JPH0448584B2 - - Google Patents

Info

Publication number
JPH0448584B2
JPH0448584B2 JP58082332A JP8233283A JPH0448584B2 JP H0448584 B2 JPH0448584 B2 JP H0448584B2 JP 58082332 A JP58082332 A JP 58082332A JP 8233283 A JP8233283 A JP 8233283A JP H0448584 B2 JPH0448584 B2 JP H0448584B2
Authority
JP
Japan
Prior art keywords
grinding
workpiece
power
amount
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58082332A
Other languages
Japanese (ja)
Other versions
JPS59209759A (en
Inventor
Yutaka Yamauchi
Takatoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP8233283A priority Critical patent/JPS59209759A/en
Publication of JPS59209759A publication Critical patent/JPS59209759A/en
Publication of JPH0448584B2 publication Critical patent/JPH0448584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、研削加工に於けるワークの寸法制
御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for controlling the dimensions of a workpiece in grinding.

(従来の技術とその課題) 従来、加工中のワーク寸法を連続的にインプロ
セスゲージで検測して制御機構にその検測データ
をインプツトし、予め指定された寸法になるまで
研削砥石の切込動作を自動的に制御する自動定寸
装置を装備した自動研削盤では、研削時の研削熱
に起因するワークの一定膨張量を見込んで寸法制
御が行なわれていた。
(Conventional technology and its issues) Conventionally, the dimensions of the workpiece being machined were continuously measured using an in-process gauge, the measurement data was input into a control mechanism, and the grinding wheel was used to cut the workpiece until it reached the pre-specified dimension. In automatic grinding machines equipped with automatic sizing devices that automatically control grinding operations, size control is performed by taking into account a certain amount of expansion of the workpiece due to grinding heat during grinding.

これを第1図に基づいて説明する。同図は従来
の代表的な研削サイクル(ギヤツプエリミネータ
付きゲージマチツクサイクル)と研削動力とを互
に対応づけて表した線図であつて、図中は切込
急送り、は切込早送り、は切込粗研送り、
は切込仕上げ送り、は切込スパークアウト、
は切込後退、○イは切込開始点、○ロは動力雰レベル
ホールド点、○ハはギヤツプエリミネーター検出点
(研削開始点)、○ニは粗研送り完了点、○ホは仕上げ
研完了点、○ヘは研削完了点、○トは切込後退点であ
る。
This will be explained based on FIG. This figure is a diagram showing the relationship between a typical conventional grinding cycle (gauge machining cycle with gear eliminator) and grinding power. Rapid feed, rough cutting feed,
is the finishing feed of the cut, is the spark-out of the cut,
○A is the cutting start point, ○B is the power atmosphere level hold point, ○C is the gear eliminator detection point (grinding start point), ○D is the rough grinding feed completion point, ○E is the finishing point The grinding completion point, ○ is the grinding completion point, and ○ is the cutting retreat point.

第1図中、上半分は研削切込みサイクル線図、
下半分が研削動力線図を示している。例えば、研
削開始点○ハと粗研送り完了点○ニとで画される粗研
削の間の全動力は、これらの点間で横軸と研削動
力線図との間に仕切られた面積(研削動力面積)
に対応する。従来はこの研削動力面積を一定と仮
定してワークの一定膨張量を見込んで寸法制御を
行なつていた。
In Figure 1, the upper half is the grinding cutting cycle diagram;
The lower half shows the grinding power diagram. For example, the total power during rough grinding defined by the grinding start point ○C and the rough grinding feed completion point ○D is the area divided between these points between the horizontal axis and the grinding power diagram ( Grinding power area)
corresponds to Conventionally, size control has been carried out by assuming that this grinding power area is constant and allowing for a constant amount of expansion of the workpiece.

しかし、実際は粗研削動力の面積は砥石切味等
により影響され、これが変化すると或る一定の切
込サイクルで研削しても動力高さ(PH)がバラ
ついて、粗研削動力の面積が各ワークごとに大き
くバラつき、その結果粗研削仕上がり時のワーク
温度バラついてしまう。詳しくは、 (イ) ドレスダイヤの摩耗度合に依る研直し後の砥
石軸駆動モータの研削動力の変動 (ロ) 砥石径の小より大への変化時の研削動力の変
動 (ハ) 砥石修正量(ドレス修正量)のバラツキに依
る研削動力の変動 (ニ) 研直し速度(ドレスリード)のバラツキに依
る研削動力の変動 (ホ) 研削取代の相違に依る発熱量のバラツキ (ヘ) 研削切込み速度のバラツキに依る研削動力の
変動 (ト) 砥石面の目づまり、目こぼれ等に依る研削動
力の変動 以上の(イ)〜(ト)等の原因により、研削仕上がり時
のワーク温度にバラツキが生じ、この為、ワーク
の最終仕上がり寸法にバラツキが生じて加工不良
が発生していた。
However, in reality, the area of the rough grinding power is affected by factors such as the sharpness of the grinding wheel, and if this changes, the power height (PH) will vary even if grinding is performed with a certain cutting cycle, and the area of the rough grinding power will vary depending on each workpiece. As a result, the workpiece temperature varies greatly when rough grinding is completed. For details, see (a) Changes in the grinding power of the grinding wheel shaft drive motor after resharpening depending on the degree of wear of the dressing diamond (b) Changes in the grinding power when the grinding wheel diameter changes from small to large (c) Amount of grinding wheel correction Variations in grinding power due to variations in (dress correction amount) (d) Variations in grinding power due to variations in re-sharpening speed (dress lead) (e) Variations in heat generation due to differences in grinding allowance (f) Grinding cutting speed (g) Fluctuations in grinding power due to variations in grinding power (g) Fluctuations in grinding power due to clogging of the grinding wheel surface, spillage, etc. Due to causes such as (i) to (g) above, variations in workpiece temperature at the time of finishing grinding occur. As a result, variations occurred in the final finished dimensions of the workpiece, resulting in machining defects.

これを防止するためには、粗研削と精研削を2
回繰り返したり、粗研削後のスパークアウトを長
くして冷却期間を設ける等の必要があるが、そう
すると工程数の増大やサイクルタイムの長時間化
といつた別の問題を生じてしまう。
To prevent this, rough grinding and fine grinding are
It is necessary to repeat the grinding process several times or to extend the spark-out period after rough grinding to provide a cooling period, but this causes other problems such as an increase in the number of steps and a longer cycle time.

一方、ワークの熱膨張量をより正確に見込むた
めに、研削時間によつてワークの熱膨張量を推定
する方法が提案されている(特開昭52−135492
号)。しかし、研削時間のみによつて熱膨張量を
推定する場合は、砥石切味の劣化に伴う発熱量の
増大が考慮されない。従つて砥石の送りが劣化前
と変わらなければ研削時間が同じでもワークに蓄
積される熱量が通常よりも増大し、通常よりも大
きな熱膨張量を生じてしまう。この増大した分は
研削時間からは推定することができない。
On the other hand, in order to estimate the amount of thermal expansion of the workpiece more accurately, a method has been proposed in which the amount of thermal expansion of the workpiece is estimated based on the grinding time (Japanese Patent Laid-Open No. 52-135492
issue). However, when estimating the amount of thermal expansion based only on the grinding time, an increase in the amount of heat generated due to deterioration of the sharpness of the grindstone is not taken into account. Therefore, if the feed of the grindstone remains the same as before deterioration, even if the grinding time remains the same, the amount of heat accumulated in the workpiece will increase more than usual, resulting in a larger amount of thermal expansion than usual. This increased amount cannot be estimated from the grinding time.

(課題を解決するための手段) この発明は、従来技術の上記課題に鑑み、これ
を改良除去せんとするもので、ワークに対する砥
石の送り速度を制御することにより粗研削動力を
一定レベルに制御すれば、粗研削中の研削時間か
ら粗研削動力の前記レベルに応じた研削熱による
ワークの膨張量を演算できることを見出し、この
ワークの膨張量をインプロセスゲージにフイード
バツクして雰点補正するようにしたものである。
(Means for Solving the Problems) In view of the above-mentioned problems of the prior art, this invention aims to improve and eliminate the problems, and controls the rough grinding power to a constant level by controlling the feeding speed of the grinding wheel relative to the workpiece. We discovered that it is possible to calculate the expansion amount of the workpiece due to grinding heat according to the level of the rough grinding power from the grinding time during rough grinding, and that we can feed this expansion amount of the workpiece to the in-process gauge to correct the atmosphere point. This is what I did.

なおワークの熱膨張量と研削時間との関係は以
下の式により説明される。
Note that the relationship between the amount of thermal expansion of the workpiece and the grinding time is explained by the following equation.

Fn:砥石の法線方向研削力 Ft:砥石の接線方向研削力 U:砥石周速 μ:砥石とワーク間の摩擦係数 とすれば、 Ft:μ・Fn であるから、 研削動力(PH)は、 PH=Ft・U=μ・Fn・U と表せる。Fn: Grinding force in the normal direction of the grinding wheel Ft: Grinding force in the tangential direction of the grinding wheel U: Grinding wheel peripheral speed μ: Coefficient of friction between grinding wheel and workpiece given that, Ft:μ・Fn Because it is, Grinding power (PH) is PH=Ft・U=μ・Fn・U It can be expressed as

単位時間にワークに流入する熱量qは、研削液
によりワークから奪われる熱量がqに比例し、砥
石周速Uが一定であると仮定して、 q∝μ・Fn・U∝PH 研削加工中にワークに流入する総熱量Qは、加
工時間をPTとすると、 Q∝PH・PT と表せる。
The amount of heat q that flows into the workpiece per unit time is calculated as follows: q∝μ・Fn・U∝PH During grinding, assuming that the amount of heat removed from the workpiece by the grinding fluid is proportional to q and that the grinding wheel peripheral speed U is constant. The total amount of heat Q that flows into the workpiece can be expressed as Q∝PH・PT, where PT is the machining time.

ワークの直径方向の熱膨張量△dは、もとの直
径をDとすると、 △d=ν・D・Q/(k・W) ∝K・PH・PT ここで、ν:ワークの線膨張率、k:ワークの
比熱、W:ワークの重量、K:比例定数である。
The amount of thermal expansion △d in the diametrical direction of the workpiece is, if the original diameter is D, △d=ν・D・Q/(k・W) ∝K・PH・PT Where, ν: Linear expansion of the workpiece rate, k: specific heat of the workpiece, W: weight of the workpiece, K: constant of proportionality.

前記の式から、粗研削中の研削時間(PT)か
ら粗研削動力(PH)の一定レベルに応じた研削
熱によるワークの熱膨張量が演算できることが分
かる。なお、比例定数Kは計算により求めること
ができるが、サンプルワークを用いた実験結果か
ら求めることもできる。
From the above equation, it can be seen that the amount of thermal expansion of the workpiece due to grinding heat can be calculated from the grinding time (PT) during rough grinding according to a certain level of rough grinding power (PH). Note that the proportionality constant K can be determined by calculation, but can also be determined from experimental results using sample workpieces.

(実施例) 以下、この発明を図面を参照して説明する。(Example) The present invention will be explained below with reference to the drawings.

本発明に係るワークの寸法制御方法を第3図に
基づいて説明する。同図は研削動力線図で、横軸
は時間、縦軸に砥石軸駆動モータ4の動力(研削
動力)を夫々示しは動力雰レベルホールド点、
は研削開始点、はゲージ雰点補正動力レベ
ル、はピークパワーコントロールレベル、は
粗研完了ゲージ信号点、は仕上送り完了ゲージ
信号点、は研削完了ゲージ信号点である。
A workpiece size control method according to the present invention will be explained based on FIG. 3. The figure is a grinding power diagram, where the horizontal axis shows time, and the vertical axis shows the power (grinding power) of the grinding wheel shaft drive motor 4, and the power atmosphere level hold point,
is the grinding start point, is the gauge atmosphere correction power level, is the peak power control level, is the coarse grinding completion gauge signal point, is the finishing feed completion gauge signal point, and is the grinding completion gauge signal point.

而して、サイクルをスタートさせると、先ず砥
石1は急送り完了点迄切込み急送りされる。こ
の点で砥石軸駆動モータ4の動力をホールドして
動力雰点とし、切込み早送りに切り換える。そし
て、砥石1は研削開始点に達すると、切込み組
研送りに切り換えられ、粗研削を開始する。砥石
軸駆動モータ4の動力が上昇してゲージ雰点補正
レベル、すなわちPH1を過ぎると動力幅(時
間)Ptの積算を開始させる。砥石軸駆動モータ
4の動力がピークパワーコントロールレベル、
すなわちPH2まで上昇したら切込み粗研送りを通
常より遅くして動力を下降させ、また、動力がゲ
ージ雰点補正レベルPH1まで下降したら通常の切
込み粗研送りに戻して動力を上昇させる。
When the cycle is started, the grindstone 1 is first rapidly fed into the cut to the point where the rapid feeding is completed. At this point, the power of the grindstone shaft drive motor 4 is held to the power point, and the cutting is switched to rapid feed. Then, when the grindstone 1 reaches the grinding start point, it is switched to the incision grinding feed and starts rough grinding. When the power of the grindstone shaft drive motor 4 increases and passes the gauge atmosphere correction level, that is, PH 1 , the integration of the power width (time) Pt is started. The power of the grinding wheel shaft drive motor 4 is at the peak power control level,
That is, when the power increases to PH 2 , the rough grinding feed is made slower than usual to lower the power, and when the power decreases to the gauge atmosphere correction level PH 1 , the power is returned to the normal coarse grinding feed and the power is increased.

このようにして粗研削動力を一定に維持しつ
つ、予め定められている動力幅(時間)Ptごと
に粗研送り完了点迄、寸法測定部10の雰点補
正、例えば仕上げ寸法を大きい側にシフトする補
正をPT/Pt=n回繰り返し行なう。
In this way, while maintaining the rough grinding power constant, the dimension measurement section 10 corrects the atmosphere point, for example, changes the finished dimension to the larger side, until the coarse grinding feed is completed at every predetermined power width (time) Pt. The shifting correction is repeated PT/Pt=n times.

砥石の切味が劣化したときでも、研削動力面積
の増大に比例してワークの熱膨張量が増加する
が、砥石1の送り速度を比較的大きく低下させて
砥石軸駆動モータ4の動力を修正(この場合、動
力高さをPH1とPH2との間となるように低くする
修正)して一定のレベルに維持し、その分動力幅
を伸ばすようにして雰点補正量を増す操作をさ
せ、ワークがマイナス寸法に仕上がるのを防止す
る。
Even when the sharpness of the grindstone deteriorates, the amount of thermal expansion of the workpiece increases in proportion to the increase in the grinding power area, but the power of the grindstone shaft drive motor 4 is corrected by reducing the feed speed of the grindstone 1 relatively significantly. (In this case, correct the power height by lowering it to between PH 1 and PH 2 ) to maintain it at a constant level, and increase the amount of atmosphere point correction by increasing the power width accordingly. This prevents the work from being finished with negative dimensions.

粗研送り完了点以後は砥石1を切込み仕上げ
送りし、スパークアウトして切込み後退する。
After the point where the rough grinding feed is completed, the grinding wheel 1 is fed to finish the cut, sparks out, and the cut is retreated.

次に第3図に示すワークの寸法制御方法を実施
するための制御ブロツクを第2図に基づいて説明
する。
Next, a control block for carrying out the work size control method shown in FIG. 3 will be explained based on FIG. 2.

同図に示す如く、砥石1は機械ベツド2上にス
ライド可能に設けた砥石台3に支持されて駆動モ
ータ4により駆動され、制御部5からの送り駆動
制御信号Aで制御される送り駆動部6により切込
み動作を与えられる。駆動モータ4は始動すると
砥石軸駆動モータ動力信号Bを出力し、この信号
Bは研削動力測定部7を介して測定装置演算部8
並びに制御部5に入力される。測定装置演算部8
は研削加工時間Ptから、Pt間の研削動力面積に
よるワークの熱膨張量を演算し、これをn回繰り
返し演算して、加工時間PT間での熱膨張量を演
算するように構成されている。
As shown in the figure, a grindstone 1 is supported by a grindstone stand 3 slidably provided on a machine bed 2 and driven by a drive motor 4, and a feed drive section is controlled by a feed drive control signal A from a control section 5. 6 gives a cutting motion. When the drive motor 4 starts, it outputs a grindstone shaft drive motor power signal B, and this signal B is sent to the measuring device calculation unit 8 via the grinding power measurement unit 7.
It is also input to the control section 5. Measuring device calculation section 8
is configured to calculate the amount of thermal expansion of the workpiece due to the grinding power area between Pt from the grinding time Pt, repeat this calculation n times, and calculate the amount of thermal expansion between the machining times PT. .

一方、ワーク9を支持する支持装置(図示せ
ず)は寸法測定部(インプロセスゲージ)10を
有し、この寸法測定部10は研削中のワーク9の
寸法を検測して寸法信号Cを測定装置演算部8を
介して制御部5に入力する。また測定装置演算部
8から出力された補正信号Dは寸法測定部10に
入力されて寸法測定部10の雰点が自動的に補正
される。
On the other hand, a support device (not shown) that supports the workpiece 9 has a dimension measuring section (in-process gauge) 10, and this dimension measuring section 10 measures the dimensions of the workpiece 9 during grinding and outputs a dimension signal C. It is input to the control section 5 via the measuring device calculation section 8. Further, the correction signal D output from the measuring device calculating section 8 is input to the dimension measuring section 10, and the atmosphere point of the dimension measuring section 10 is automatically corrected.

(発明の効果) 以上説明したようにこの発明によれば、砥石の
送り速度を制御することにより粗研削動力を一定
レベルに制御し、粗研削中の研削時間から粗研削
動力の前記レベルに応じた研削熱によるワークの
膨張量を演算し、このワークの膨張量をインプロ
セスゲージにフイードバツクして雰点補正をする
ようにしたから、砥石切味の劣化の影響を受ける
ことなく、ワーク仕上げ寸法のバラツキをなくす
ことができ、しかも従来の繰り返し2回研削での
研削工程の増大や、冷却期間設定によるサイクル
タイムの長時間化といつた不都合を解消すること
ができる。
(Effects of the Invention) As explained above, according to the present invention, the rough grinding power is controlled to a constant level by controlling the feed rate of the grinding wheel, and the grinding time during rough grinding is adjusted according to the level of the rough grinding power. The amount of expansion of the workpiece due to grinding heat is calculated, and the amount of expansion of the workpiece is fed back to the in-process gauge to perform atmospheric point correction.The finished size of the workpiece can be adjusted without being affected by deterioration of the grinding wheel cutting quality. In addition, it is possible to eliminate the inconveniences such as the increase in the grinding process due to the conventional repeated two-time grinding and the lengthening of the cycle time due to the setting of the cooling period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の代表的な研削サイクルと研削動
力を対応づけて表した線図、第2図はこの発明の
為の具体的装置の制御ブロツク図、第3図はこの
発明の制御方法による研削動力線図である。 1…砥石、4…駆動モータ、6…送り駆動部、
10…寸法測定部(インプロセスゲージ)。
Fig. 1 is a diagram showing the correspondence between typical conventional grinding cycles and grinding power, Fig. 2 is a control block diagram of a specific device for this invention, and Fig. 3 is based on the control method of this invention. It is a grinding power diagram. 1... Grindstone, 4... Drive motor, 6... Feed drive unit,
10...Dimension measurement section (in-process gauge).

Claims (1)

【特許請求の範囲】 1 インプロセスゲージで加工中のワーク寸法を
検測して指定された寸法まで仕上げる研削加工に
おいて、ワークに対する砥石の送り速度を制御す
ることにより粗研削動力(PH)を一定レベルに
制御し、粗研削中の研削時間(PT)から粗研削
動力(PH)の前記レベルに応じた研削熱による
ワークの膨張量を演算し、このワークの膨張量を
インプロセスゲージにフイードバツクして雰点補
正することを特徴とする研削加工に於けるワーク
の寸法制御方法。 2 上記雰点補正をある一定時間(Pt)ごとに
繰り返し行なわせることを特徴とする特許請求の
範囲第1項に記載する研削加工に於けるワークの
寸法制御方法。
[Claims] 1. In the grinding process in which the dimensions of the workpiece being machined are measured with an in-process gauge and finished to the specified dimensions, the rough grinding power (PH) is kept constant by controlling the feed rate of the grindstone relative to the workpiece. The amount of expansion of the workpiece due to the grinding heat is calculated from the grinding time (PT) during rough grinding according to the level of the rough grinding power (PH), and the amount of expansion of the workpiece is fed back to the in-process gauge. A method for controlling the dimensions of a workpiece in grinding processing, which is characterized by correcting the atmospheric point. 2. A workpiece size control method in grinding according to claim 1, characterized in that the above-mentioned atmosphere point correction is repeatedly performed at certain fixed time intervals (Pt).
JP8233283A 1983-05-10 1983-05-10 Size control method in cutting Granted JPS59209759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8233283A JPS59209759A (en) 1983-05-10 1983-05-10 Size control method in cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8233283A JPS59209759A (en) 1983-05-10 1983-05-10 Size control method in cutting

Publications (2)

Publication Number Publication Date
JPS59209759A JPS59209759A (en) 1984-11-28
JPH0448584B2 true JPH0448584B2 (en) 1992-08-07

Family

ID=13771601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8233283A Granted JPS59209759A (en) 1983-05-10 1983-05-10 Size control method in cutting

Country Status (1)

Country Link
JP (1) JPS59209759A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033609A1 (en) * 1997-12-24 1999-07-08 Toyota Jidosha Kabushiki Kaisha Device and method for cool air cooling type machining

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512676A (en) * 1974-05-29 1976-01-10 Metallgesellschaft Ag TADANSHIKIEKIEKICHUSHUTSUSOCHI
JPS52135492A (en) * 1976-05-07 1977-11-12 Toshiba Corp Air micro constant dimension device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512676A (en) * 1974-05-29 1976-01-10 Metallgesellschaft Ag TADANSHIKIEKIEKICHUSHUTSUSOCHI
JPS52135492A (en) * 1976-05-07 1977-11-12 Toshiba Corp Air micro constant dimension device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033609A1 (en) * 1997-12-24 1999-07-08 Toyota Jidosha Kabushiki Kaisha Device and method for cool air cooling type machining

Also Published As

Publication number Publication date
JPS59209759A (en) 1984-11-28

Similar Documents

Publication Publication Date Title
US4539779A (en) Method of compensating for dressing tool wear during the dressing of grinding wheels
JPS5830110B2 (en) Kensaku Kakoseigyosouchi
US3798846A (en) Method of grinding
JP2005021998A (en) Grinding device and grinding method
JPH0448584B2 (en)
JP3305732B2 (en) Control method of surface grinder
CA1184991A (en) Grinding control methods and apparatus
JPH0557562A (en) Gauge zero point compensation method in auto-sizing grinding
JP2011245592A (en) Grinding method and grinding machine
US4110938A (en) Infeeding method for internal grinders
JP2940073B2 (en) Grinding machine control method
JP3404902B2 (en) Grinding equipment
JPH0624695B2 (en) Grinding wheel correction device
JP3120578B2 (en) Grinding equipment
JP2949596B2 (en) Grinding machine infeed control device
JP3391856B2 (en) Work size control method and apparatus in grinding
JPH069785B2 (en) Grinding control device
Hahn A Survey on Precision Grinding for Improved Product Quality
JP3282871B2 (en) Dimension control method of workpiece in grinding
JPS6362338B2 (en)
JPH03294174A (en) Retraction grinding method in grinding by controlling grinding force
JPH04354672A (en) Control method for grinding machine
JPS61252072A (en) Device for controlling grinding
JPH0220381B2 (en)
JP3015176B2 (en) Dressing method of grinding wheel