JPH0448210A - Optical distance sensor - Google Patents

Optical distance sensor

Info

Publication number
JPH0448210A
JPH0448210A JP15744690A JP15744690A JPH0448210A JP H0448210 A JPH0448210 A JP H0448210A JP 15744690 A JP15744690 A JP 15744690A JP 15744690 A JP15744690 A JP 15744690A JP H0448210 A JPH0448210 A JP H0448210A
Authority
JP
Japan
Prior art keywords
light
distance
light receiving
photodetection
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15744690A
Other languages
Japanese (ja)
Inventor
Hajime Yuasa
肇 湯浅
Shuzo Hisamoto
久本 修三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP15744690A priority Critical patent/JPH0448210A/en
Publication of JPH0448210A publication Critical patent/JPH0448210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To improve the measurement accuracy by forming images on plural array type optical converting elements individually with reflected light from one light source and calculating distance by a triangulation system which uses the current ratio of currents outputted by said elements. CONSTITUTION:Although one light projection part 2 is provided, photodetection parts 41 and 42 of the same specification are arranged symmetrically about the light projection part 2 and the reflected light from an object body is received by photodetection lenses 141 and 142 which are arranged at a distance B from the luminous flux to form the images on liner type position detecting elements (PSD) 181 and 182 which are arranged at a distance of the focal length of the photodetection lenses 141 and 142. The photodetection parts 41 and 42 calculate the ratios IN/IF of currents IN outputted from electrodes of the PSDs 181 and 182 close to the luminous flux and currents IF outputted from far-side electrodes, and the distance Z between the object body and photodetection lenses 141 and 142 is calculated by an arithmetic part 24 from an equation. Here, (n) is the number of the photodetection parts and L is the length of the photodetection parts. Consequently, the distance and its variation can be measured accurately with high precision.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、光学式距離センサに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical distance sensor.

〔従来の技術] 海中を航行する無人航行潜水挺(以下AUVという)は
、各種の探査目的や水中ロボット作業目的などの目的に
有用であるので従来から開発が行われている。このAU
Vを航行制御する場合には、AUVから目標対象物体に
接近したり、海底などの障害物に接近して航行する制御
を行う場合には、対象物体の近距離の画像情報から正確
に距離を測定することが極めて重要となる。
[Prior Art] Unmanned underwater vehicles (hereinafter referred to as AUVs) that navigate under the sea have been developed since they are useful for various exploration purposes and underwater robot work purposes. This AU
When controlling the navigation of a V, when approaching a target object from an AUV, or when controlling navigation close to an obstacle such as the ocean floor, it is necessary to accurately determine the distance from close-range image information of the target object. It is extremely important to measure this.

このように、観測位置からの遠隔測定によって、比較的
近距離にある対象物体までの距離を測定する手段は、従
来から種々開発されている。
As described above, various means for measuring the distance to a target object at a relatively short distance by remote measurement from an observation position have been developed in the past.

これらの測定手段には超音波を用いたものもあるが、距
離センサを複数用いる場合には相互干渉による誤作動の
危険があり、またヘドロが堆積したり海藻が繁茂した海
底までの距離を測定する場合には、音波による距離測定
は誤差が大きくなる。これに対して光学的手段は、前記
の干渉の問題や対象物体の表面状態による影響を排除し
易いという利点があるので、従来がら光学的距離測定手
段が種々開発されている。
Some of these measurement methods use ultrasonic waves, but when multiple distance sensors are used, there is a risk of malfunction due to mutual interference, and it is difficult to measure the distance to the sea floor where sludge has accumulated or seaweed has grown. In this case, distance measurement using sound waves will have a large error. On the other hand, optical means have the advantage of easily eliminating the interference problem and the influence of the surface condition of the target object, and therefore various optical distance measuring means have been developed.

以下光学的手段を用いて三角測量の原理を応用した従来
の測定方法を第2図によって説明する。図において、距
離センサlには投光部2と受光部4とを有しており、投
光部2は、投光装置6と投光レンズ8とから成っている
A conventional measurement method using optical means and applying the principle of triangulation will be explained below with reference to FIG. In the figure, the distance sensor 1 has a light projecting section 2 and a light receiving section 4, and the light projecting section 2 consists of a light projecting device 6 and a light projecting lens 8.

投光装置6は、一般に発光ダイオードや半導体レーザ素
子などから成り、投光装置6がらの光を投光レンズ8に
よって平行光線とした光束10を対象物体12に向かっ
て放射する。また受光部4は、受光レンズ14と直線型
位置検出素子(以下PSDという)16とから成ってい
る。PSD16は、受光レンズ14から焦点距離Fを離
れた位置に配置して、対象物体12の反射光18がPS
D16上に結像するようにしている。
The light projecting device 6 is generally composed of a light emitting diode, a semiconductor laser element, etc., and emits light from the projecting device 6 into a parallel light beam 10 toward the target object 12 by a projecting lens 8 . Further, the light receiving section 4 includes a light receiving lens 14 and a linear position detection element (hereinafter referred to as PSD) 16. The PSD 16 is placed at a position away from the light receiving lens 14 by a focal length F, so that the reflected light 18 of the target object 12 is
The image is formed on the D16.

前記PSD16は、細長い半導体の光電変換素子18の
両端に電極E、、E、を取付けたアレイ式素子である。
The PSD 16 is an array type element in which electrodes E, E, are attached to both ends of a long and narrow semiconductor photoelectric conversion element 18.

そして長さLの光電変換素子18上にスポット光が当た
ると、電極EN、EFからは、前記スポット光の入射位
置から両端の電極EN。
When the spot light hits the photoelectric conversion element 18 having a length L, the electrodes EN and EF move to the electrodes EN at both ends from the spot light incident position.

Erまでの距離X)t、Xyに反比例した電流IN。Distance to Er (X)t, current IN inversely proportional to Xy.

I y(I N/ I F= X y/ X N)を出
力する。
Output I y (IN/IF=X y/X N).

したがってレンズ8.14と対象物体12との距離Zは
、三角測量の原理から、 となる。したがって、電子装置を用いることにより自動
的に距離を求めることができ、従来からカメラの自動焦
点用センサや生産ラインの位置決めセンサとして使用さ
れている。
Therefore, from the principle of triangulation, the distance Z between the lens 8.14 and the target object 12 is as follows. Therefore, the distance can be automatically determined by using an electronic device, and it has been conventionally used as an automatic focusing sensor in a camera or a positioning sensor in a production line.

しかしながら前記手段は、対象物体の変位が大きくなる
ほど変位量の測定精度が悪くなるという欠点がある。更
に、局所的温度変化などで空気の屈折率が変わる場合や
、油やほこりなどで光学系が汚れるなど環境の影響を受
けやすく、また対象物体が鏡面の場合に適用できないな
どの問題がある。
However, the above-mentioned means has a drawback in that the larger the displacement of the target object, the worse the accuracy in measuring the amount of displacement becomes. Furthermore, there are other problems, such as the fact that the refractive index of the air changes due to local temperature changes, the optical system gets dirty with oil or dust, etc., and is easily affected by the environment, and it cannot be applied when the target object is a mirror surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、前記変位量を精度よく測定するために、2か所
から対象物体の同一場所にレーザー光の光束を同じ入射
角で照射し、その対象物体の表面が変位した場合に起こ
る反射光の変化を検出して測定するようにした特開昭4
7−19846号公報の先行技術がある。この公報に記
載された反射光変化の検出器は、光電変換器をスリット
を設けた回転ドラム内に配置したものを使用している。
Therefore, in order to accurately measure the amount of displacement, a beam of laser light is irradiated from two locations onto the same location on the target object at the same angle of incidence, and the change in reflected light that occurs when the surface of the target object is displaced. Unexamined Japanese Patent Application Publication No. 4
There is a prior art of Publication No. 7-19846. The reflected light change detector described in this publication uses a photoelectric converter placed inside a rotating drum provided with slits.

即ち、2箇所から一点に照射したレーザー光線は、物体
から前記検出器に向かって二つの反射光となって観測さ
れる。次いで反射位置が変位すると、前記2か所から放
射した光は別々の位置を照射することになるので、反射
位置は2か所に分離する。したがって、前記回転ドラム
のスリットが、2か所からの反射光のいずれかを捕らえ
た時に光電変換器は電流を出力するので、前記変位が大
きいほど前記電流の出力時間間隔は広くなる。したがっ
て、前記時間差から変位を測定することができる。
That is, a laser beam irradiated from two places to one point is observed as two reflected lights from the object toward the detector. Next, when the reflection position is displaced, the light emitted from the two places will illuminate different positions, so the reflection position will be separated into two places. Therefore, since the photoelectric converter outputs a current when the slit of the rotating drum captures reflected light from either of the two places, the larger the displacement, the wider the output time interval of the current. Therefore, displacement can be measured from the time difference.

以上の説明から分かるように前記公報の先行技術は、僅
かな変位、例えばヘルド上を走行する物体の高さを測定
する場合などに通していても、距離が大きく変わるAU
Vに装備する光学的距離測定装置として採用することは
できない。
As can be seen from the above explanation, the prior art of the above-mentioned publication does not allow the AU to change the distance significantly even when passing through a small displacement, such as when measuring the height of an object running on a heald.
It cannot be used as an optical distance measuring device installed in V.

本発明は、以上の問題に着目して成されたものであり、
光学的三角測量手段を用いることにより高い精度で、し
かも測定可能範囲で距離変化が大きい場合にも正確に距
離及びその変化を測定でき、しかも小型として例えばA
UVに搭載可能な光学式距離センサを提供することを目
的としている。
The present invention has been made focusing on the above problems,
By using optical triangulation means, it is possible to accurately measure distances and their changes with high accuracy even when distance changes are large within the measurable range.
The purpose is to provide an optical distance sensor that can be mounted on a UV.

(課題を解決するための手段) 以上の目的を達成するための本発明の光学式距離センサ
の構成は、対象物体に向けて光束を放射する投光部と、
対象物体からの反射光を前記光束から距離Bだけ離した
位置に配置した受光レンズに受け、この受光レンズの焦
点距離F離れた位置に配置した直線型位置検出素子上に
結像させる受光器を複数設け、それぞれの受光部を前記
直線型位置検出素子の前記光束に近い側の電極から出力
する電流INと遠い側の電極から出力する電流■、との
比I 、/ I 、を各受光部ごとに求め、前記対象物
体と前記受光レンズとの距離Zを次式、 但しnは受光部の数を表す。
(Means for Solving the Problems) The configuration of the optical distance sensor of the present invention for achieving the above object includes a light projecting section that emits a luminous flux toward a target object;
A light receiver that receives reflected light from a target object by a light receiving lens placed at a distance B from the light beam, and forms an image on a linear position detection element placed at a focal length F of the light receiving lens. A plurality of light receiving parts are provided, and each light receiving part is determined by the ratio I, /I, of the current IN output from the electrode on the side closer to the light beam of the linear position detection element and the current ■ output from the electrode on the far side. The distance Z between the target object and the light-receiving lens is determined by the following formula, where n represents the number of light-receiving parts.

から算出する演算部を設けたものである。This is equipped with an arithmetic unit that calculates from.

前記光学式距離センサは、空気中、水中いずれにも使用
することができる。
The optical distance sensor can be used both in the air and underwater.

受光部の数nが、3以上の場合には、例えば、光源の周
囲に放射状に受光部を配置することによって本発明光学
式距離センサを形成することができる。
When the number n of light receiving sections is 3 or more, the optical distance sensor of the present invention can be formed, for example, by arranging the light receiving sections radially around the light source.

〔実施例〕〔Example〕

以下添付の図面を対照して、一実施例により本発明の光
学式距離センサを具体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The optical distance sensor of the present invention will be described in detail below by way of an embodiment with reference to the accompanying drawings.

第1図は、本実施例の光学式距離センサの概要説明図で
ある。図において光学式距離センサ1の投光部2は1個
であるのに対し2個の同じ仕様の受光部41.4□を投
光部2に対して対称的に配置している。投光部2は緑色
レーザー光を1ビーム放射する投光装置6と光学ガラス
から成る投光窓8′とから成り、投光装置6の光軸から
それぞれ距離B離れた位置に受光レンズ14、、14□
を配置する。P S D16..16□は、受光レンズ
14□、14!からレンズの焦点距離Fだけ離した位置
に配置した。
FIG. 1 is a schematic explanatory diagram of the optical distance sensor of this embodiment. In the figure, the optical distance sensor 1 has one light projecting section 2, but two light receiving sections 41.4□ having the same specifications are arranged symmetrically with respect to the light projecting section 2. The light projecting unit 2 consists of a light projecting device 6 that emits one beam of green laser light and a light projecting window 8' made of optical glass.The light projecting unit 2 includes a light receiving lens 14 and a light receiving lens 14, respectively, located at a distance B from the optical axis of the light projecting device 6. , 14□
Place. PSD16. .. 16□ is the light receiving lens 14□, 14! The lens was placed at a position separated by the focal length F of the lens.

PSD18.の電極ENI、E□及びPSD18□の電
極EN□、EF2のそれぞれから出力される電流I N
I+ I FI+  I N!、 I vzを増幅器2
0に与え、増幅されたのちA/D変換器22によってデ
ィジタル信号に変換されたのち、演算部24に与えられ
る。演算部24では次式、 によって演算が行われ、距離Zの信号が表示器26に与
えられる。
PSD18. The current I N output from the electrodes ENI and E□ of
I+ I FI+ I N! , I vz amplifier 2
0, amplified and converted into a digital signal by the A/D converter 22, and then provided to the arithmetic unit 24. The calculation unit 24 performs calculations according to the following equation, and provides a signal of distance Z to the display 26.

4゜ したがって、本発明によれば、従来の光学式距離センサ
より、正確に、しかも高い精度で測定することが可能で
あり、光源を中心に放射状に単位受光部を配置すること
によって、コンパクトで、しかも正確でしかも高い精度
の測量器を提供すことができる。したがって、測定距離
変化の大きいAUVに搭載することが可能である。
4. Therefore, according to the present invention, it is possible to measure more accurately and with higher precision than the conventional optical distance sensor, and by arranging the unit light receiving parts radially around the light source, it is compact. Moreover, it is possible to provide a surveying instrument that is accurate and has high precision. Therefore, it is possible to install it in an AUV with a large change in measurement distance.

(発明の効果〕 以上説明したように本発明の光学式距離センサは、一つ
の光源からの反射光を複数のアレイ弐光変換素子上に別
々に結像させ、これらの素子から出力される電流比を用
いた三角測量方式により平均化した距離を算出するよう
にしたので、比較的簡単な構成により正確に、且つ測定
精度を従来のものより向上させることができるという効
果を得ることができる。
(Effects of the Invention) As explained above, the optical distance sensor of the present invention focuses the reflected light from one light source on a plurality of array two-light conversion elements separately, and converts the current output from these elements into two images. Since the averaged distance is calculated by a triangulation method using a ratio, it is possible to obtain the effect of being able to accurately measure and improve measurement precision compared to the conventional method with a relatively simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、一実施例による光学式距離センサの概要説明
図、第2図は従来の光学式距離センサの概要説明図であ
る。 1・・・光学式距離センサ、2・・・投光部、4,4.
。 4□・・・受光部、6・・・投光装置、lO・・・光束
、12・・・対象物体、14,14..14□・・・受
光レンズ、16・・・直線型光変換素子(P S D)
、18・・・反射光、24・・・演算部。
FIG. 1 is a schematic explanatory diagram of an optical distance sensor according to an embodiment, and FIG. 2 is a schematic explanatory diagram of a conventional optical distance sensor. 1... Optical distance sensor, 2... Light projecting section, 4, 4.
. 4□... Light receiving unit, 6... Light emitter, lO... Luminous flux, 12... Target object, 14, 14. .. 14□... Light receiving lens, 16... Linear type light conversion element (PSD)
, 18...Reflected light, 24... Arithmetic unit.

Claims (1)

【特許請求の範囲】 対象物体に向けて光束を放射する投光部と、対象物体か
らの反射光を前記光束から距離Bだけ離した位置に配置
した受光レンズに受け、この受光レンズの焦点距離F離
れた位置に配置した直線型位置検出素子上に結像させる
受光器を複数設け、それぞれの受光部を前記直線型位置
検出素子の前記光束に近い側の電極から出力する電流I
_Nと遠い側の電極から出力する電流I_Fとの比I_
N/I_Fを各受光部ごとに求め、前記対象物体と前記
受光レンズとの距離Zを次式、▲数式、化学式、表等が
あります▼ 但しnは受光部の数を、Lは受光部の長さをそれぞれ表
す。 から算出する演算部を設けた光学式距離センサ。
[Scope of Claims] A light projector that emits a light beam toward a target object, and a light receiving lens that receives the reflected light from the target object at a distance B from the light beam, and the focal length of the light receiving lens is A plurality of light receivers are provided to form an image on a linear position detecting element arranged at a distance F, and each light receiving part is outputted from an electrode of the linear position detecting element on the side closer to the luminous flux.
The ratio I_ of _N and the current I_F output from the far side electrode
Determine N/I_F for each light receiving part, and calculate the distance Z between the target object and the light receiving lens using the following formula, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ where n is the number of light receiving parts, and L is the number of light receiving parts. Each represents the length. Optical distance sensor equipped with a calculation unit that calculates from
JP15744690A 1990-06-18 1990-06-18 Optical distance sensor Pending JPH0448210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15744690A JPH0448210A (en) 1990-06-18 1990-06-18 Optical distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15744690A JPH0448210A (en) 1990-06-18 1990-06-18 Optical distance sensor

Publications (1)

Publication Number Publication Date
JPH0448210A true JPH0448210A (en) 1992-02-18

Family

ID=15649838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15744690A Pending JPH0448210A (en) 1990-06-18 1990-06-18 Optical distance sensor

Country Status (1)

Country Link
JP (1) JPH0448210A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159709A (en) * 1986-12-23 1988-07-02 Mitsutoyo Corp Monocontact displacement gauge
JPS63255610A (en) * 1987-04-12 1988-10-21 Hamamatsu Photonics Kk Distance detector
JPS6425006A (en) * 1987-07-21 1989-01-27 Rikagaku Kenkyusho Optical method for detecting distance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159709A (en) * 1986-12-23 1988-07-02 Mitsutoyo Corp Monocontact displacement gauge
JPS63255610A (en) * 1987-04-12 1988-10-21 Hamamatsu Photonics Kk Distance detector
JPS6425006A (en) * 1987-07-21 1989-01-27 Rikagaku Kenkyusho Optical method for detecting distance

Similar Documents

Publication Publication Date Title
US4660980A (en) Apparatus for measuring thickness of object transparent to light utilizing interferometric method
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JPH0726806B2 (en) Distance measuring device
JPH0652170B2 (en) Optical imaging type non-contact position measuring device
US4814810A (en) Active-type auto-focusing mechanism
JP2007010556A (en) Optical range finding sensor, and equipment provided therewith
JPH08184431A (en) Distance measuring equipment
JPH0345322B2 (en)
JPH0448210A (en) Optical distance sensor
JPS6266111A (en) Optical distance detecting device
JP2851053B2 (en) Light beam incident angle detection sensor
RU2822502C1 (en) Reflectometer
JPH0219403B2 (en)
JPS57190202A (en) Device for reading optical scale
JP2001188030A (en) Lens meter
SU1024709A1 (en) Non-flatness checking device
SU1093892A1 (en) Light projection range finder
SU1211601A1 (en) Arrangement for measuring object angular deflections
RU1768921C (en) Light spot displacement metering device
SU958852A1 (en) Device for measuring object angular displacement
SU894353A1 (en) Two coordinate photoelectric microscope
SU1730532A1 (en) Device for measuring angular position of an object
SU1569532A1 (en) Apparatus for measuring roughness
JPH0447209A (en) Optical distance measuring apparatus
JPS59202012A (en) Optical range finder