JPH0449174Y2 - - Google Patents

Info

Publication number
JPH0449174Y2
JPH0449174Y2 JP1988003770U JP377088U JPH0449174Y2 JP H0449174 Y2 JPH0449174 Y2 JP H0449174Y2 JP 1988003770 U JP1988003770 U JP 1988003770U JP 377088 U JP377088 U JP 377088U JP H0449174 Y2 JPH0449174 Y2 JP H0449174Y2
Authority
JP
Japan
Prior art keywords
electrode
plasma
discharge
power supply
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1988003770U
Other languages
Japanese (ja)
Other versions
JPH01110832U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988003770U priority Critical patent/JPH0449174Y2/ja
Publication of JPH01110832U publication Critical patent/JPH01110832U/ja
Application granted granted Critical
Publication of JPH0449174Y2 publication Critical patent/JPH0449174Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 本考案は高周波放電を利用したプラズマCVD
装置、スパツタ装置、プラズマ・ドライエツチン
グ装置およびプラズマ・クリーニング装置等に応
用される高周波放電プラズマ処理装置に関する。
[Detailed explanation of the invention] (a) Industrial application field This invention is a plasma CVD method using high-frequency discharge.
The present invention relates to a high frequency discharge plasma processing apparatus applied to a sputtering apparatus, a sputtering apparatus, a plasma dry etching apparatus, a plasma cleaning apparatus, etc.

(ロ) 従来の技術 近年、半導体の製造プロセス装置ではプロセス
のドライ化に伴いプラズマ反応を利用した装置が
多く開発されている。その中で、プラズマを発生
させる方法として高周波放電が多く用いられてい
る。
(B) Conventional Technology In recent years, many semiconductor manufacturing process devices that utilize plasma reactions have been developed as the process becomes drier. Among these, high frequency discharge is often used as a method for generating plasma.

また、プラズマ反応を利用したCVD装置の普
及に伴い、膜形成の大面積化、さらにそれらの膜
の微細加工技術のためのドライ・エツチング化な
どにより、ますますプラズマ処理装置の大面積処
理機能の向上を計る必要性が出てきた。
In addition, with the spread of CVD equipment that utilizes plasma reactions, the large-area processing capabilities of plasma processing equipment are becoming increasingly important due to larger-area film formation and the use of dry etching for microfabrication technology for these films. There was a need to measure improvement.

従来のプラズマ処理装置で放電室(チヤンバ
ー)が立方形のものは電極も四角形であるため、
プラズマを発生させる電界分布が対向電極間で均
一にならない。さらに、従来のチヤンバーにおい
てステンレス等の金属からなる壁面でプラズマを
閉じ込めるものでは、高周波放電は、主に給電電
極と接地電極の間で行われているものの、通常接
地電位にある壁面と給電電極の間においても、わ
ずかに生じる。したがつて、斯る従来の装置では
上述した電極間の電界不均一及び給電電極と壁面
の放電のため、電極間に発生するプラズマが不均
一になり、膜形成装置においては微粒子の付着、
エツチング装置においてはポリマーの付着や逆ス
パツタによる不純物の混入などの発生が生じると
いつた欠点を有している。これらの欠点は装置の
大型化に伴い顕著に現われる。
In conventional plasma processing equipment, the discharge chamber is cubic, and the electrodes are also square.
The electric field distribution for generating plasma is not uniform between opposing electrodes. Furthermore, in conventional chambers that confine plasma with walls made of metal such as stainless steel, high-frequency discharge occurs mainly between the power supply electrode and the ground electrode. Even in between, it occurs slightly. Therefore, in such conventional devices, the plasma generated between the electrodes becomes non-uniform due to the above-mentioned non-uniform electric field between the electrodes and discharge between the feeding electrode and the wall surface.
Etching equipment has drawbacks such as polymer adhesion and contamination of impurities due to back spatter. These drawbacks become more noticeable as the device becomes larger.

そこで、このような欠点を解決するため、特開
昭61−15977号公報に開示されている如くチヤン
バーの一面全体を電極に置き換えたものが考えら
れている。第2図はその基本構造を示し、1は給
電電極、2は該給電電極1と対向して設けられた
接地電極、3は絶縁材料あるいは内側表面を絶縁
体で覆つた金属材料からなる壁面、4は容量負
荷、5は高周波電源、6はプラズマ処理を施す試
料である。即ち、斯る先行技術ではチヤンバーの
壁面3に絶縁材料を用いることによつて、給電電
極1と壁面3との放電を極力抑えることができ、
また図に示すように両電極1,2を壁面3まで拡
げ、チヤンバー内全体の電界分布を均一にするこ
とによつて、試料6が大面積を有していても、試
料6表面を均一にプラズマに曝すことができる。
In order to solve these drawbacks, it has been proposed to replace the entire surface of the chamber with an electrode, as disclosed in Japanese Patent Application Laid-Open No. 15977/1983. FIG. 2 shows its basic structure, in which 1 is a power supply electrode, 2 is a ground electrode provided opposite to the power supply electrode 1, 3 is a wall made of an insulating material or a metal material whose inner surface is covered with an insulator, 4 is a capacitive load, 5 is a high frequency power source, and 6 is a sample to be subjected to plasma treatment. That is, in such prior art, by using an insulating material for the wall surface 3 of the chamber, it is possible to suppress the discharge between the power supply electrode 1 and the wall surface 3 as much as possible,
In addition, as shown in the figure, by extending both electrodes 1 and 2 to the wall surface 3 and making the electric field distribution uniform throughout the chamber, even if the sample 6 has a large area, the surface of the sample 6 can be uniformly spread. Can be exposed to plasma.

然し乍ら、斯る先行技術では電極間でプラズマ
を均一に分布できるものの、高周波における放電
は不安定であるため、わずかなガス圧変動や放電
電力変動により放電が停止したり、あるいはプラ
ズマと接しているチヤンバー内の突起部に放電が
集中する異常放電が生じたり、また発生したプラ
ズマが、反応ガス又は不活性ガスなどの吹き出し
口の穴に集中するといつた現象が現われる。これ
らの現象が現われた場合、電極間に発生するプラ
ズマの密度が空間的、時間的に変動することとな
り、膜形成装置であれば微粒子の異常発生やチヤ
ンバーの壁面3への膜付着、エツチング装置であ
れば極端なエツチング・レートの低下やポリマー
の発生が起こるため、良好なプラズマ処理が行え
ないという問題が生じる。
However, although such prior art allows plasma to be distributed uniformly between the electrodes, the discharge at high frequencies is unstable, so slight fluctuations in gas pressure or discharge power may cause the discharge to stop, or the discharge may stop when the plasma is in contact with the plasma. Phenomena appear when abnormal discharge occurs where the discharge concentrates on a protrusion within the chamber, or when the generated plasma concentrates on the outlet hole for reactant gas or inert gas. If these phenomena occur, the density of the plasma generated between the electrodes will fluctuate spatially and temporally, and in the case of film forming equipment, abnormal generation of fine particles, film adhesion to the chamber wall 3, and etching equipment may be affected. If this is the case, the etching rate will drop significantly and polymer will be generated, resulting in the problem that good plasma processing cannot be performed.

(ハ) 考案が解決しようとする課題 本考案は上述の問題である高周波における不安
定な放電を解消し、安定な放電を行うことによつ
て良好なプラズマ処理を行なうものである。
(c) Problems to be solved by the invention The present invention solves the above-mentioned problem of unstable discharge at high frequencies and performs good plasma processing by performing stable discharge.

(ニ) 課題を解決するための手段 本考案は、互いに対向して配置され、プラズマ
放電を誘起する給電電極及び接地電極と、該電極
間に誘起されたプラズマを閉じ込めるべく設けら
れた絶縁材料からなる壁面と、上記給電電極に接
続された容量負荷及び高周波電源と、を備えた高
周波放電プラズマ処理装置であつて、上述の問題
点を解決するため、上記接地電極の面積が上記給
電電極の面積より大きいことを特徴とする。
(d) Means for solving the problem The present invention consists of a power feeding electrode and a grounding electrode that are arranged opposite to each other to induce plasma discharge, and an insulating material provided between the electrodes to confine the plasma induced. In order to solve the above-mentioned problem, the area of the ground electrode is equal to the area of the power supply electrode. It is characterized by being larger.

(ホ) 作用 本考案高周波放電プラズマ処理装置は上述の如
く、接地電極の面積を給電電極の面積よりも大き
くすることによつて、電極間の電位勾配が給電電
極側に大きく偏倚する。
(E) Effect As described above, in the high frequency discharge plasma processing apparatus of the present invention, by making the area of the ground electrode larger than the area of the power supply electrode, the potential gradient between the electrodes is largely biased toward the power supply electrode side.

(ヘ) 実施例 第1図aは、本考案の一実施例を示す断面図
で、第2図に示した先行技術と同じものには同番
号を付し、説明を省略する。即ち、先行技術と異
なるところは第1図bに示すように、接地電極2
の電極面を壁面3に沿つて立ち上がらせ、当該接
地電極2の実効的な電極面積を給電電極1の面積
より大きくしたところである。
(f) Embodiment FIG. 1a is a cross-sectional view showing an embodiment of the present invention, and the same parts as those in the prior art shown in FIG. 2 are given the same numbers, and their explanation will be omitted. That is, the difference from the prior art is that, as shown in FIG. 1b, the ground electrode 2
The electrode surface is made to stand up along the wall surface 3, and the effective electrode area of the ground electrode 2 is made larger than the area of the power supply electrode 1.

本考案装置及び従来装置の容量結合型プラズマ
処理装置のチヤンバー内は図に示していないロー
タリーポンプ等の減圧排気手段によつて0.1Torr
以下に減圧した後、膜形成装置においては原料ガ
ス、エツチング装置においてはエツチヤントガス
を0.1〜10Torr程度になるまで導入する。そして
高周波電源5により、給電電極1に100KHz以上
の高周波電圧が印加されると、電極間で放電が生
じると共に電極間にプラズマが発生する。このと
き、電極間には、給電電極1及び接地電極2近傍
にそれぞれ、ダーク・スペースと呼ばれる暗部が
生じ、ここで主に化学的に活性な種(ラジカル
種)が生成され、このラジカル種が種々の反応に
寄与する。一方、給電電極1側のダークスペース
の直流成分電位差をV1、接地電極2側のダー
ク・スペースの直流成分電位差をV2、給電電極
1、接地電極2の面積をそれぞれA1,A2とする
と、一般的にV1/V2=(A2/A14の式が成り立
つ、また電極間では、生成したプラズマのうち質
量の軽い電子が高周波に応じて運動し、接地電極
2に到達するとそのままアースに流れ、給電電極
1に到達すると容量負荷4に蓄積される。したが
つて、給電電極1は負の直流電位を持つと同時
に、電極間は電子が少なくなり、質量の重い正イ
オンが残るため正の直流電位を持つ。また接地電
極2はOV電位であるため、結果として両電極は
共に電極間の電位よりも低い電位を持つことにな
る。即ち上述のV1及びV2は互いに逆極性の電位
になる。したがつて、上述の式より給電電極1と
接地電極2の面積が等しい従来装置では2つのダ
ークスペースの電位差はV1=V2となり、電極間
の電位勾配は略等しくなる。したがつて放電は給
電電極1と接地電極2との両方向において生じる
ため、不安定になることが推測される。
The inside of the chamber of the capacitively coupled plasma processing apparatus of the present invention and the conventional apparatus is 0.1 Torr by means of reduced pressure evacuation means such as a rotary pump (not shown in the figure).
After reducing the pressure to below, a source gas is introduced into the film forming apparatus and an etchant gas is introduced into the etching apparatus until the pressure reaches about 0.1 to 10 Torr. When a high frequency voltage of 100 KHz or more is applied to the power supply electrode 1 by the high frequency power supply 5, a discharge occurs between the electrodes and plasma is generated between the electrodes. At this time, a dark space called a dark space is generated between the electrodes near the power supply electrode 1 and the ground electrode 2, and chemically active species (radical species) are mainly generated here. Contributes to various reactions. On the other hand, the DC component potential difference in the dark space on the power supply electrode 1 side is V 1 , the DC component potential difference in the dark space on the ground electrode 2 side is V 2 , and the areas of the power supply electrode 1 and ground electrode 2 are A 1 and A 2 , respectively. Then, in general, the formula V 1 /V 2 = (A 2 /A 1 ) 4 holds true, and between the electrodes, the electrons with low mass in the generated plasma move in response to the high frequency, and are transferred to the ground electrode 2. When it reaches the power supply electrode 1, it flows directly to the ground, and when it reaches the power supply electrode 1, it is accumulated in the capacitive load 4. Therefore, the power feeding electrode 1 has a negative DC potential, and at the same time has a positive DC potential because there are fewer electrons between the electrodes and positive ions with heavy mass remain. Furthermore, since the ground electrode 2 has an OV potential, both electrodes have a lower potential than the potential between the electrodes. That is, the above-mentioned V 1 and V 2 have potentials of opposite polarity. Therefore, according to the above equation, in the conventional device in which the feeding electrode 1 and the grounding electrode 2 have the same area, the potential difference between the two dark spaces becomes V 1 =V 2 , and the potential gradients between the electrodes are approximately equal. Therefore, since discharge occurs in both directions of the power supply electrode 1 and the ground electrode 2, it is assumed that the discharge becomes unstable.

そこで本考案装置では、接地電極2の面積を給
電電極1の面積より大きくすることによつて、上
述の式がV1≫V2となり電極間の電位勾配が給電
電極1側に大きく偏倚するため、放電は一方向の
みにおいて生じ易くなる。したがつて本考案装置
の放電は一方向において安定して行われる。その
結果、本考案装置では放電の停止、集中、変動等
の現象は起こらなくなり膜形成装置においては、
均一で良質な膜が再現性良く得られ、エツチング
装置においては、所望のエツチングを均一に、且
つ再現性良く行うことができる。
Therefore, in the device of the present invention, by making the area of the ground electrode 2 larger than the area of the power supply electrode 1, the above equation becomes V 1 ≫ V 2 , and the potential gradient between the electrodes is largely biased toward the power supply electrode 1 side. , discharge tends to occur only in one direction. Therefore, the discharge of the device of the present invention is performed stably in one direction. As a result, phenomena such as stoppage, concentration, and fluctuation of discharge do not occur in the device of the present invention, and in the film forming device,
A uniform, high-quality film can be obtained with good reproducibility, and the etching apparatus can perform desired etching uniformly and with good reproducibility.

また、本実施例ではチヤンバーを円柱型のもの
としたが立方体型のものでも同様の効果が得られ
る。
Further, in this embodiment, the chamber is cylindrical, but the same effect can be obtained even if the chamber is cubic.

第3図は本考案装置の他の実施例である。図に
示すように本実施例では接地電極2の壁面3に沿
つて立ち上げられた、プラズマと接する部分にテ
ーパーをつけることにより電極面積をさらに拡
げ、より大きな効果を得ると共に、電極端部での
放電の集中を防止することによつて、より安定な
放電を行うことができる。
FIG. 3 shows another embodiment of the device of the present invention. As shown in the figure, in this embodiment, the area of the electrode raised along the wall surface 3 of the ground electrode 2 is tapered to make contact with the plasma, thereby further expanding the electrode area and obtaining a greater effect. By preventing the concentration of discharge, more stable discharge can be achieved.

第4図は本考案装置のさらに他の実施例であ
る。本実施例においては、接地電極2の壁面3に
沿つて立ち上げられたプラズマと接する部分を凹
凸状にし、実効的な電極面積を大きくしたもので
ある。
FIG. 4 shows still another embodiment of the device of the present invention. In this embodiment, the portion along the wall surface 3 of the ground electrode 2 that comes into contact with the raised plasma is made uneven to increase the effective electrode area.

第5図は本考案装置のさらに他の実施例であ
る。本実施例においては、接地電極2を壁面3に
沿つて立ち上げると共に、メツシユ状に加工され
た電極21を給電電極1と試料6の間に配置し、
且つ接地電極2の壁面3に沿う面と接続して接地
電位とすることによつて高周波放電を給電電極1
とメツシユ状電極21及び接地電極2の壁面3に
沿つた部分において行うものである。これにより
電極にメツシユ状のものを用い、試料を直接プラ
ズマに曝さないプラズマ処理装置においても接地
電極2の面積が給電電極1の面積より大きくな
り、安定した放電が行える。
FIG. 5 shows still another embodiment of the device of the present invention. In this embodiment, the ground electrode 2 is raised along the wall surface 3, and a mesh-shaped electrode 21 is placed between the power supply electrode 1 and the sample 6.
In addition, by connecting the surface along the wall surface 3 of the grounding electrode 2 to the ground potential, the high frequency discharge is connected to the surface along the wall surface 3 of the feeding electrode 1.
This is done at the portions along the wall surface 3 of the mesh-like electrode 21 and the ground electrode 2. As a result, even in a plasma processing apparatus in which a mesh-shaped electrode is used and the sample is not directly exposed to plasma, the area of the ground electrode 2 becomes larger than the area of the power supply electrode 1, and stable discharge can be performed.

以上の実施例はいずれも壁面3をチヤンバー側
面だけとしたが、壁面3が両電極を含めたチヤン
バー全体を覆うものであつても差し支えない。
In all of the above embodiments, the wall surface 3 is only the side surface of the chamber, but the wall surface 3 may cover the entire chamber including both electrodes.

(ト) 考案の効果 上述の説明から明らかな如く本考案装置は接地
電極の面積を給電電極の面積より大きくし、電極
間の電位勾配を給電電極側に偏倚することによつ
て安定した放電を得ることができるため良好なプ
ラズマ処理が行える。即ち、本考案装置を膜形成
装置に用いた場合では、均一で良質な膜が再現性
良く得られ、また本考案装置をエツチング装置に
用いた場合では、所望のエツチングを均一に、且
つ再現性良く行うことができる。
(g) Effects of the invention As is clear from the above explanation, the device of the present invention makes the area of the ground electrode larger than the area of the power supply electrode, and by biasing the potential gradient between the electrodes toward the power supply electrode side, stable discharge can be achieved. Since it can be obtained, good plasma processing can be performed. That is, when the device of the present invention is used in a film forming device, a uniform and high-quality film can be obtained with good reproducibility, and when the device of the present invention is used in an etching device, the desired etching can be performed uniformly and reproducibly. can do well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案装置の一実施例を示し、同図a
はその断面図、同図bは接地電極の外観図、第2
図は従来装置を示す断面図、第3図乃至第5図は
本考案装置の異なる実施例をそれぞれ示す断面図
である。 1……給電電極、2……接地電極、3……壁
面、4……容量負荷、5……高周波電源、6……
試料。
Figure 1 shows an embodiment of the device of the present invention;
is a cross-sectional view of the same, b is an external view of the ground electrode, and the second
The figure is a sectional view showing a conventional device, and FIGS. 3 to 5 are sectional views showing different embodiments of the device of the present invention. 1... Power supply electrode, 2... Ground electrode, 3... Wall surface, 4... Capacitive load, 5... High frequency power supply, 6...
sample.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 互いに対向して配置され、プラズマ放電を誘起
する給電電極及び接地電極と、該電極間に誘起さ
れたプラズマを閉じ込めるべく設けられた絶縁性
の壁面と、上記給電電極に接続された容量負荷及
び高周波電源と、を備え、上記接地電極の面積が
上記給電電極の面積より大きいことを特徴とした
高周波放電プラズマ処理装置。
A feeding electrode and a grounding electrode arranged to face each other and inducing plasma discharge, an insulating wall surface provided between the electrodes to confine the plasma induced, and a capacitive load and a high frequency wave connected to the feeding electrode. A high-frequency discharge plasma processing apparatus, comprising: a power source, wherein the area of the ground electrode is larger than the area of the power supply electrode.
JP1988003770U 1988-01-14 1988-01-14 Expired JPH0449174Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988003770U JPH0449174Y2 (en) 1988-01-14 1988-01-14

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988003770U JPH0449174Y2 (en) 1988-01-14 1988-01-14

Publications (2)

Publication Number Publication Date
JPH01110832U JPH01110832U (en) 1989-07-26
JPH0449174Y2 true JPH0449174Y2 (en) 1992-11-19

Family

ID=31205703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988003770U Expired JPH0449174Y2 (en) 1988-01-14 1988-01-14

Country Status (1)

Country Link
JP (1) JPH0449174Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179263B2 (en) 2004-10-08 2008-11-12 トヨタ自動車株式会社 Internal combustion engine with a supercharger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151328A (en) * 1979-05-16 1980-11-25 Hitachi Ltd Method and apparatus for fabricating hydrogen-containing amorphous semiconductor film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151328A (en) * 1979-05-16 1980-11-25 Hitachi Ltd Method and apparatus for fabricating hydrogen-containing amorphous semiconductor film

Also Published As

Publication number Publication date
JPH01110832U (en) 1989-07-26

Similar Documents

Publication Publication Date Title
JPS61253823A (en) Plasma reactor
JPS627272B2 (en)
JPH057861B2 (en)
JP2000323460A5 (en)
JP2000156370A (en) Method of plasma processing
JPH0449174Y2 (en)
JP3343629B2 (en) Plasma processing equipment
JPH09129594A (en) Method and apparatus for dry etching
JPS60123032A (en) Plasma treatment and device thereof
JP3033787B2 (en) Plasma processing equipment
JPH06291064A (en) Plasma treatment device
JPH02198138A (en) Electrode plate of parallel plate type dry etching apparatus
JP3034358B2 (en) Plasma processing equipment
JP3336989B2 (en) Dry etching equipment
JPS61238981A (en) Method for making uniform high-frequency etching
JP2691018B2 (en) Plasma etching method
JP4576011B2 (en) Plasma processing equipment
JP3278732B2 (en) Etching apparatus and etching method
JPS5856339A (en) Plasma etching device
JP2809041B2 (en) Plasma CVD apparatus and plasma CVD method
JPS60189925A (en) High frequency discharge reactor
JP2901623B2 (en) Plasma cleaning method
JPH0561350B2 (en)
JPH04133431U (en) dry etching equipment
JPS60189220A (en) Plasma cvd apparatus