JPH0448231A - Parallel light measuring instrument - Google Patents

Parallel light measuring instrument

Info

Publication number
JPH0448231A
JPH0448231A JP15719790A JP15719790A JPH0448231A JP H0448231 A JPH0448231 A JP H0448231A JP 15719790 A JP15719790 A JP 15719790A JP 15719790 A JP15719790 A JP 15719790A JP H0448231 A JPH0448231 A JP H0448231A
Authority
JP
Japan
Prior art keywords
light
grating
parallelism
gratings
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15719790A
Other languages
Japanese (ja)
Inventor
Keiji Matsui
圭司 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP15719790A priority Critical patent/JPH0448231A/en
Priority to US07/713,155 priority patent/US5170221A/en
Publication of JPH0448231A publication Critical patent/JPH0448231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure and adjust the parallelism of a light beam effectively with simple constitution regardless of whether or not the light beam is coherent by detecting a light intensity distribution appearing on a photodetection surface and then measuring the parallelism of the light beam in luminous flux. CONSTITUTION:This invented parallel light measuring instrument consists of a light source unit LSU which emits parallel light, 1st and 2nd gratings GR1 and GR2 which have the same grating constant and are provided with transmis sion type diffraction gratings, and the photodetection surface SC which photodetects luminous flux transmitted through those gratings GR1 and GR2. When the luminous flux from the light source unit LSU is diverged or converged in a direction X, the light intensity distribution appearing on the photodetection surface SC is not uniform and fringes which are shown, for example, in a figure are formed. The intervals S of the fringes are determined by the grating con stant P of the 1st and 2nd gratings GR1 and GR2, the gap G between those gratings GR1 and GR2, the distance D between the 1st grating GR1 and photodetection surface SC, and the parallelism of the light beam, so the intervals S of the fringes are measured to measure the parallelism of the light beam.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光学を応用したセンサなどに使われる光線の
平行度の計測及び調整可能な平行光計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a parallel light measuring device that can measure and adjust the parallelism of light rays used in optical sensors and the like.

(従来の技術) 位置、距離1寸法などを計測するために各種レーザやL
EDなどの光源を用いた光学センサが幅広く使われてい
る。これらのセンサにはその光学系の一部に平行光が使
用されていることが多い。
(Conventional technology) Various lasers and L
Optical sensors using light sources such as ED are widely used. These sensors often use parallel light as part of their optical systems.

平行光は、LEDやレーザダイオードなどの発光部が点
に近いものについてはコリメータレンズとの組合わせに
よって、また)leNeレーザなとではビームエキスパ
ンダとの組合わせによって作り比さよる。平行光の良否
2即ち平行光束中の光線の平行度によってセンサ自体の
性能が左右されることも少なくなく、光線の平行度は各
光学素子の性能と共に各光学素子間の相対位置精度によ
って決まる。したがって、各光学素子の配設作業には光
線の平行度を精密に計測する装置と各光学素子間の相対
位置を精密に変位させる装置が必要である。
Parallel light is produced by combining it with a collimator lens for LEDs and laser diodes whose light emitting parts are close to a point, and by combining it with a beam expander for leNe lasers. The performance of the sensor itself is often influenced by the quality of parallel light 2, that is, the parallelism of the light rays in the parallel light beam, and the parallelism of the light rays is determined by the performance of each optical element as well as the relative position accuracy between each optical element. Therefore, the work of arranging each optical element requires a device that accurately measures the parallelism of light rays and a device that precisely displaces the relative position between each optical element.

従来の光線の平行度の計測は、レーザ光では干渉計によ
って光束の波面のゆがみを測定することで行ない、可干
渉性のないランプやLEDの光では光源に近い場所と違
い場所での光束の大ぎさや光強度分布を測定したり、ピ
ンホールを使って光線を追跡することで行なっている。
Conventionally, the parallelism of a light beam is measured by measuring the distortion of the wavefront of the light beam using an interferometer for laser light, and for non-coherent lamp or LED light, the parallelism of the light beam is measured at a different location than near the light source. This is done by measuring the magnitude and light intensity distribution, and by tracing light rays using pinholes.

(発明が解決しようとする課題) 上述した光束の波面のゆがみを測定する干渉計は構成が
難しく、現れた干渉縞の処理も単純ではない、また、レ
ーザ光源でも比較的コヒーレンスの良くない場合は干渉
縞のコントラストが悪くて測定が難しいとう欠点があっ
た。一方、光束の大きさや光強度分布を測定する場合は
、正確な輪郭を測定するのが難しかフたり測定に時間が
かかったりして効果的でないという問題があった。
(Problems to be Solved by the Invention) The construction of the interferometer that measures the distortion of the wavefront of the light beam described above is difficult, and processing of the interference fringes that appear is not simple, and even if the laser light source has relatively poor coherence, The disadvantage was that the contrast of the interference fringes was poor and measurement was difficult. On the other hand, when measuring the size of the luminous flux or the light intensity distribution, there is a problem that it is difficult to accurately measure the outline or that it takes time to measure the contour, making it ineffective.

本発明は上述のような事情からなされたものであり、本
発明の目的は、可干渉性の有無によらず簡単な構成で光
線の平行度の計測や調整を効果的に行なうことができる
平行光計測装置を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to effectively measure and adjust the parallelism of light rays with a simple configuration regardless of the presence or absence of coherence. An object of the present invention is to provide an optical measurement device.

(課題を解決するための手段) 本発明は、光学を応用したセンサなどに使われる光線の
平行度の計測可能な平行光計測装置に関するものであり
、本発明の上記目的は、第1の回折格子と、前記第1の
回折格子の格子定数と同一であって、前記第1の回折格
子の格子線に対し各々の格子線が平行となるように配設
された第2の回折格子と、前記各回折格子を透過した光
束を受光する受光面とを備え、前記受光面上に現れる光
強度分布を検出することにより前記光束中の光線の平行
度を計測することによって達成される。
(Means for Solving the Problems) The present invention relates to a parallel light measuring device capable of measuring the parallelism of light rays used in sensors applying optics, etc. a second diffraction grating that has the same lattice constant as the first diffraction grating and is arranged such that each grating line is parallel to the grating line of the first diffraction grating; This is achieved by measuring the parallelism of the light beams in the light beams by detecting the light intensity distribution appearing on the light receiving surface.

(作用) 本発明の平行光計測装置は、同一の格子定数を持った2
枚の回折格子を透過した光束を受光面で受け、受光面上
に現れる光強度分布や、一方の回折格子を移動させたと
きの受光面上に現れる光強度分布の変化から光線の平行
度を計測するものである。
(Function) The parallel light measurement device of the present invention has two
The light flux that has passed through two diffraction gratings is received by the light receiving surface, and the parallelism of the light rays is determined from the light intensity distribution that appears on the light receiving surface and the change in the light intensity distribution that appears on the light receiving surface when one of the diffraction gratings is moved. It is something to be measured.

(実施例) ′fS1図は本発明の平行光計測装置の一例を示す構造
図であり、平行光を発する光源ユニットLSDと、所定
の格子定数を持った透過型回折格子が施された第1r4
子GRI及び第1格子GRIと同一の格子定数を持った
透過型回折格子が施された第2格子GR2と、′f41
格子GRI及び第2格子GR2を透過した光束を受光す
る受光面SCとから成っている。
(Example) Fig. 'fS1 is a structural diagram showing an example of a parallel light measurement device of the present invention, and includes a light source unit LSD that emits parallel light and a 1r4 light source unit provided with a transmission type diffraction grating having a predetermined grating constant.
a second grating GR2 provided with a transmission type diffraction grating having the same grating constant as the child GRI and the first grating GRI;
It consists of a grating GRI and a light receiving surface SC that receives the light beam transmitted through the second grating GR2.

ここで、第1格子[iRlと第2格子GR2とはそれぞ
れの面が互いに平行であって、かつそれぞれの格子線が
互いに平行になるように調整されている。
Here, the first grating [iRl and the second grating GR2 are adjusted so that their respective surfaces are parallel to each other and their respective grating lines are parallel to each other.

光源ユニットLSLIからの光束が完全な平行光であれ
ば受光面SC上に現れる光強度分布は光源ユニットLS
I+を出たときの光強度分布と同じ形状になり、光源ユ
ニットLSDを出たときの光強度分布が一様であるとす
るならば、受光面SUには光束の当たる範囲において一
様な明るさを持った分布ができる。ところが、光源ユニ
ットLS[Iからの光束がX方向に広がったり狭まって
いる光束である場合、受光面SC上に現れる光強度分布
は一様でなくなり、例えば341図示の縞が発生する。
If the light beam from the light source unit LSLI is perfectly parallel light, the light intensity distribution appearing on the light receiving surface SC will be the same as that of the light source unit LS
If the light intensity distribution has the same shape as the light intensity distribution when it exits I+, and the light intensity distribution when it exits the light source unit LSD is uniform, then the light receiving surface SU has uniform brightness within the range where the light beam hits. A distribution with a certain degree of strength can be created. However, when the light beam from the light source unit LS[I is a light beam that spreads or narrows in the X direction, the light intensity distribution appearing on the light receiving surface SC becomes uneven, and, for example, stripes shown in 341 occur.

この縞の間隔Sは、2枚の格子GRI、GR2の格子定
数P、  2枚の格子GRI、GR2の間隙G、第1格
子GRIと受光面SCとの距1i11D及び光線の平行
度によって決まる。したがって、縞の間隔Sを測定する
ことによ)て光線の平行度の計測を行なうことができる
The interval S between the stripes is determined by the lattice constant P of the two gratings GRI and GR2, the gap G between the two gratings GRI and GR2, the distance 1i11D between the first grating GRI and the light receiving surface SC, and the parallelism of the light rays. Therefore, by measuring the distance S between the stripes, the parallelism of the light beam can be measured.

次に上述した本発明の原理を第2図を用いて簡単に説明
する。第2図は第1図をY方向から見たものを槙式的に
表した図である。一般に平行光は無限遠にある点光源か
らの光束と考えられ、平行でない光束は有限の距離にあ
る点光源からの光束、もしくは有限の距離にある点に集
束しつつある光束と考える事ができる。ここでは、第1
格子GRIからの距離がFである仮想点光源LSからの
広がりぎみの光束を考える。
Next, the principle of the present invention described above will be briefly explained using FIG. FIG. 2 is a schematic representation of FIG. 1 viewed from the Y direction. In general, parallel light can be thought of as a beam of light from a point light source at an infinite distance, and non-parallel light can be thought of as a beam of light from a point light source at a finite distance, or a beam of light that is converging to a point at a finite distance. . Here, the first
Consider a light beam that is almost spreading from a virtual point light source LS whose distance from the grating GRI is F.

仮想点光源LSからの光束LBは距111iF11れた
場所に置かれた第1格子GRIを透過したあと、間隔G
だけ隔てて置かれた第2格子GR2を透過し、第1格子
GRIから距11Dにある受光面SCに当たる、ただし
、2枚の格子GRI 、GR2の格子定数は等しくPで
ある。同図で表されるように第1格子GRIと第2格子
GR2どの相対位置関係により、第1!g子GRIを透
過した光線群のうち一部は第2格子GR2の透過部を通
って受光面SCに至り、残りは第2格子GR2の非透過
部によって遮蔽される。そのため、受光面SC上には明
るい部分と暗い部分の繰返し、即ち縞ができる。ここで
暗い部分の間隔をSとする。そして、2ケ所の暗い部分
に向かう2本の光線方向に着目し、第1格子GRI上で
の光線の間隔をLとするならば、第2格子GRZ上での
間隔は(L十P)であり、これらの関係は次式(1)で
表わされる。
The light beam LB from the virtual point light source LS passes through the first grating GRI placed at a distance of 111iF11, and then passes through the first grating GRI placed at a distance of 111iF11.
The light passes through the second grating GR2, which is spaced apart by a distance, and hits the light-receiving surface SC located at a distance 11D from the first grating GRI.However, the lattice constants of the two gratings GRI and GR2 are equal to P. As shown in the figure, the relative positional relationship between the first grating GRI and the second grating GR2 determines whether the first! A part of the group of light rays that have passed through the g-ray GRI passes through the transparent part of the second grating GR2 and reaches the light receiving surface SC, and the rest is blocked by the non-transparent part of the second grating GR2. Therefore, repeating bright and dark areas, ie, stripes, are formed on the light-receiving surface SC. Here, let S be the interval between the dark parts. Then, focusing on the directions of the two rays heading toward the two dark areas, if the interval between the rays on the first grating GRI is L, then the interval on the second grating GRZ is (L + P). These relationships are expressed by the following equation (1).

L/F −(L+P)/(F十G)・ S/ (F◆D
)・・・・・・(1)故に、仮想点光源LSの位置F、
すなわち光線の平行度は暗い部分の間隔Sから次式(2
)で求められる。
L/F -(L+P)/(F1G)・S/(F◆D
)...(1) Therefore, the position F of the virtual point light source LS,
In other words, the parallelism of the light rays is determined by the following formula (2
).

F −(S/P)・G−D ・・・・・・(2) また、上式(2)をSについて表わすと5− (P/G
)・(F十〇)となり、この測定系の測定倍率はGによ
って任意に変えられることが分る。つまり、光線の平行
度のレベルによって受光面SC上にできる絹の密度が大
きく変化しても、縞の間隔が測定しやすいように2枚の
格子GRI 、GR2の間MGを調整すれば、格子GR
1,GR2自体を交換することなく光線の平行度の計測
ができる。更には、2枚の格子GRI、GR2の間[G
を狭い状態からだんだん広げていくことにより、光線を
正確な平行度に調整することが可能である。
F - (S/P)・G-D (2) Also, when the above formula (2) is expressed for S, 5- (P/G
)・(F10), and it can be seen that the measurement magnification of this measurement system can be arbitrarily changed by G. In other words, even if the density of the silk formed on the light-receiving surface SC changes greatly depending on the level of parallelism of the light rays, if the MG between the two gratings GRI and GR2 is adjusted so that the stripe spacing can be easily measured, the grating GR
1. Parallelism of light rays can be measured without replacing GR2 itself. Furthermore, between the two grids GRI and GR2 [G
By gradually widening the beam from a narrow state, it is possible to adjust the beam to accurate parallelism.

第3図は本発明の平行光計測装置の別の一例を第1図に
対応させて示す構造図であり、同一構成。
FIG. 3 is a structural diagram showing another example of the parallel light measuring device of the present invention, corresponding to FIG. 1, and has the same configuration.

箇所は同符号を付して説明を省略する。第1格子GRI
をX方向に移動させるXステージX−5Tと、第2格子
GR2をZ方向に移動させるZステージ2−57と、第
1絡子GRI及び第2格子GR2を透過した光束を受光
するイメージセンサIsとを備えている。
The same reference numerals are given to the parts and the explanation is omitted. 1st lattice GRI
an X stage X-5T that moves the second grating GR2 in the X direction, a Z stage 2-57 that moves the second grating GR2 in the Z direction, and an image sensor Is that receives the light flux that has passed through the first tether GRI and the second grating GR2. It is equipped with

そして、光源ユニットLSDは、レーザダイオードLD
と、コリメータレンズCLと、図示しないレーザダイオ
ードLDとコリメータレンズCLとの相対位置を変位さ
せる機構とから成っている。
The light source unit LSD is a laser diode LD.
, a collimator lens CL, and a mechanism (not shown) for displacing the relative positions of the laser diode LD and the collimator lens CL.

このような構成において、レーザダイオードLDとコリ
メータレンズCLの焦点距離を調整する場合を例にとっ
て動作を説明する。初期状態として未調整の光源ユニッ
トLSIJからの光線が2枚の格子GRI及びGR2を
透過してイメージセンサIsに入射しており、イメージ
センサ■S上に適当な本数の縞ができるように第1格子
GRI と第2格子GR2との間[G 7!l<調整さ
れているとする。イメージセンサIS上の縞の間隔と前
述した式(1) 、 (2)によって光源ユニットLS
Iの仮想焦点位置、すなわち光線の平行度が計算される
。ただし、縞の間隔からだけでは光線が広がりぎみなの
か挟まりぎみなのか分らない。そこで、XステージX−
5Tをわずかに変位させると縞はX軸方向に走査する。
In such a configuration, the operation will be described by taking as an example a case where the focal lengths of the laser diode LD and the collimator lens CL are adjusted. In the initial state, the light beam from the unadjusted light source unit LSIJ passes through the two gratings GRI and GR2 and enters the image sensor Is. Between the grating GRI and the second grating GR2 [G7! Assume that l< has been adjusted. The light source unit LS is determined by the distance between the stripes on the image sensor IS and the equations (1) and (2) described above.
The virtual focus position of I, ie the parallelism of the rays, is calculated. However, it is not possible to tell whether the light rays are spreading too far or being caught between them just by looking at the spacing between the stripes. Therefore, X stage
When 5T is slightly displaced, the stripes scan in the X-axis direction.

この走査の向きは光線が広がっているときと狭まってい
るときとでは逆になる。従って、縞の間隔と走査方向と
を計測することによって光線の様子が分かり、レーザダ
イオードLDとコリメータレンズcLの相対位置を変位
させる機構で先の誤差を修正する0次に2ステージZ−
5Tによって第2格子GR2をイメージセンサISの方
に移動させて格子の間隔Gを広げて測定倍率を高め、上
述と同様の計測と調整を行なう、この動作の繰返しによ
って光線の平行度をN密に調整することができる。
The direction of this scanning is opposite when the light beam is expanding and when it is narrowing. Therefore, by measuring the interval between stripes and the scanning direction, the state of the light beam can be determined, and the previous error is corrected using a mechanism that displaces the relative position of the laser diode LD and the collimator lens cL.
5T to move the second grating GR2 toward the image sensor IS, widen the grating interval G to increase the measurement magnification, and perform the same measurement and adjustment as described above. By repeating this operation, the parallelism of the light beam is adjusted to N density. can be adjusted to

また、この装置は光線の平行度のX方向成分を計測する
ものであるので、光源ユニットLSIIをその先軸を中
心に回転させる機構を設けることによってあらゆる方向
の光線の平行度の誤差成分を計測、調整できる。
Additionally, since this device measures the X-direction component of the parallelism of light rays, by providing a mechanism that rotates the light source unit LSII around its tip axis, it is possible to measure error components of the parallelism of light rays in all directions. , can be adjusted.

なお、イメージセンサIsからの信号を処理してXステ
ージX−5T、  Zステージ1−5T、 レーザダイ
オードLDとコリメータレンズCLとの相対位置を変位
させる機構及び光源ユニットLSDをその光軸を中心に
回転させる機構を制御するコントローラを付加するよう
にしても良い。
In addition, a mechanism that processes signals from the image sensor Is to displace the relative positions of the X stage X-5T, Z stage 1-5T, laser diode LD and collimator lens CL, and the light source unit LSD about its optical axis. A controller may be added to control the rotating mechanism.

上述した実施例では、焦点距離の計測、調整について説
明したが、縞のゆがみや傾きを検出すれば、光線のゆが
みや傾きも同時に計測、調整することができる。
In the embodiments described above, measurement and adjustment of the focal length have been described, but if the distortion and inclination of the stripes are detected, the distortion and inclination of the light beam can also be measured and adjusted at the same time.

また、本発明による測定の精度を左右する回折格子の格
子定数の精度は損紙的に測定が可能な上、2枚の格子の
格子定数が揃ってさえいれば所望の格子定数に対して誤
差があっても調整には支障がない。
In addition, the accuracy of the lattice constant of the diffraction grating, which affects the accuracy of the measurement according to the present invention, can be measured using waste paper. Even if there is, there is no problem with adjustment.

以上に述べた実施例では2枚の透過型回折格子による装
置を説明したが第2格子を反射型回折格子として、光源
ユニット側に反射する光束を利用しても同様の効果が得
られる。
In the embodiments described above, a device using two transmission type diffraction gratings has been described, but the same effect can be obtained by using a reflection type diffraction grating as the second grating and using the light beam reflected to the light source unit side.

(発明の効果) 以上のように本発明の平行光計測装置によれば、簡単な
構成により光線の平行度を精密に計測し、簡単な工程で
調整することができ、装置コストや光線の平行度の計測
調整工数の大幅な低減を図ることができる。
(Effects of the Invention) As described above, according to the parallel light measuring device of the present invention, the parallelism of light rays can be precisely measured with a simple configuration and adjusted in a simple process, reducing device costs and parallelism of light rays. It is possible to significantly reduce the number of man-hours required for measurement and adjustment of degrees.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の平行光計測装置の一例を示す構造図、
第2図は本発明の詳細な説明する図、第3図は本発明の
平行光計測装置の別の一例を示す構造図である。 GRI・・・第1格子、GR2・・・′iE2格子、S
C・・・受光。 面、LStl・・・光源ユニット、LB・・・光束、L
S・・−仮想点光源、X−5T・・・Xステージ、Z−
5T・・・2ステージ、Is・・・イメージセンサ、L
D・・・レーザダイオード、CL・・・コリメータレン
ズ。
FIG. 1 is a structural diagram showing an example of a parallel light measuring device of the present invention,
FIG. 2 is a diagram for explaining the present invention in detail, and FIG. 3 is a structural diagram showing another example of the parallel light measuring device of the present invention. GRI...first lattice, GR2...'iE2 lattice, S
C... Light reception. Surface, LStl...Light source unit, LB...Light flux, L
S...-virtual point light source, X-5T...X stage, Z-
5T...2 stage, Is...image sensor, L
D...Laser diode, CL...Collimator lens.

Claims (1)

【特許請求の範囲】 1、第1の回折格子と、前記第1の回折格子の格子定数
と同一であって、前記第1の回折格子の格子線に対し各
々の格子線が平行となるように配設された第2の回折格
子と、前記各回折格子を透過した光束を受光する受光面
とを備え、前記受光面上に現れる光強度分布を検出する
ことにより前記光束中の光線の平行度を計測するように
したことを特徴とする平行光計測装置。 2、前記受光面がイメージセンサである請求項1に記載
の平行光計測装置。 3、前記第1の回折格子と第2の回折格子との間隙距離
を任意に変化させる手段を備えた請求項1に記載の平行
光計測装置。 4、前記第1及び第2の回折格子の少なくとも一方をそ
の回折格子の面内で格子線に垂直な方向に移動させる手
段を備えた請求項1に記載の平行光計測装置。 5、前記光束を発する光源ユニット中の光学素子の相対
位置を変位させる手段を備えた請求項1に記載の平行光
計測装置。 6、前記光源ユニットをその光軸を中心に回転させる手
段を備えた請求項1に記載の平行光計測装置。
[Claims] 1. The first diffraction grating has the same lattice constant as the first diffraction grating, and each grating line is parallel to the grating line of the first diffraction grating. and a light-receiving surface that receives the light beams transmitted through each of the diffraction gratings, and by detecting the light intensity distribution appearing on the light-receiving surface, the parallelism of the light rays in the light beams is determined. A parallel light measuring device characterized in that it measures degrees. 2. The parallel light measuring device according to claim 1, wherein the light receiving surface is an image sensor. 3. The parallel light measuring device according to claim 1, further comprising means for arbitrarily changing the gap distance between the first diffraction grating and the second diffraction grating. 4. The parallel light measuring device according to claim 1, further comprising means for moving at least one of the first and second diffraction gratings in a direction perpendicular to grating lines within the plane of the diffraction grating. 5. The parallel light measuring device according to claim 1, further comprising means for displacing the relative position of an optical element in the light source unit that emits the luminous flux. 6. The parallel light measuring device according to claim 1, further comprising means for rotating the light source unit around its optical axis.
JP15719790A 1990-06-15 1990-06-15 Parallel light measuring instrument Pending JPH0448231A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP15719790A JPH0448231A (en) 1990-06-15 1990-06-15 Parallel light measuring instrument
US07/713,155 US5170221A (en) 1990-06-15 1991-06-11 Parallel light ray measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15719790A JPH0448231A (en) 1990-06-15 1990-06-15 Parallel light measuring instrument

Publications (1)

Publication Number Publication Date
JPH0448231A true JPH0448231A (en) 1992-02-18

Family

ID=15644329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15719790A Pending JPH0448231A (en) 1990-06-15 1990-06-15 Parallel light measuring instrument

Country Status (1)

Country Link
JP (1) JPH0448231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072709A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355145B2 (en) * 1984-07-06 1988-11-01 Intaanashonaru Bijinesu Mashiinzu Corp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355145B2 (en) * 1984-07-06 1988-11-01 Intaanashonaru Bijinesu Mashiinzu Corp

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072709A1 (en) * 2006-12-14 2008-06-19 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element
US8089620B2 (en) 2006-12-14 2012-01-03 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element
US8284388B2 (en) 2006-12-14 2012-10-09 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element
US8390799B2 (en) 2006-12-14 2013-03-05 Panasonic Corporation Method for measuring optical characteristics of diffraction optical element and apparatus for measuring optical characteristics of diffraction optical element

Similar Documents

Publication Publication Date Title
JP4503799B2 (en) Optical position measuring device
US8822907B2 (en) Optical position-measuring device having two crossed scales
US20080174785A1 (en) Apparatus for the contact-less, interferometric determination of surface height profiles and depth scattering profiles
US4829193A (en) Projection optical apparatus with focusing and alignment of reticle and wafer marks
JP2756331B2 (en) Interval measuring device
JPS59116007A (en) Method of measuring surface
US4115008A (en) Displacement measuring apparatus
US5383025A (en) Optical surface flatness measurement apparatus
US5170221A (en) Parallel light ray measuring apparatus
US11353583B2 (en) Optical position-measurement device with varying focal length along a transverse direction
JPH0448231A (en) Parallel light measuring instrument
KR102008253B1 (en) Multi channel optical profiler based on interferometer
KR20140032665A (en) 3d shape mesurement mehod and device by using amplitude of projection grating
JPS62140418A (en) Position detector of surface
JP4027866B2 (en) Position and orientation measurement method and position and orientation measurement apparatus
JP2005326192A (en) Three-dimensional shape measuring device
JP2619555B2 (en) Parallel light measuring device
RU2769305C1 (en) Autocollimator
JP2005308439A (en) Three dimensional geometry measuring arrangement by pattern projection method
JPH03115920A (en) Zero-point position detector
JP2556559B2 (en) Interval measuring device
JP7332417B2 (en) Measuring device and measuring method
JP2827251B2 (en) Position detection device
JP2581227B2 (en) Position detection device
KR101677585B1 (en) 3-D Shape Mesuring Apparatus Using Multi Frequency light Source For High Speed Foucs Position Movement