JPH0449027A - Manufacture of frp molded form - Google Patents

Manufacture of frp molded form

Info

Publication number
JPH0449027A
JPH0449027A JP2158415A JP15841590A JPH0449027A JP H0449027 A JPH0449027 A JP H0449027A JP 2158415 A JP2158415 A JP 2158415A JP 15841590 A JP15841590 A JP 15841590A JP H0449027 A JPH0449027 A JP H0449027A
Authority
JP
Japan
Prior art keywords
reinforcing material
resin
layer
mold
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2158415A
Other languages
Japanese (ja)
Inventor
Yasushi Kageyama
裕史 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2158415A priority Critical patent/JPH0449027A/en
Publication of JPH0449027A publication Critical patent/JPH0449027A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the positional displacement of a core material by setting a reinforcing material in a shape that a foamed core layer is held integrally between fiber layers to a resin injection molding die. CONSTITUTION:A laminate 1 composed of an upper fiber layer 2, an intermediate layer 3 and a lower fiber layer 4 is preheated by an open type preheater 11. Consequently, the intermediate layer 3 including a granular foaming resin is foamed and expanded, and a reinforcing material 12 in a shape that a foamed core layer 22 is held between the upper and lower fiber layers 2, 4 is obtained. A molded reinforcing material 14 is acquired by pressing the reinforcing material 12 by a molding die 13. The peripheral section of he reinforcing material 14 is trimmed and set to a resin injection molding die 16, and a two-pack type reactive liquid resin 17 is injected into the die 16 through a filler hole 19 from a mixing head 18. The liquid resin 17 injected is fluidized while being permeated into the fiber layers 2, 4 of the reinforcing material 14, the reinforcing material 14 is covered completely with the resin 17, and the liquid resin 17 is given heat by a heating mechanism set up to the resin injection molding die 16 and cured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、補強材として強化用繊維とコア材が用いられ
たFRP成形品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing an FRP molded product using reinforcing fibers and a core material as reinforcing materials.

(従来の技術) FRP (繊維強化プラスチックス)の補強材としては
、周知のようにチョップ状又はマット状の強化用繊維を
用いるのが一般的である。
(Prior Art) As a reinforcing material for FRP (fiber reinforced plastics), chopped or matted reinforcing fibers are generally used as well known.

また、軽量化に加えて更に強度・剛性を必要とする構造
部品をFRPで作る際には、そのPPP成形品の中にコ
ア材を設ける場合が多い、軽量というFRPの利点を損
なわないように、コア材としては軽量のフオーム材やハ
ニカム材が通常用いられている。第4図に示すようにフ
オーム材25は、フオームコア・サンドイッチ構造体2
7が形成されるように金型内で繊維基材26及び樹脂と
一体化される。一方、ハニカム材は通常第5図に示すよ
うに展張コア31の両面に接着剤32を付けてFRP表
面板33を貼り合わせてハニカムコア・サンドイッチ構
造体にされる。ハニカム材は成形性に乏しく板状製品に
しか使用できないので、複雑形状のFRP成形品を製造
するための軽量補強材としては専ら前者のフオーム材が
使用されている。
In addition, when making structural parts using FRP that require strength and rigidity in addition to being lightweight, a core material is often provided inside the PPP molded product, so as not to lose the advantage of FRP that it is lightweight. A lightweight foam material or honeycomb material is usually used as the core material. As shown in FIG.
The fiber base material 26 and the resin are integrated in the mold so that a fiber base material 7 is formed. On the other hand, honeycomb materials are usually made into a honeycomb core sandwich structure by applying adhesive 32 to both sides of a stretched core 31 and pasting FRP surface plates 33 together, as shown in FIG. Since honeycomb materials have poor formability and can only be used for plate-shaped products, the former foam material is exclusively used as a lightweight reinforcing material for manufacturing FRP molded products with complex shapes.

補強材として強化用繊維と発泡コア材を用いたFRP成
形品の製造方法は多々知られているが、このような高強
度FRP成形品は、繊維基材と発泡コア材を一体成形で
きる利点を有するレジンインジェクション成形で製造さ
れるのが殆どである、この場合、FRP成形品は、wi
維基材及び発泡コア材を成形型にセットした後、成形型
に設けられている注入孔より反応性液状樹脂を型内に注
入し、硬化させるというプロセスで製造される(特開昭
60−189436号公報参照)。
Many methods of manufacturing FRP molded products using reinforcing fibers and foam core materials are known, but such high-strength FRP molded products have the advantage of being able to integrally mold the fiber base material and foam core material. In most cases, FRP molded products are manufactured by resin injection molding with
After the fiber base material and foam core material are set in a mold, reactive liquid resin is injected into the mold through the injection hole provided in the mold and cured. (see publication).

(発明が解決しようとする課題) 上記発泡コア材を有するFRP成形品をレジンインジェ
クション成形で製造する方法においては、繊維基材及び
発泡コア材を別々に作る必要があり、そのための型費や
製造コストが小さくないので、FRP成形品を安価に提
供できないという問題がある。特に多数の発泡コア材を
必要とする大型複雑形状部品でこの問題は顕著となる。
(Problems to be Solved by the Invention) In the method of manufacturing an FRP molded product having a foamed core material by resin injection molding, it is necessary to separately manufacture the fiber base material and the foamed core material, and the mold cost and manufacturing cost for this is high. Since the cost is not small, there is a problem that FRP molded products cannot be provided at low cost. This problem is particularly noticeable in large, complex-shaped parts that require a large number of foam core materials.

また、成形型への発泡コア材のセット時に発泡コア材が
ずれ、品質の面で欠陥のあるFRP成形品が製造される
という問題もあり、さらにこのようにして製造されたF
RP成形品においては、発泡コア材とFRP層との接合
力が低いため、成形品に応力が作用した際に層間剥離が
発生し、強度低下をもたらし易い。
In addition, there is a problem that the foam core material shifts when it is set in the mold, resulting in the production of FRP molded products with defects in quality.
In RP molded products, since the bonding strength between the foam core material and the FRP layer is low, delamination occurs when stress is applied to the molded product, which tends to cause a decrease in strength.

本発明は上記問題を解決する目的でなされたものであり
、その解決しようとする課題は、補強材として繊維基材
の他に発泡コア材も含むFRP成形品を製造する方法に
おいて、繊維基材と発泡コア材とを別々に作る必要がな
く、レジンインジェクション成形時にコア材のずれが起
こらず、高強度のFRP成形品を製造できる方法を提供
することである。
The present invention has been made for the purpose of solving the above-mentioned problems, and the problem to be solved is that in a method for manufacturing an FRP molded product that includes a foam core material in addition to a fiber base material as a reinforcing material, To provide a method for manufacturing a high-strength FRP molded product without the need to separately produce a foam core material and a foam core material, and without causing displacement of the core material during resin injection molding.

(課題を解決するための手段) 本発明のFRP成形品の製造方法は、粒状発泡性樹脂を
含む中間繊維層とそれを挟む二つの繊維層とからなる積
層体を吸引成形法にて成形し、この積層体を型内又は型
外で予備加熱して上記粒状発泡性樹脂を発泡させること
により、二つの繊維層で発泡コア層を挟んでなる補強材
を製造した後、該補強材を型内にセットした状態でレジ
ンインジェクション成形することを特徴とする。
(Means for Solving the Problems) The method for producing an FRP molded product of the present invention involves molding a laminate consisting of an intermediate fiber layer containing a granular foamable resin and two fiber layers sandwiching it by a suction molding method. By preheating this laminate inside or outside the mold to foam the granular foamable resin, a reinforcing material having a foamed core layer sandwiched between two fiber layers is manufactured, and then the reinforcing material is molded. It is characterized by resin injection molding while it is set inside.

吸引成形法は、分散媒(液体又は気体)に素材を分散さ
せ、フィルタを通して分散媒を吸引することによりフィ
ルタ上に素材の堆積した成形体を得る方法であり、本発
明においては分散媒に水を用いる吸引成形法が、設備や
操作の面で好ましい、二つの繊維層と粒状発泡性樹脂を
含む中間繊維層を作るための繊維は同一でも異なっても
よく、ガラス繊維、炭素繊維、ケブラー繊維等、樹脂を
強化できる繊維であれば何でも使用できる。
The suction molding method is a method of dispersing a material in a dispersion medium (liquid or gas) and suctioning the dispersion medium through a filter to obtain a molded body in which the material is deposited on a filter.In the present invention, water is added to the dispersion medium. The suction molding method using the fibers used to make the two fibrous layers and the intermediate fibrous layer containing the granular foamed resin may be the same or different, and may include glass fibers, carbon fibers, Kevlar fibers, etc. Any fiber can be used as long as it can strengthen the resin.

中間繊維層に添加される粒状発泡性樹脂としては、反応
性のフェノール樹脂、ウレタン樹脂、エポキシ樹脂等の
熱硬化性樹脂に発泡剤、硬化剤等を加えて粒状物にした
ものが挙げられる。樹脂の粒径は005〜2+am程度
でよい0発泡剤としては加熱すると分解してガスを発生
する化学発泡剤、例えばアゾニトリル化合物、ベンゼン
スルホヒドラジン化合物、ジアゾアミド系化合物が使用
できる。
Examples of the granular foamable resin added to the intermediate fiber layer include granules obtained by adding a foaming agent, a curing agent, etc. to a reactive thermosetting resin such as a phenol resin, a urethane resin, or an epoxy resin. The particle size of the resin may be about 0.05 to 2+ am. As the blowing agent, chemical blowing agents that decompose and generate gas when heated, such as azonitrile compounds, benzenesulfohydrazine compounds, and diazoamide compounds, can be used.

吸引成形された積層物から型にセットする補強材を得る
ための予備加熱は、樹脂の予備加熱に一般的に使用され
ているオーブン方式、遠赤外線方式、高周波方式等の予
備加熱装置を用いて行なえばよい。その際、得られる補
強材を成形不可能にするほど加熱硬化させてはならない
1粒状発泡性樹脂の種類にもよるが、予備加熱温度は多
(の場合1[11(] −150℃である。一方、型内
で積層物から補強材を得るための予備加熱は、型に設け
られている型加熱手段(熱媒液流通管等)で行なう、こ
の場合の予備加熱温度は型外での予備加熱の場合よりも
高くてよい。
Preheating to obtain a reinforcing material to be set in a mold from a suction-molded laminate is performed using preheating equipment such as an oven method, a far-infrared method, or a high-frequency method, which are commonly used for preheating resins. Just do it. In this case, the reinforcing material obtained must not be heated and cured to the extent that it becomes impossible to mold it.It depends on the type of granular foamable resin, but the preheating temperature is 1[11(] -150°C in the case of poly()). On the other hand, preheating to obtain reinforcing material from the laminate inside the mold is performed using mold heating means (heat medium liquid flow pipe, etc.) provided in the mold.In this case, the preheating temperature is the same as that outside the mold. It may be more expensive than preheating.

補強材を製品形状にするには、レジンインジェクション
成形型で押圧するか、別のプレス成形型で成形するか、
型内で予備加熱して補強材を作るか、或は積層体を作る
時に吸引成形装置に特定形状のフィルタを用い得られた
特定形状の積層体を予備加熱すればよい、どのようにし
て製品形状にするかは形状の難易具合によって適宜選択
すればよい。
To shape the reinforcing material into a product, you can either press it with a resin injection mold, or mold it with a separate press mold.
The reinforcing material can be made by preheating in a mold, or the laminate with a specific shape can be preheated by using a filter with a specific shape in the suction molding device when making the laminate. The shape to be used may be selected depending on the difficulty of the shape.

補強材をレジンインジェクション成形型にセットした状
態で粘度の低い液状樹脂ないし樹脂原料を型に注入し硬
化させることによりFRP成形品が得られる1本発明方
法は、不飽和ポリエステル樹脂、エポキシ樹脂、フェノ
ール樹脂等の熱硬化性樹脂のFRP成形品の製造は勿論
、酢酸ビニル樹脂、ポリアミド、ポリカーボネート等の
熱可塑性樹脂のFRP成形品すなわちF RT P (
FiberRei nforced Ther+mop
lastics)成形品の製造にも適用できる。
An FRP molded product can be obtained by injecting a low-viscosity liquid resin or resin raw material into the mold with the reinforcing material set in a resin injection mold and curing it. In addition to manufacturing FRP molded products made of thermosetting resins such as resins, we also manufacture FRP molded products made of thermoplastic resins such as vinyl acetate resin, polyamide, polycarbonate, etc.
FiberReinforced Ther+mop
It can also be applied to the production of molded products.

(作用) 粒状発泡性樹脂を含む中間繊維層とそれを挟む二つの繊
維層とからなる積層体を吸引成形法にて成形すると、隣
接する層の繊維が絡み合って一体となった積層体が得ら
れる。これを予備加熱すると、中間繊維層に含まれてい
る粒状発泡性樹脂が熱で繊維間に溶融拡散するとともに
発泡反応でフオームを形成することにより、ある程度硬
化した発泡コア層となる。このようにして繊維基材(二
つの繊維層)の間にコア材(中間の発泡コア層)が挟ま
れた一体構造の補強材を製造することは、従来のように
繊維基材とコア材を別々に製造することを不要にする。
(Function) When a laminate consisting of an intermediate fibrous layer containing a granular foamable resin and two fibrous layers sandwiching it is molded by suction molding, a laminate in which the fibers of adjacent layers are intertwined and integrated is obtained. It will be done. When this is preheated, the granular foamable resin contained in the intermediate fiber layer is melted and diffused between the fibers by heat, and a foam is formed by a foaming reaction, resulting in a foamed core layer that has been hardened to some extent. Manufacturing a reinforcing material with an integral structure in which the core material (intermediate foam core layer) is sandwiched between the fiber base materials (two fiber layers) in this way is different from the conventional method where the fiber base material and core material are sandwiched between the fiber base materials (two fiber layers). Eliminates the need to manufacture them separately.

中間の発泡コア層の弾力性は、補強材の形状追従性(型
形状に追従して変形する能力)を高め、隙間なく型内に
補強材をセットすることを容易にする。なお、型内で発
泡させると形状追従性、作業性が一層良くなる。そして
二つの繊維層に挟まれた発泡コア層は、レジンインジェ
クション成形時の熱で更に発泡硬化する。その膨張力は
、樹脂の注入圧力による補強材の位置ずれを阻止し、F
RPマトリックス樹脂中に均一に繊維が充填され正確な
位置にコア材が内蔵されるとともに、FRP層と発泡コ
ア層が一体化されたFRP成形品を生じさせる。
The elasticity of the intermediate foam core layer enhances the shape followability of the reinforcing material (the ability to deform to follow the shape of the mold), and makes it easy to set the reinforcing material in the mold without any gaps. Note that foaming in a mold improves shape followability and workability. The foam core layer sandwiched between the two fiber layers is further foamed and hardened by the heat during resin injection molding. The expansion force prevents the reinforcing material from shifting due to resin injection pressure, and F
Fibers are uniformly filled into the RP matrix resin, the core material is embedded in a precise position, and an FRP molded product is produced in which the FRP layer and the foam core layer are integrated.

(実施例) 以下、本発明方法の実施例を図面に基づきながら説明す
る。
(Example) Hereinafter, an example of the method of the present invention will be described based on the drawings.

実施例1 本実施例では第1図に示すような積層体1を用いてFR
P成形品を製造する。この情層体1は、上繊維層2、中
間層3及び下繊維層4の三層からなっている。上繊維層
2と下繊維層4は、FRPの繊維基材に一般的に使用さ
れているチョップ状ガラス繊維5でできており、そして
中間層3は、粒状発泡性樹脂7とチョップ状ガラス繊維
6の混合物でできている6 上記積層体1は、第2図に示すように吸引成形装置によ
って製造される。この装置は、水8を入れるタンク15
の下部にフィルタ10を設け、フィルタ10の上側を撹
拌槽とし、フィルタlOの下から水を吸引排水するよう
にした装置である。上記フィルタ10は、液体は通すが
繊維や粒状発泡性樹脂を通さないフィルタである。
Example 1 In this example, a laminate 1 as shown in FIG.
Manufacture P molded products. This layered body 1 consists of three layers: an upper fiber layer 2, an intermediate layer 3, and a lower fiber layer 4. The upper fiber layer 2 and the lower fiber layer 4 are made of chopped glass fibers 5 which are commonly used in the fiber base material of FRP, and the middle layer 3 is made of granular foamable resin 7 and chopped glass fibers. The laminate 1 made of a mixture of 6 and 6 is manufactured by a suction molding apparatus as shown in FIG. This device consists of a tank 15 containing water 8.
In this device, a filter 10 is provided at the bottom of the filter 10, a stirring tank is provided above the filter 10, and water is sucked and drained from below the filter 10. The filter 10 is a filter that allows liquid to pass through but does not allow fibers or granular foamed resin to pass through.

まず、界面活性剤を添加した水8及びチョップ状ガラス
繊維5を上からタンク15内に入れ、撹拌機9で十分に
混合した後、タンク15の底に設けられている排水管2
3を通じてタンク15内の水8を流し出す、この濾過操
作によってフィルタ10の表面にチョップ状ガラス繊維
5が堆積し、下繊維層4が形成される0次に、界面活性
剤を添加した水8、チョップ状ガラス繊維6及び粒状発
泡性樹脂7をタンク15内に入れ攪拌した後、先と同じ
ように濾過することによって粒状発泡性樹脂7とチョッ
プ状ガラス繊維6の混合物でなる中間層3(第1図参照
)が、すでに形成されている下繊維層4の上に形成され
る。その後、最初の操作を繰り返すことにより、中間層
3の上に上繊維層2が形成される。
First, water 8 to which a surfactant has been added and chopped glass fibers 5 are poured into the tank 15 from above, and after thoroughly mixing with the stirrer 9, the drain pipe 2 provided at the bottom of the tank 15
Through this filtration operation, chopped glass fibers 5 are deposited on the surface of the filter 10 to form a lower fiber layer 4. Next, water 8 to which a surfactant has been added is poured out. , chopped glass fibers 6 and granular foamable resin 7 are placed in a tank 15 and stirred, and then filtered in the same manner as before to form an intermediate layer 3 (made of a mixture of granular foamable resin 7 and chopped glass fibers 6) 1) is formed on the already formed lower fiber layer 4. Thereafter, the upper fiber layer 2 is formed on the intermediate layer 3 by repeating the first operation.

こうして得られた上繊維層2、中間層3及び下繊維層4
からなる積層体1を第3図 fal ” (blに示す
ようにオーブン式予備加熱装置11で予備加熱する。す
ると、粒状発泡性樹脂を含んでいる中間層3が発泡膨張
し、第3図fc)に示すような上下の繊維層2.4の間
に発泡コア層22を挟んだ形の補強材12が得られる。
Upper fiber layer 2, intermediate layer 3 and lower fiber layer 4 thus obtained
The laminate 1 is preheated in an oven-type preheating device 11 as shown in FIG. ) A reinforcing material 12 is obtained in which a foam core layer 22 is sandwiched between upper and lower fiber layers 2.4.

それを第3図fdlに示すように成形型13でプレスす
ることにより、成形された補強材14が得られる。その
周縁部をトリミングして製品形状にした補強材14を第
3図tel に示すようにレジンインジェクション成形
型16にセットした後、ミキシングヘッド18から注入
孔19を通じて二液タイプの反応性液状樹脂17を型1
6内に注入する。
By pressing it with a mold 13 as shown in FIG. 3 fdl, a molded reinforcing material 14 is obtained. After setting the reinforcing material 14 into a product shape by trimming its peripheral edge into a resin injection mold 16 as shown in FIG. Type 1
Inject into 6.

注入された液状樹脂17は、補強材14[第3図(dl
 参照]の繊維層2.4中に浸透しながら流動し補強材
14を完全に覆った後、レジンインジェクション成形型
16に設けられている加熱機構(図示せず)により熱を
付与され硬化する。その間、補強材14の発泡コア層2
2の未だ発泡硬化を終えていなかった部分も型態により
発泡硬化する。硬化終了後、脱型することにより第3図
(f+に示すように表層がFRP層21で内部が発泡コ
ア層22となっているFRP成形品20が得られる。
The injected liquid resin 17 is applied to the reinforcing material 14 [Fig. 3 (dl
After flowing while penetrating into the fiber layer 2.4 and completely covering the reinforcing material 14, it is heated by a heating mechanism (not shown) provided in the resin injection mold 16 and hardened. Meanwhile, the foam core layer 2 of the reinforcement material 14
The portions of No. 2 that have not yet been foamed and hardened are also foamed and hardened depending on the mold. After curing, the mold is demolded to obtain an FRP molded product 20 having an FRP layer 21 on the surface and a foam core layer 22 on the inside, as shown in FIG. 3 (f+).

実施例2 第3図(a)に示されている積層体1を型外で予備加熱
せずに、直接レジンインジェクション成形型内で予備加
熱する。こうして積層体1を、型16内に正しくセット
された補強材に変えた後、実施例1と同様にして(第3
図(e) −げ)参照)FRP成形品20を製造する0
本実施例は、実施例1の場合に鮫へ多少長い予備加熱時
間を必要とするが、型形状への追従性、作業性の点で優
れている。
Example 2 The laminate 1 shown in FIG. 3(a) is not preheated outside the mold, but is directly preheated in a resin injection mold. After changing the laminate 1 into a reinforcing material properly set in the mold 16, the same procedure as in Example 1 was carried out (the third
(See Figure (e) - ge)) 0 for manufacturing FRP molded product 20
Although this example requires a slightly longer preheating time for the shark than in Example 1, it is superior in terms of followability to mold shape and workability.

(発明の効果) 本発明方法によれば、繊維層の間に発泡コア層を一体的
に挟んだ形の補強材をレジンインジェクション成形型に
セットするので、コア材の位置ずれの無いFRP成形品
が得られる。
(Effects of the Invention) According to the method of the present invention, the reinforcing material in which the foam core layer is integrally sandwiched between the fiber layers is set in the resin injection mold, so the FRP molded product is free from misalignment of the core material. is obtained.

また、本発明方法では、弾力性のある中間の発泡コア層
を押し潰して又は発泡力を利用して補強材を型にセット
することとなるため、補強材の形状追従性がよくなり、
そして成形時に樹脂の注入圧力に対抗する膨張力が発泡
コア層から起こるので、成形品のコーナRの小さい部位
で生じていた樹脂リッチ部の発生が無くなる。
In addition, in the method of the present invention, the reinforcing material is set in the mold by crushing the elastic intermediate foam core layer or by using the foaming force, so that the shape followability of the reinforcing material is improved.
During molding, the foam core layer generates an expansion force that counters the injection pressure of the resin, eliminating the occurrence of resin-rich areas that occur in areas with small corner radii of the molded product.

しかも、中間の発泡コア層の繊維が二つの繊維層と絡み
合った補強材を用いているため、得られる成形品のFR
P層と発泡コア層の間の接合力が高まり、耐剥離・剪断
強度の優れたFRP成形品が得られる。
Moreover, since the reinforcing material is used in which the fibers of the intermediate foam core layer are intertwined with two fiber layers, the FR of the resulting molded product is
The bonding strength between the P layer and the foam core layer is increased, and an FRP molded product with excellent peeling resistance and shear strength can be obtained.

その上、繊維基材とコア材を別々に製造する必要がなく
なり、補強材の型へのセット作業も簡易となるので、生
産性向上効果をもたらす。
Furthermore, it is no longer necessary to separately manufacture the fiber base material and the core material, and the work of setting the reinforcing material into the mold becomes simple, resulting in the effect of improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例に係る補強材となる積層
体を切り欠いて示す斜視図、 第2図はその積層体の製造方法を示す説明図、第3図は
その後のFRP成形品の製造方法を示す工程図、 第4図は従来のコア材で補強されたFRPF&形品の製
造方法の一例を示す説明図、 第5図は別のコア材で補強されたFRP成形品の構造を
示す分解斜視図である。 図中、 l・・・積層体、    2・・・上繊維層、3・・・
中間層、    4・・・下繊維層、5.6・・・チョ
ップ状ガラス繊維、 7・・・粒状発泡性樹脂、  8・・・水、lO・・・
フィルタ、   11・・・予備加熱装置12・・・補
強材、    14・・・成形された補強材。 16・・・レジンインジェクション成形型、17・・・
液状樹脂、   20・・・FRP成形品。 第1図 第2図 特許出願人  トヨタ自動車株式会社 代理人 弁理士  萼  優美(外2名)4・ソ十オー
144
Fig. 1 is a cutaway perspective view of a laminate serving as a reinforcing material according to an embodiment of the method of the present invention, Fig. 2 is an explanatory diagram showing a method for manufacturing the laminate, and Fig. 3 is a subsequent FRP molding. Figure 4 is an explanatory diagram showing an example of the manufacturing method for FRPF and shaped products reinforced with a conventional core material. Figure 5 is a process diagram showing an example of the manufacturing method for FRPF molded products reinforced with a different core material. FIG. 3 is an exploded perspective view showing the structure. In the figure, l...laminate, 2... upper fiber layer, 3...
Intermediate layer, 4... Lower fiber layer, 5.6... Chopped glass fiber, 7... Granular foamable resin, 8... Water, lO...
Filter, 11... Preheating device 12... Reinforcing material, 14... Molded reinforcing material. 16...Resin injection mold, 17...
Liquid resin, 20...FRP molded product. Figure 1 Figure 2 Patent Applicant Toyota Motor Corporation Agent Patent Attorney Yumi Kaede (2 others) 4 Sojuoh 144

Claims (1)

【特許請求の範囲】[Claims] 粒状発泡性樹脂を含む中間繊維層とそれを挟む二つの繊
維層とからなる積層体を吸引成形法にて成形し、この積
層体を型内又は型外で予備加熱して上記粒状発泡性樹脂
を発泡させることにより、二つの繊維層で発泡コア層を
挟んでなる補強材を製造した後、該補強材を型内にセッ
トした状態でレジンインジェクション成形することを特
徴とするFRP成形品の製造方法。
A laminate consisting of an intermediate fiber layer containing a granular foamable resin and two fibrous layers sandwiching it is molded by suction molding, and this laminate is preheated in or outside the mold to form the granular foamable resin. Manufacturing of an FRP molded product characterized by manufacturing a reinforcing material with a foamed core layer sandwiched between two fiber layers by foaming, and then resin injection molding with the reinforcing material set in a mold. Method.
JP2158415A 1990-06-16 1990-06-16 Manufacture of frp molded form Pending JPH0449027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2158415A JPH0449027A (en) 1990-06-16 1990-06-16 Manufacture of frp molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158415A JPH0449027A (en) 1990-06-16 1990-06-16 Manufacture of frp molded form

Publications (1)

Publication Number Publication Date
JPH0449027A true JPH0449027A (en) 1992-02-18

Family

ID=15671260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158415A Pending JPH0449027A (en) 1990-06-16 1990-06-16 Manufacture of frp molded form

Country Status (1)

Country Link
JP (1) JPH0449027A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183059A (en) * 2019-05-07 2020-11-12 トヨタ紡織株式会社 Molding apparatus, and method for manufacturing base material
WO2023214032A1 (en) * 2022-05-05 2023-11-09 Elringklinger Ag Method for producing a laminar composite, and laminar composite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183059A (en) * 2019-05-07 2020-11-12 トヨタ紡織株式会社 Molding apparatus, and method for manufacturing base material
WO2023214032A1 (en) * 2022-05-05 2023-11-09 Elringklinger Ag Method for producing a laminar composite, and laminar composite

Similar Documents

Publication Publication Date Title
EP1727669B1 (en) Composite part
US5773121A (en) Syntactic foam core incorporating honeycomb structure for composites
US5846357A (en) Method of making syntactic foam core material
JP5509212B2 (en) Manufacturing of structural composite elements
CN1938137B (en) Preform, FRP, and processes for producing these
US20030077965A1 (en) Three-dimensional spacer fabric resin infusion media and reinforcing composite lamina
KR19980703761A (en) Syntactic Foam Core Materials for Composite Structural Materials
WO2015096831A1 (en) Method for the in situ production of sandwich components reinforced by means of reinforcing fibers
CN107283878A (en) The die pressing manufacture craft of embedded co-curing perforation damp composite material
EP1060070B1 (en) Fibrous composite sandwich component and a production method for the same
JPH02175217A (en) Manufacture of glass fiber mat reinforced resin panel
JPH0449027A (en) Manufacture of frp molded form
JP2001007625A (en) Radome for antenna and forming method
JPH06344477A (en) Laminated molded product and production thereof
JPH10296939A (en) Fiber reinforced urethane resin duplicate layer foam and its manufacture
US5814256A (en) Process of producing preforms containing light weight filler particles
JPH06134913A (en) Laminated molded product and production thereof
JPS6216815B2 (en)
JP3028232B1 (en) Molding method for glass fiber reinforced plastic used in closed system molding method of glass fiber reinforced plastic and method for producing the same
JPH1158536A (en) Manufacture of fiber reinforced resin composite body
JPH1158534A (en) Manufacture of fiber reinforced urethane resin multi-layer foam
JPH06285885A (en) Extraction molding method of composite body
CN114643751A (en) Thermoplastic composite board and manufacturing method thereof
JPH02302280A (en) Ski and production thereof
Eckler et al. Processing and designing parts using structural reaction injection molding