JPH0448189A - Operating method of dc arc fu10rnace - Google Patents

Operating method of dc arc fu10rnace

Info

Publication number
JPH0448189A
JPH0448189A JP15850290A JP15850290A JPH0448189A JP H0448189 A JPH0448189 A JP H0448189A JP 15850290 A JP15850290 A JP 15850290A JP 15850290 A JP15850290 A JP 15850290A JP H0448189 A JPH0448189 A JP H0448189A
Authority
JP
Japan
Prior art keywords
furnace
molten metal
arc
gas
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15850290A
Other languages
Japanese (ja)
Inventor
Takashi Nakayama
傑 中山
Shuichi Nakatsubo
中坪 修一
Tsukasa Nishimura
司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP15850290A priority Critical patent/JPH0448189A/en
Publication of JPH0448189A publication Critical patent/JPH0448189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To eliminate biased heating substantially to promote smelting or refining, shorten operating time, permit the reduction of the unit of electrode or electric power and improve efficiency by blowing gas, not reacting to molten metal, through a nozzle arranged on the hearth of a DC are furnace. CONSTITUTION:Fire resistant nozzles 5 are arranged on the hearth of a furnace body 1 near the wall of the furnace and gas, not reacting to molten metal 4, is blown through these nozzles. The blown gas is selected depending on the kind of the molten metal 4 and argon, for example, is used. On the other hand, N2 gas can be used if there is no problem of N2 in the molten steel. The molten metal 4 makes circulating motion so as to move downward through the center of the furnace, pass the upper surface of the hearth and ascend along the wall of the furnace. Accordingly, the gas 6, blown through nozzles 5, promotes the ascending of the molten metal near the wall of the furnace. As a result, the aggitation of the molten metal 4 is advanced synergistically whereby the biased heating of the molten metal in up-and-down direction is reduced and the smelting or refining of materials can be advanced efficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直流アーク炉の操業方法に関し、更に詳しくは
、炉内の上下方向における偏熱を抑制して熱効率を高め
、原料の溶解または/および精錬を能率よく行なうこと
ができる直流アーク炉の操業方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method of operating a DC arc furnace, and more specifically, it suppresses uneven heat in the vertical direction in the furnace to increase thermal efficiency and to melt and/or melt raw materials. The present invention also relates to a method of operating a DC arc furnace that allows efficient refining.

(従来の技術) 溶鋼の精錬や各種特殊鋼の製造には、アーク炉が広く用
いられている。一般に用いられているア一り炉は、耐火
物で形成された炉本体と、その底部に配設された陽極と
、炉本体の上部に吊設された陰極とから成り、この両極
間に通電して高温のアークを形成し、その熱エネルギー
で炉内に装入されているスクラップ鋼などの原料を溶解
せしめて溶湯にする。
(Prior Art) Arc furnaces are widely used for refining molten steel and manufacturing various special steels. A commonly used furnace consists of a furnace body made of refractory material, an anode placed at the bottom of the furnace body, and a cathode suspended from the top of the furnace body. This creates a high-temperature arc, which uses the heat energy to melt raw materials such as scrap steel charged into the furnace into molten metal.

このアーク炉には、通電する電流に対応して、交流アー
ク炉と直流アーク炉の2種類のタイプがあり、主として
交流アーク炉が多用されている。
There are two types of arc furnaces, AC arc furnaces and DC arc furnaces, depending on the current applied, and AC arc furnaces are mainly used.

一方、直流アーク炉は、交流アーク炉に比べ、公害の防
止(フリッカ一対策)、使用電極の原単位や電力原単位
の低減、したがって生産性の向上にとって有利なタイプ
であるとの認識が広まりつつあり、最近、欧米諸国や日
本などを中心に、直流アーク炉の設置が試みられている
On the other hand, it is becoming increasingly recognized that DC arc furnaces are more advantageous than AC arc furnaces in terms of preventing pollution (flicker countermeasures), reducing the consumption of electrodes and electric power, and therefore improving productivity. Recently, attempts have been made to install DC arc furnaces mainly in Western countries and Japan.

ところで、交流アーク炉は、吊設する陰極を3本とし、
両極間に3相交流を通電してアーク領域を形成する。ま
た、直流アーク炉は、吊設する陰極を1本とし、両極間
に直流を通電する。
By the way, an AC arc furnace has three suspended cathodes.
A three-phase alternating current is passed between the two poles to form an arc region. Further, a DC arc furnace has one suspended cathode, and direct current is passed between the two cathodes.

これら交流アーク炉と直流アーク炉は、それぞれ、次の
ような炉特性を備えている。
These AC arc furnaces and DC arc furnaces each have the following furnace characteristics.

すなわち、まず、アーク特性に関していうと、交流アー
ク炉の場合、印加電圧およびアーク電流が0点と周期的
に交差するので、アーク切れが生じ易い。すなわち、ア
ークは不安定である。一方、直流アーク炉の場合は、常
に所定値の電圧が印加されているのでアーク切れの生ず
ることはなく、安定したアーク炉が操業の過程で得られ
る。
That is, first, regarding arc characteristics, in the case of an AC arc furnace, arc breakage is likely to occur because the applied voltage and arc current periodically intersect with the zero point. That is, the arc is unstable. On the other hand, in the case of a DC arc furnace, since a predetermined voltage is always applied, arc breakage does not occur, and a stable arc furnace can be obtained during operation.

また、アークの流れに関しては、交流アーク炉の場合、
3本の陰極間における相互作用により、アークの流れが
炉壁側に片寄るという現象が生ずる。その結果、炉内に
おける原料の溶解効率の低下や溶解状態にばらつきが生
じ、均一な溶解や精錬も行ないにくいという問題かある
Regarding the arc flow, in the case of an AC arc furnace,
The interaction between the three cathodes causes a phenomenon in which the arc flow is biased toward the furnace wall. As a result, there is a problem that the melting efficiency of the raw materials in the furnace decreases and the melting state varies, making it difficult to perform uniform melting and refining.

一方、直流アーク炉の場合、陰極の位置を中心にしてア
ークの流れは同心円状に広かり、そしてこの広がりが均
一であるため、原料の溶解効率は向上し、かつ均一な溶
解・精錬状態か得られる。
On the other hand, in the case of a DC arc furnace, the arc flow spreads concentrically around the cathode position, and because this spread is uniform, the melting efficiency of raw materials is improved, and a uniform melting and refining state is achieved. can get.

更に、原料が溶解または/および精錬において、通電中
、原料の溶湯は炉内で次のような運動をする。まず、交
流アーク炉の場合は、3本の陰極に印加されている3相
交流の相回転方向、すなわち、水平方向の回転運動をす
る。したがって、溶湯の上下方向における偏熱が大きく
なり、それが原因で原料の不均一溶解や造滓前の不均一
溶解か起って熱損失は大となる傾向を示す。
Furthermore, when the raw material is melted and/or refined, the molten raw material moves in the furnace as follows while electricity is being applied. First, in the case of an AC arc furnace, rotational movement is performed in the phase rotation direction of the three-phase alternating current applied to the three cathodes, that is, in the horizontal direction. Therefore, the uneven heat in the vertical direction of the molten metal becomes large, which causes non-uniform melting of raw materials and non-uniform melting before slag formation, which tends to increase heat loss.

一方、直流アーク炉の場合は、溶湯は垂直方向の回転運
動を行なう。したがって、溶湯は炉内を上下に回流して
常に攪拌されている状態にあり、上下方向における偏熱
は小さくなる。
On the other hand, in the case of a DC arc furnace, the molten metal performs vertical rotational motion. Therefore, the molten metal circulates up and down in the furnace and is constantly stirred, so that uneven heat in the up and down direction is reduced.

しかしなから、直流アーク炉のアークスポットの温度は
約6000°Cともいわれるほど高温であるため、上述
した溶湯の上下方向における回流が起っているとはいえ
、ある程度の偏熱は不可避である。
However, the temperature of the arc spot in a DC arc furnace is so high that it is said to be about 6000°C, so even though the above-mentioned circulation of the molten metal occurs in the vertical direction, some degree of uneven heating is unavoidable. .

(発明か解決しようとする課題) 上述したように、直流アーク炉による操業は交流アーク
炉のそれに比へて工業的に有利であるといえる。
(Problems to be Solved by the Invention) As described above, operation using a DC arc furnace can be said to be industrially advantageous compared to that using an AC arc furnace.

しかしなから、生産効率という点では、未だ高効率であ
るとはいいがたい。
However, in terms of production efficiency, it is still difficult to say that it is highly efficient.

したがって、本発明の目的は、偏熱を実質的に解消して
溶解または/および精錬を促進せしめ、もって操業時間
の短縮、電極や電力の原単位の低減を可能にして効率を
高めた直流アーク炉の操業方法を提供することにある。
Therefore, an object of the present invention is to provide a DC arc that substantially eliminates uneven heat and promotes melting and/or refining, thereby shortening operating time and reducing electrode and electric power consumption, thereby increasing efficiency. The purpose is to provide a method for operating a furnace.

(課題を解決するための手段) 上記した目的を達成するために、本発明においては、直
流アーク炉に装入された原料を溶解または/および精錬
するときに、前記原料の溶湯の炉内における流れを促進
するように、前記直流アーク炉の炉底に配設されたノズ
ルから前記溶湯と反応しないガスを吹き込むことを特徴
とする直流アーク炉の操業方法が提供される。
(Means for Solving the Problems) In order to achieve the above-mentioned object, in the present invention, when melting and/or refining the raw material charged into the DC arc furnace, the molten metal of the raw material is There is provided a method for operating a DC arc furnace, characterized in that a gas that does not react with the molten metal is blown from a nozzle disposed at the bottom of the DC arc furnace to promote flow.

本発明の操業方法を図面に則して説明する。第1図にお
いて、耐火物から成る炉体1の底部には陽極である炉底
電極2が配設され、上部には陰極である上部電極3が吊
設されている。
The operating method of the present invention will be explained with reference to the drawings. In FIG. 1, a furnace body 1 made of refractory material has a bottom electrode 2, which is an anode, disposed at the bottom, and an upper electrode 3, which is a cathode, suspended from the top.

炉体1に原料が装入され、炉底電極2と上部電極3の間
にアークをとばして原料が溶解される。
A raw material is charged into a furnace body 1, and an arc is blown between a bottom electrode 2 and an upper electrode 3 to melt the raw material.

このとき、溶湯4は、上述したように、電流値に応じて
上下方向に時計回りまたは反時計回りの回転運動をする
。今、溶湯4は図のように、矢印p方向に回流する場合
を考える。
At this time, the molten metal 4 rotates clockwise or counterclockwise in the vertical direction depending on the current value, as described above. Now, consider the case where the molten metal 4 flows in the direction of the arrow p as shown in the figure.

この場合、炉体1の底部で、炉壁に近い部分に耐火性の
ノズル5,5を配設し、これらノズルから、溶湯4と反
応しないガス6.6を吹き込む。
In this case, refractory nozzles 5, 5 are provided at the bottom of the furnace body 1 near the furnace wall, and a gas 6.6 that does not react with the molten metal 4 is blown from these nozzles.

吹き込むガスとしては、溶湯4の種類によって選択され
るか、例えば、Arである。また、溶鋼中のN2の問題
のないものであればN2ガスも使用できる。
The gas to be blown is selected depending on the type of molten metal 4, or is, for example, Ar. Further, N2 gas can also be used as long as there is no problem with N2 in the molten steel.

溶湯4は、炉内の中心を下方に移動し、炉底の上面を通
り、炉壁に沿って上昇するという回流運動をしている。
The molten metal 4 moves downward through the center of the furnace, passes through the upper surface of the bottom of the furnace, and rises along the furnace wall, making a circular movement.

したがって、ノズル5.5から吹き込まれたガス6.6
は、溶湯の炉壁付近における上昇を促進することになる
。その結果、溶湯4の攪拌は相乗的に進行するので、上
下方向における溶湯の偏熱は小さくなり、原料の溶解ま
たは/および精錬か効率よく進む。
Therefore, the gas 6.6 blown from the nozzle 5.5
This promotes the rise of the molten metal near the furnace wall. As a result, the stirring of the molten metal 4 proceeds synergistically, so that the uneven heat of the molten metal in the vertical direction becomes small, and the melting and/or refining of the raw materials proceeds efficiently.

また、溶湯の回流か図とは逆になるような電流値で操業
する場合は、ノズル5,5を炉底電極2の近傍に配置す
ればよい。
In addition, when operating with a current value that causes circulation of the molten metal to be opposite to that shown in the figure, the nozzles 5, 5 may be placed near the bottom electrode 2.

なお、このときのカス吹き込み量は、溶湯4の流れを促
進するような量であればよく格別限定されるものではな
いが、溶湯トン当り0.001〜0.01NM/min
程度であればよい。
Note that the amount of waste blown at this time is not particularly limited as long as it is an amount that promotes the flow of the molten metal 4, but it is 0.001 to 0.01 NM/min per ton of molten metal.
It is sufficient as long as it is of a certain extent.

(実施例) 実施例1. 2、比較例1,2 第1図に示した直流アーク炉にスクラップ鋼30トンを
装入してアーク溶解した。
(Example) Example 1. 2. Comparative Examples 1 and 2 Thirty tons of scrap steel was charged into the DC arc furnace shown in FIG. 1 and arc melted.

このとき、溶解の過程のみにガスを第1表に示した流量
で吹き込み(実施例1)、また、溶解および精錬の双方
の過程でも表示流量のガスを吹き込んだ(実施例2)。
At this time, gas was blown at the flow rate shown in Table 1 only during the melting process (Example 1), and gas was blown at the indicated flow rate during both the melting and refining processes (Example 2).

比較のために、交流アーク炉にスクラップ鋼30トンを
装入し、溶解、精錬のいずれの過程でもガス吹き込みを
行なわす(比較例1)、また溶解。
For comparison, 30 tons of scrap steel was charged into an AC arc furnace, and gas was blown during both melting and refining processes (Comparative Example 1).

精錬の双方の過程で表示流量のガスを吹き込んで(比較
例2)溶解・精錬を行なった。
Melting and refining were performed by blowing gas at the indicated flow rate during both refining processes (Comparative Example 2).

これら各場合の100チヤージにつき、溶解と精錬に要
した時間、電力原単位および電極原単位を測定した。そ
れらの平均値を、比較例1の場合を1.00としたとき
の相対値として第1表に一括して示した。
For each 100 charges in each of these cases, the time required for melting and refining, electric power consumption, and electrode consumption were measured. Those average values are collectively shown in Table 1 as relative values when Comparative Example 1 is set to 1.00.

(以下余白) 4゜ (発明の効果) 以上の説明で明らかなように、本発明方法によれば、製
鋼時間は短縮され、また電力原単位や電極原単位も低減
でき、交流アーク炉操業の場合に比べて高い効率で操業
することができる。
(Left below) 4゜(Effects of the invention) As is clear from the above explanation, the method of the present invention can shorten the steelmaking time, reduce the electricity consumption rate and the electrode consumption rate, and improve the AC arc furnace operation. It is possible to operate with higher efficiency than in the case of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法で用いる直流アーク炉の1例を示す
概略断面図である。 1・・・炉体、2・・・炉底電極、3・・・上部電極、
4・・・溶湯、5・・・ノズル、6・・・ガス。
FIG. 1 is a schematic cross-sectional view showing one example of a DC arc furnace used in the method of the present invention. 1...Furnace body, 2...Furnace bottom electrode, 3...Top electrode,
4... Molten metal, 5... Nozzle, 6... Gas.

Claims (1)

【特許請求の範囲】[Claims] 直流アーク炉に装入された原料を溶解または/および精
錬するときに、前記原料の溶湯の炉内における流れを促
進するように、前記直流アーク炉の炉底に配設されたノ
ズルから前記溶湯と反応しないガスを吹き込むことを特
徴とする直流アーク炉の操業方法。
When melting and/or refining the raw material charged into the DC arc furnace, the molten metal is discharged from a nozzle disposed at the bottom of the DC arc furnace so as to promote the flow of the molten raw material in the furnace. A method of operating a DC arc furnace characterized by injecting a gas that does not react with.
JP15850290A 1990-06-15 1990-06-15 Operating method of dc arc fu10rnace Pending JPH0448189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15850290A JPH0448189A (en) 1990-06-15 1990-06-15 Operating method of dc arc fu10rnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15850290A JPH0448189A (en) 1990-06-15 1990-06-15 Operating method of dc arc fu10rnace

Publications (1)

Publication Number Publication Date
JPH0448189A true JPH0448189A (en) 1992-02-18

Family

ID=15673141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15850290A Pending JPH0448189A (en) 1990-06-15 1990-06-15 Operating method of dc arc fu10rnace

Country Status (1)

Country Link
JP (1) JPH0448189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208972A (en) * 2015-12-21 2017-09-26 株式会社Posco DC electric furnaces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107208972A (en) * 2015-12-21 2017-09-26 株式会社Posco DC electric furnaces
US20180335215A1 (en) * 2015-12-21 2018-11-22 Posco Dc electric furnace

Similar Documents

Publication Publication Date Title
CN201828131U (en) Arc-melting equipment
CN203112905U (en) Copper matte bottom blowing device
US3835230A (en) D.c. arc furnace for steelmaking
KR950000895A (en) Steel converters and steelmaking methods using them
JPS5839214B2 (en) Non-ferrous metal smelting method
JPH0448189A (en) Operating method of dc arc fu10rnace
CN2156967Y (en) DC Arc ladle refining furnace
US6490312B1 (en) Direct-current arc furnace comprising a centric charging shaft for producing steel and a method therefor
US3988525A (en) Direct current arc furnace with charging means
CN1133114A (en) Bottom electrode for metallurgical vessel
US6137822A (en) Direct current arc furnace and a method for melting or heating raw material or molten material
CN215723238U (en) Alternating current electric arc furnace applied to fly ash fusion
JPH07332863A (en) Dc electric furnace
KR840002328B1 (en) Method for producing molten digiron or steel pre-material
NO140715B (en) PROCEDURE FOR THE PRODUCTION OF MELTED IRON OXYDE
JP2509411B2 (en) Arc furnace equipment for steelmaking
JPS60103109A (en) Method for operating electric furnace
JPH0776714A (en) Electric blast furnace for steelmaking
RU1770419C (en) Direct current arc furnace
JPH0293289A (en) Electric furnace having bottom blowing tuyere
RU2153023C1 (en) Method of processing raw materials containing manganese with recovery of metals
JPH0650666A (en) Body structure for electric furnace
JPH03279776A (en) Upward directed oxygen blowing device for dc electric furnace
JPH05180567A (en) Melting furnace for metal
Spivey et al. Operation and experience of the Consteel continuous steelmaking process at Nucor Steel