと火炎が殆んどタイル側*ix*に付着した状態
とな夛所要の火炎温度が得られなくなる。実験の結果で
は、20〜40度の範囲が好適である。また空気と燃料
ガスの流速比Va / Vlは1.5未満では、火炎が
ガス吐出孔14から放射状に形成されるよう曇こな)、
空気とガスとの混合が不十分となってバーナ出口から火
炎が長く伸びて所望の伝熱特性を得ることができない。
In this case, if the angle of the air discharge hole 11 with respect to the tangent to the side wall is gradually increased, the swirling area will be small and the swirling flow will be disturbed by the jets from the individual discharge holes 1j, making it impossible to obtain a preferable swirling flame. , its upper limit is 60 degrees. On the other hand, if the angle is gradually reduced, as the temperature approaches zero, most of the flame will be attached to the tile side *ix*, and the required flame temperature will no longer be obtained. According to experimental results, a range of 20 to 40 degrees is suitable. Furthermore, if the flow velocity ratio Va/Vl of air and fuel gas is less than 1.5, the flame will be formed radially from the gas discharge hole 14).
The mixture of air and gas becomes insufficient, and the flame extends for a long time from the burner outlet, making it impossible to obtain desired heat transfer characteristics.

実験の結果では流速比は2〜3以上が望ましい。According to experimental results, the flow rate ratio is preferably 2 to 3 or more.

また空気比については、銅帯の無酸化加熱を行なうには
、火炎あるいは燃焼ガス中にO3が存在しては不可能で
あシ、空気比を1.0以下とし理論空気量以下で燃焼を
行なわせることにより、燃焼ガス中に0.が存在せず且
つ還元性のあるCo、H,が存在する状態を作p出して
無酸化加熱を行なうことができる。
Regarding the air ratio, non-oxidative heating of the copper strip is impossible if O3 is present in the flame or combustion gas, so the air ratio is set to 1.0 or less and combustion is performed with less than the theoretical air amount. By doing this, 0.0% is added to the combustion gas. It is possible to perform non-oxidative heating by creating a state in which Co, H, etc. are absent and reducing Co, H, and so on are present.

次に、ガス吐出孔14と空気吐出孔13との相対位置を
変えて試験した結果について説明する。
Next, the results of tests conducted by changing the relative positions of the gas discharge hole 14 and the air discharge hole 13 will be described.

燃焼条件:燃料ガス;コークス炉ガス 4700&a/Nrl 、空気温度;常温(予熱せず)
Combustion conditions: Fuel gas; coke oven gas 4700&a/Nrl, air temperature; normal temperature (without preheating)
.

空気比; 1.00 、燃焼量; 3G000&J/h
rらせた第4図に示す状態、◎ガス吐出孔14と空気吐
出孔1zの位置を一致させた状態、θガス吐出孔14を
空気吐出孔12よシパーナ開放端側即ち下流側に15m
ずらせた第4図に想像線で示す状態及び従来の@高速ジ
ェットバーナ(第1図参)とのラジアントバーナ(嬉2
図参照) 試験結果:バーナタイル内面温度、バーナ出口ガス温度
。火炎長さくバーナ出口から火炎先端鵞での距離)を次
表に、また被加熱物の温度に対する熱流束qlo’&j
/7・hrを第6図に、さらに無酸化加熱特性を第7図
にそれぞれ示す。
Air ratio: 1.00, combustion amount: 3G000&J/h
The state shown in FIG. 4 where the gas discharge hole 14 and the air discharge hole 1z are aligned, θ The gas discharge hole 14 is moved 15 m from the air discharge hole 12 toward the open end of the sipana, that is, on the downstream side.
The state shown by the imaginary line in Fig. 4 and the radiant burner (Kurei 2) with the conventional @ high-speed jet burner (see Fig. 1)
(See figure) Test results: Burner tile inner surface temperature, burner outlet gas temperature. The flame length (distance from the burner outlet to the flame tip) is shown in the table below, and the heat flux qlo'& j as a function of the temperature of the heated object.
/7·hr is shown in FIG. 6, and the non-oxidation heating characteristics are shown in FIG. 7.

表及び第6図から、ガス吐出孔14をタイル後壁11b
に近づけた■の状態では、前述の如く放射伝熱支配形の
伝熱特性となり、銅帯温度が高いときに高熱流束が得ら
れる。逆にガス吐出孔14をバーナ出口側に移動させた
θの状態では火炎即ち燃焼反応帯が空気吐出孔IJの下
流に形成され、バーナタイル後壁11bは殆んど加熱さ
れずその分高温の燃焼ガスが得られ、さらに空気番こは
急速t11回が与えられているので、主憂こ燃焼ガスの
対流伝熱によって銅帯が加熱される対流伝熱支配形の伝
熱特性となって、銅帯温度が低いときに高熱流束が得ら
れる。また吐出孔14と空気吐出孔lJが同位置にある
@の状態では、上記のとθの中間の放射、対流複合形感
伝熱特性が得られる。次に、第7図は横軸に加熱時間、
縦軸に銅帯温度をとDs x印で無酸化加熱限界点を示
したもので、この限界点以上長時間加熱あるいは鋼帯温
I高いと銅帯が酸化することを示すものである。本発明
バーナの■。
From the table and FIG. 6, it is clear that the gas discharge holes 14 are
In the state (2), which is close to , the heat transfer characteristics are dominated by radiation heat transfer as described above, and a high heat flux is obtained when the copper band temperature is high. On the other hand, in the state θ where the gas discharge hole 14 is moved toward the burner outlet side, a flame, that is, a combustion reaction zone is formed downstream of the air discharge hole IJ, and the burner tile rear wall 11b is hardly heated, and the burner tile rear wall 11b is heated accordingly. Since the combustion gas is obtained and the air plate is given rapid t11 times, the heat transfer characteristics are dominated by convective heat transfer, where the copper strip is heated by the convective heat transfer of the main combustion gas. High heat flux is obtained when the copper band temperature is low. In addition, in the state @ where the discharge hole 14 and the air discharge hole lJ are at the same position, a combined radiation and convection type heat transfer characteristic between the above and θ is obtained. Next, in Figure 7, the horizontal axis shows heating time,
The vertical axis shows the copper strip temperature, and the x mark indicates the non-oxidizing heating limit point, which indicates that the copper strip will oxidize if heated for a long time or if the steel strip temperature I is higher than this limit point. ■ of the burner of the present invention.

θの状態では従来のラジアントバーナのに比べ、加熱熱
流束qが大きいため、加熱速度が早く銅帯をより高温ま
で無酸化で加熱することができる。なお空気予熱を施せ
ば、さらに高温まで無酸化加熱が可能となる。
In the state of θ, the heating heat flux q is larger than that of a conventional radiant burner, so the heating rate is fast and the copper strip can be heated to a higher temperature without oxidation. Note that if air preheating is performed, non-oxidative heating to even higher temperatures is possible.

以上のように、本発明バーナは、同一のパーt−e、j
14cバーナノズル12をスライドさせるだけで、被加
熱物温度に応じた適正な熱流束が得られるように伝熱機
構を変化させることができ、高い加熱効率を得ることが
できる。その上、従来に比べ、無酸化加熱特性を向上さ
せることができる。
As described above, the burner of the present invention has the same parts t-e, j
By simply sliding the 14c burner nozzle 12, the heat transfer mechanism can be changed to obtain an appropriate heat flux depending on the temperature of the object to be heated, and high heating efficiency can be obtained. Moreover, the non-oxidation heating characteristics can be improved compared to the conventional method.

従って、3ゾーンに分割された3帯式の銅帯加熱炉で、
銅帯温度に応じて最も高い熱流束が得られるように、本
発明バーナを第1ゾーンではθの状態、第2ゾーンでは
◎の状態、第3ゾーンではΦの状態で作用することにょ
〕最も効率よく銅帯を加熱することができる。また空気
と燃料ガスの予混合を必要としないで、空気予熱によシ
排ガス顕熱の回収が可能となシ、またこれ化よる燃焼ガ
ス温度の上昇によって還元作用を促進させ、よ)無酸化
の状態で加熱することができる。更に予混合のための特
別の装置を必要とせず、また各ゾーンの配管設備、制御
装置等を同一型式にすることによ〕、設備費を低減する
ことができる。なお、銅帯の加熱状態に応じて第1.第
2ゾーンを省略してもよい。
Therefore, with a three-zone copper zone heating furnace divided into three zones,
In order to obtain the highest heat flux depending on the copper strip temperature, the present burner is operated in the θ state in the first zone, the ◎ state in the second zone, and the Φ state in the third zone. The copper strip can be heated efficiently. In addition, it is possible to recover the sensible heat of the exhaust gas by preheating the air without requiring premixing of air and fuel gas, and the reduction action is promoted by increasing the temperature of the combustion gas. It can be heated in the state of Furthermore, equipment costs can be reduced by not requiring any special equipment for premixing, and by using the same type of piping equipment, control equipment, etc. for each zone. In addition, depending on the heating state of the copper strip, the first. The second zone may be omitted.

この発明は上記のようなもので、拡散型の旋”′″−バ
ーナ用いて、燃料ガスと空気の予混合を必要とすること
なく、銅帯を無酸化で効率よく加熱することができる。
The present invention is as described above, and can efficiently heat a copper strip without oxidation using a diffusion type rotary burner without requiring premixing of fuel gas and air.

またバーナノズルをスライドさせて銅帯の加熱温度に応
じτ伝熱特性を有するバーナ′とじて使用することによ
)、最も効率よく銅帯を加熱することができる。
Furthermore, by sliding the burner nozzle and using it as a burner having heat transfer characteristics τ according to the heating temperature of the copper strip), the copper strip can be heated most efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ従来の高速ジェットバー
ナとラジアントバーナの断面図、第3図は3帯式鋼帯加
熱炉の説明図、第4図及び第5図はこの発明の加°熱装
置の一実施例を示すもので、1s4図は縦断面図、第5
図は第4図のv−V線矢斜半円断面図、第6図は被加熱
物温度と熱流束の関係を示す説明図、第7図は無酸化加
熱特性を示す説明図である。 11・・・/(−す本体、J J 、・・・バーナタイ
ル側壁、12・・・バーナノズル、1B−・・空気吐出
孔、14・・・ガス吐出孔。 出願人代理人  弁理士 鉤 江 武 彦第1図 第2E 4L自素冑羞友(C0) 第7図 ho  め 1 葡(5代) tie  *57・I−1堪 特許庁長官   島 1)春 樹 殿 1、事件の表示 特願昭56−206695号 2、発明の名称 銅帯の無酸化加熱方法及びその装置 3、補IFをする者 事件との関係  特許出願人 (412)  日本鋼管株式会社 4、代理人 6、補正の対象 明細書 7、補正の内容 (1)  明細書第3頁第16行目に記載の「空気予熱
の′ために」を「空気予熱による」と補正する、 (2)同上第4頁第2行目に記載の「に効果的であるが
、空気予熱ができないので、」を「に効果的である。し
たがって、空気予熱ができないことは、」と補正する。 (3)同上第8頁第20行目に記載の「4700K c
 a lバー」をr 4700 Kcal/as弓と補
正する。
1 and 2 are cross-sectional views of a conventional high-speed jet burner and a radiant burner, respectively, FIG. 3 is an explanatory diagram of a three-zone steel strip heating furnace, and FIGS. 4 and 5 are cross-sectional views of a conventional high-speed jet burner and a radiant burner. This shows an example of a thermal device, and Figure 1s4 is a longitudinal cross-sectional view, and Figure 5 is a vertical cross-sectional view.
The figures are a semicircular sectional view taken along the line v-V in FIG. 4, FIG. 6 is an explanatory diagram showing the relationship between the temperature of the heated object and the heat flux, and FIG. 7 is an explanatory diagram showing the non-oxidation heating characteristics. 11.../(-main body, JJ,... burner tile side wall, 12... burner nozzle, 1B-... air discharge hole, 14... gas discharge hole. Applicant's agent Patent attorney Kajie Takehiko Figure 1 Figure 2E 4L Jisotsuen (C0) Figure 7 ho Me 1 Grain (5th generation) Application No. 56-206695 2, Name of the invention: Non-oxidation heating method for copper strip and its device 3, Relationship with the supplementary IF case Patent applicant (412) Nippon Kokan Co., Ltd. 4, Attorney 6, Amendment Subject specification 7, contents of amendment (1) “For air preheating” stated in page 3, line 16 of the specification is amended to “by air preheating” (2) Same as above, page 4, line 2 ``It is effective, but air preheating is not possible,'' in the line 1 is corrected to ``It is effective. Therefore, air preheating is not possible.'' (3) “4700K c” stated on page 8, line 20 of the same
Correct "a l bar" with r 4700 Kcal/as bow.

Claims (1)

【特許請求の範囲】[Claims] (1)銅帯を加熱するiこ際し、円筒形のバーナタイル
側壁から空気を旋回流が生ずるように吐出すると共に燃
料ガスをバーナ中心から軸心芳肉に喬直に放射状に吐出
し且つ上記空気と燃料ガスとの吐出流速比を1.S以上
とすると共に空気比を1.O以下として加熱することを
特徴とする銅帯の無酸化加熱方法。 伐) 円筒形のバーナタイル側壁に側壁接線に対して最
大60度の角度で空気吐出孔を設けると共に、燃料ガス
をバーナ中心から軸心方向に−直に放射状に吐出するガ
ス吐出孔を有するバーナノズルをそのガス吐出孔の位置
を上記空気吐出孔に対し相対位置が変えられるように軸
心方向にスライド可能に設けてなる銅帯の無酸化加熱装
置。
(1) When heating the copper strip, air is discharged from the side wall of the cylindrical burner tile to create a swirling flow, and fuel gas is discharged radially straight from the center of the burner toward the axial thickness. The discharge flow velocity ratio of the air and fuel gas is set to 1. S or more, and the air ratio is 1. A non-oxidation heating method for a copper strip, characterized in that the copper strip is heated to a temperature of O or less. A burner nozzle that has air discharge holes in the side wall of a cylindrical burner tile at a maximum angle of 60 degrees to the tangent to the side wall, and gas discharge holes that discharge fuel gas radially directly from the center of the burner in the axial direction. An oxidation-free heating device made of a copper strip, which is slidable in the axial direction so that the position of the gas discharge hole can be changed relative to the air discharge hole.
JP20669581A 1981-12-21 1981-12-21 Method of heating steel strip without oxidation and apparatus therefor Granted JPS58107425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20669581A JPS58107425A (en) 1981-12-21 1981-12-21 Method of heating steel strip without oxidation and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20669581A JPS58107425A (en) 1981-12-21 1981-12-21 Method of heating steel strip without oxidation and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS58107425A true JPS58107425A (en) 1983-06-27
JPS6221051B2 JPS6221051B2 (en) 1987-05-11

Family

ID=16527578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20669581A Granted JPS58107425A (en) 1981-12-21 1981-12-21 Method of heating steel strip without oxidation and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS58107425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026212A (en) * 1983-07-21 1985-02-09 Shinagawa Refract Co Ltd High temperature ceramic burner
JPS6077929A (en) * 1983-10-04 1985-05-02 Nippon Kokan Kk <Nkk> Direct fire reduction of steel strip
DE3614100A1 (en) * 1985-04-26 1986-11-06 Nippon Kokan K.K., Tokio/Tokyo BURNER
JPS6229820A (en) * 1985-04-26 1987-02-07 Nippon Kokan Kk <Nkk> Direct flame reducing heating burner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026212A (en) * 1983-07-21 1985-02-09 Shinagawa Refract Co Ltd High temperature ceramic burner
JPS6077929A (en) * 1983-10-04 1985-05-02 Nippon Kokan Kk <Nkk> Direct fire reduction of steel strip
JPS6330973B2 (en) * 1983-10-04 1988-06-21 Nippon Kokan Kk
DE3614100A1 (en) * 1985-04-26 1986-11-06 Nippon Kokan K.K., Tokio/Tokyo BURNER
JPS6229820A (en) * 1985-04-26 1987-02-07 Nippon Kokan Kk <Nkk> Direct flame reducing heating burner
US4969815A (en) * 1985-04-26 1990-11-13 Nippon Kokan Kabushiki Kaisha Burner
US4971553A (en) * 1985-04-26 1990-11-20 Nippon Kokan Kabushiki Kaisha Burner with a cylindrical body
US4971552A (en) * 1985-04-26 1990-11-20 Nippon Kokan Kabushiki Kaisha Burner
US4971551A (en) * 1985-04-26 1990-11-20 Nippon Kokan Kabushiki Kaisha Burner with a cylindrical body
US4993939A (en) * 1985-04-26 1991-02-19 Nippon Kokan Kabushiki Kaisha Burner with a cylindrical body
US5000679A (en) * 1985-04-26 1991-03-19 Nippon Kokan Kabushiki Kaisha Burner with a cylindrical body

Also Published As

Publication number Publication date
JPS6221051B2 (en) 1987-05-11

Similar Documents

Publication Publication Date Title
JP2683545B2 (en) Combustion method in furnace
US4971551A (en) Burner with a cylindrical body
KR100243839B1 (en) Combustion apparatus and thermal installation with the same
JPH0343527B2 (en)
JP2002513906A (en) Integrated low NOx injection burner
DE60014663T2 (en) INDUSTRIAL BURNER FOR FUELS
CA2185752A1 (en) A burner
JPS58107425A (en) Method of heating steel strip without oxidation and apparatus therefor
EP1714074B1 (en) A method of operating a burner, and a burner for liquid and/or gaseous fuels
US4466359A (en) Disc stabilized flame afterburner
JPS644088B2 (en)
JPS6229820A (en) Direct flame reducing heating burner
JP3590495B2 (en) Low NOx burner for high temperature air
JPS6252313A (en) Directly heating burner under reducing condition
JPS6254031A (en) Direct firing heating furnace of continuous annealing installation for steel strip
JPH0449467Y2 (en)
JPS6252312A (en) Directly heating burner under reducing condition
JPS6250416A (en) Direct firing non-oxidation heating method
JPS6252311A (en) Directly heating burner under reducing condition
KR101777227B1 (en) Low NOx Radiant Tube Burner for Non­oxidizing Continuous Heat Treatment
JPH0217770B2 (en)
JPS62116816A (en) Hot temperature oxygen lance
JP6430339B2 (en) Flameless combustion equipment
KR960003680Y1 (en) Burner
JPS6362651B2 (en)