JPS60103109A - Method for operating electric furnace - Google Patents

Method for operating electric furnace

Info

Publication number
JPS60103109A
JPS60103109A JP58211019A JP21101983A JPS60103109A JP S60103109 A JPS60103109 A JP S60103109A JP 58211019 A JP58211019 A JP 58211019A JP 21101983 A JP21101983 A JP 21101983A JP S60103109 A JPS60103109 A JP S60103109A
Authority
JP
Japan
Prior art keywords
furnace
melting
steel
inert gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58211019A
Other languages
Japanese (ja)
Other versions
JPS631367B2 (en
Inventor
Masahisa Tate
楯 昌久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohshin Seiko Co Ltd
Original Assignee
Tohshin Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohshin Seiko Co Ltd filed Critical Tohshin Seiko Co Ltd
Priority to JP58211019A priority Critical patent/JPS60103109A/en
Publication of JPS60103109A publication Critical patent/JPS60103109A/en
Publication of JPS631367B2 publication Critical patent/JPS631367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • C21C5/5217Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace equipped with burners or devices for injecting gas, i.e. oxygen, or pulverulent materials into the furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To heat uniformly steel scraps and a steel bath and to shorten the time required to melt and refine the scraps by blowing an inert gas into each hot zone to transfer the heat of a steel bath present in the hot zone at a high temp. to steel scraps and a steel bath present in each cold zone at a low temp. CONSTITUTION:Three electrodes 5 are put in an electric furnace 1, and steel scraps fed to the furnace 1 are melted and refined with arc heat. At this time, hot zones 6 are formed at parts confronting the electrodes 5, and cold zones 7 are formed at parts close to the wall of the furnace. Each of the cold zones 7 is between the electrodes 5. Three nozzles 12 are set in the hearth 3 in the hot zones 6, and an inert gas is blown into the zones 6 from the nozzles 12 in such directions as the inert gas blown converges on a nearly central part A of the surface of molten metal prepd. by melting steel scraps.

Description

【発明の詳細な説明】 この発明は、電気炉の操業に当9、炉内に装入されたス
クラップ等の装入物の溶解ノυJ VC:JL−いては
、前記装入物の溶Mを促進して溶解時間の短縮をはかり
、且つ、スラグの早期生成を可能に(〜、そして、精錬
期においては、スラグ−メタル間の化学反応を促進して
精錬時間の短縮をはかることを目的とする電気炉の操業
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the operation of an electric furnace. The aim is to promote the chemical reaction between slag and metal to shorten the melting time, and to enable the early generation of slag. This article relates to a method of operating an electric furnace.

従来、電気炉の操業において、スクラップ等の装入物の
溶解期には、炉壁からの助燃バーJ−の使用および溶解
促進のための酸素の使用が、電極のアーク熱による溶解
と併用されており、単なる電極のアーク熱による操業に
比較してかなりの操業時間短縮の効果があがっている。
Conventionally, in the operation of electric furnaces, during the melting stage of charges such as scrap, the use of an auxiliary combustion bar J- from the furnace wall and the use of oxygen to promote melting were combined with melting by arc heat from the electrodes. This results in a considerable reduction in operating time compared to operation using simple arc heat from the electrodes.

しかし乍ら昨今は゛、上記溶解の促進および精錬時間の
短縮を一段と強化することが望まれており、その/こめ
に炉床部から不活性ガスもしくは酸化性のガスを炉内に
吹き込むことによる溶解の促進および精錬113間の短
縮が提案されているが、現実的にはこの炉床部からのガ
ス吹き込み併用の電気炉の操業法は採用づれるに至って
いない。
However, in recent years, it has been desired to further promote the above-mentioned melting and shorten the refining time. Although it has been proposed to accelerate the refining process and shorten the time required for refining, in reality, this method of operating an electric furnace that also uses gas blowing from the hearth has not been adopted.

そのため溶解期においては、炉内の熱の分布を均一にす
ることが困難なことから、コールドゾーンにおける溶)
デr遅れの解消がむづかしく、また、スラグの生成゛ま
での時間を短縮できない等の問題をかかえている。ぞし
て、精錬期においては、(a)不均一な加熱による高温
スラグにより炉の内張耐火物の損傷が大きい、(b)温
度分布が不均一なため、未溶解部などが4にじ易く、ス
ラグ−メタル相の反応が促進さ九ず71L力原単位が上
昇する、(C)鋼中のCの移動速度がおそ〈精錬時間が
長くなる、(d)スラグ中のT、Feが多く且つ添加合
金鉄の歩留りが悪い、等の問題がある。
Therefore, during the melting period, it is difficult to make the heat distribution uniform in the furnace, so the melting in the cold zone is difficult.
It is difficult to eliminate the delay, and the time required for slag generation cannot be shortened. Therefore, during the refining period, (a) high-temperature slag due to uneven heating causes significant damage to the refractory lining of the furnace, and (b) uneven temperature distribution causes unmelted parts to be (C) The movement speed of C in the steel is slowed down (refining time becomes longer) (d) T and Fe in the slag There are problems such as a large amount of added iron alloy and poor yield.

次に、前述した炉床部からのガスの吹込み手段およびそ
の問題点について説明する。即ち、炉床部からのガス吹
込み手段としては、■電気炉の側壁からコールドゾーン
の鋼浴内に各種のガスを選、1 沢的に吹込む方V3、■炉床部の鋼浴深さか百以下に当
る炉床に、’7IY 価の下を避け、炉内の上方に向け
て同心円上に多数のガス吹込みノズルを設け、前記ノズ
ルから鋼浴内に溶解期には酸素を、そして精錬期には不
活性ガスを吹込む方法が知られている。
Next, the above-mentioned means for blowing gas from the hearth and its problems will be explained. That is, as means for blowing gas from the hearth, there are two methods: (1) selecting various gases from the side wall of the electric furnace into the steel bath in the cold zone and blowing them into the steel bath in the cold zone; A large number of gas blowing nozzles are installed in a concentric circle toward the top of the furnace, avoiding temperatures below '7IY, in the hearth, which corresponds to the height of the steel bath. A known method is to inject inert gas during the refining stage.

しかしながら、前者の方法は、コールドゾーンの温度の
低い鋼浴中にガスを吹込むものであるから、前記品度の
低い鋼浴が炉内を移動するに過ぎず、期待するほどの溶
解及び精錬の促進効果は得られない。また後者の方法は
、炉床に設けらハだガス吹込みノズルから鋼浴が漏出す
る危険があり、そのソールが困難である上、ノズル及び
炉床部の損傷が激しく、そのための冷却機構が必要とな
る上、冷却によって炉の熱が奪われる等、多くの問題が
ある。
However, since the former method involves blowing gas into the low-temperature steel bath in the cold zone, the low-grade steel bath merely moves within the furnace, and the melting and refining promotion effect is not as great as expected. cannot be obtained. In addition, in the latter method, there is a risk that the steel bath will leak from the blast gas injection nozzle installed in the hearth, and the sole is difficult, and the nozzle and hearth part are severely damaged, and the cooling mechanism for that purpose is difficult. In addition to being necessary, there are many problems such as heat being taken away from the furnace by cooling.

本発明者等は、上述した問題を解決し、溶解ノυ」及び
精錬期における加熱を均一化してコールドゾーンを無く
し、溶解及び精錬時間の短縮により生産能率の向上及び
電力原単位の低減を図ることができる電気炉の操業方法
を開発すべく鋭意ωI究を重ねた。
The present inventors solved the above-mentioned problems, uniformized heating during melting and refining periods, eliminated cold zones, and improved production efficiency and reduced power consumption by shortening melting and refining times. In order to develop a method of operating an electric furnace that can

その結果、ホットゾーンに不活性ガスを吹込み、ホット
ゾーンにおける高温の鋼浴の熱量をコールドゾーンにあ
る鋼スクラツプおよび低温の鋼浴に伝えれば、鋼スクラ
ップおよび鋼浴の加熱が均一に行なわれ、俗解及び精錬
時間を短縮し得ることがわかった。
As a result, by blowing inert gas into the hot zone and transferring the heat from the hot steel bath in the hot zone to the steel scrap and the cold steel bath in the cold zone, the steel scrap and steel bath can be heated evenly. , it was found that the common understanding and refining time could be shortened.

この発明は、」二記知見に基いてなされたものであって
、 電気炉の炉床部に設けたノズルから炉内にガスを吹込み
、前記ガスによって、溶解期には炉内の装入物の溶解を
促進し、そして、精錬期には鋼浴の化学反応を促進する
ことを、電極のアーク熱による+8解および精錬と併用
する電気炉の操業方法において、 1)1」記炉内に吹込むガスとして不活性ガスを使用し
、溶解期に、l’jl Fil、l:不活性ガスを炉内
のホットゾーンに向けて、且つ、前記装入物の溶解が完
了した後の鋼浴内のはtア中央部に前記不活性ガスが収
斂する方向に、前記炉床部に設けた3箇以下のノズルか
ら吹込むことにより、前記装入物の溶解を促進し、次い
で、精錬期に、前記不活性ガスを、前記溶解期と同じよ
うに、前記炉床部に設けた3箇以下のノズルから、炉内
のホットゾーンに向けて、且つ、前記装入物の溶解が完
了した後の鋼浴面のほぼ中央部に前記不活性ガスが収斂
する方向に吹込むことにより、鋼浴の化学反応を促進す
ることに特徴を有するものである。
This invention was made based on the findings mentioned in Section 2, and includes blowing gas into the furnace from a nozzle provided in the hearth of the electric furnace, and using the gas to charge the inside of the furnace during the melting period. In a method of operating an electric furnace that uses electrode arc heat to promote melting of materials and chemical reactions in a steel bath during the refining period, 1) 1. During the melting stage, the inert gas is directed to the hot zone in the furnace and the steel after the melting of the charge is completed. The inert gas in the bath is blown into the center of the bath from three or less nozzles provided in the hearth to promote melting of the charge, and then the smelting process is carried out. During the melting period, the inert gas is directed to the hot zone in the furnace from no more than three nozzles provided in the hearth, and the melting of the charge is completed. This method is characterized in that the inert gas is blown in a convergent direction into the substantially central portion of the surface of the steel bath after the steel bath has been heated, thereby promoting the chemical reaction of the steel bath.

次に、この発明を図面を参照しながら説明する。Next, the present invention will be explained with reference to the drawings.

第1図はこの発明方法の1つの実施態様を示す電気炉炉
底部の概略水平断面図、第2図は同じく概略縦断面図で
ある。図面に示すように、内壁2が耐火物でそして炉床
3がMgOスタンプでライニングされ、周囲が鉄皮4で
覆われている電気炉1には、3本の電極5が挿入され、
アーク熱によって、電気炉l内に供給された鋼スクラツ
プの溶解及び精錬が行なわれる。このとき、電極5の対
向部にはホットゾーン6が生成し、電極5間の炉壁付近
にはコールドシー77が生成する。第1図において8は
未溶解の鋼スクラツプ、9は出鋼樋であシ、第2図にお
いて10は炉壁に設けられた助燃用バーナ、11は溶鋼
である。
FIG. 1 is a schematic horizontal cross-sectional view of the bottom of an electric furnace showing one embodiment of the method of the present invention, and FIG. 2 is a schematic vertical cross-sectional view of the bottom of the electric furnace. As shown in the drawing, three electrodes 5 are inserted into an electric furnace 1 whose inner wall 2 is made of refractory material, whose hearth 3 is lined with an MgO stamp, and whose periphery is covered with an iron shell 4.
The arc heat melts and refines the steel scrap fed into the electric furnace. At this time, a hot zone 6 is generated in the area facing the electrodes 5, and a cold sea 77 is generated near the furnace wall between the electrodes 5. In FIG. 1, 8 is unmelted steel scrap, 9 is a tapping trough, and in FIG. 2, 10 is an auxiliary combustion burner provided on the furnace wall, and 11 is molten steel.

この発明においては、ホットゾーン6の炉床3にノズル
12を3箇設け、ノズル12がら不活性ガスを吹込むも
ので、不活性ガスの吹込み方向は、吹込まれた不活性ガ
ス力;、鋼スクラツプが溶は落ちた後の湯面のはIT中
央部Aに収斂する方向とする。
In this invention, three nozzles 12 are provided in the hearth 3 of the hot zone 6, and inert gas is blown in from the nozzles 12. The molten metal surface after the steel scrap has melted down is in the direction of convergence in the IT central part A.

吹込む不活性ガスは、例えば窒素ガス、アルゴンガス等
を使用するものであり、その吹込み金は溶鋼1屯当シ帆
01〜(LINm3/分の範囲とすることが好ましい。
The inert gas to be blown is, for example, nitrogen gas, argon gas, etc., and the blown metal is preferably in the range of 01 to (LINm3/min) per ton of molten steel.

即ち、吹込み量が溶鋼1屯当り0.01 Nm /分未
満では所期の効果が得られず、一方、0.lNm37分
を超えると、冷却が助長される一方、鋼浴に不必要な動
きが生じ、電力の入力に悪影響をもたらすなどの問題が
生ずる。また、酸化性ガスのような活性ガスを吹込むと
、炉床が損傷する問題が生ずる。従って、本発明では活
性ガスは使用しない。
That is, if the injection amount is less than 0.01 Nm/min per ton of molten steel, the desired effect cannot be obtained; If the temperature exceeds 1Nm for 37 minutes, cooling will be facilitated, but unnecessary movement will occur in the steel bath, which will adversely affect power input. Furthermore, when an active gas such as an oxidizing gas is injected, there is a problem in that the hearth is damaged. Therefore, no active gas is used in the present invention.

上記により不活性ガスを吹込むためのノズル12は3箇
以下とすべきである。即ち前記ノズル12が3箇を超え
ると、ノズル12周辺の炉床耐火物が損傷する結果、そ
の補修に多くの時間を要し、生産能率を阻害する問題や
、鋼浴に不必要な動きが生じて、電力効率を損なうなど
の不利益が生ずる。この発明において、不活性ガスの吹
込みのためのノズル12には、例えばMgo −c系の
細管多孔質の耐火物が使用される。
According to the above, the number of nozzles 12 for blowing inert gas should be three or less. That is, if the number of nozzles 12 exceeds three, the hearth refractories around the nozzles 12 will be damaged, which will require a lot of time to repair, which will impede production efficiency and cause unnecessary movement of the steel bath. This causes disadvantages such as loss of power efficiency. In this invention, the nozzle 12 for blowing inert gas is made of, for example, a Mgo-c-based capillary porous refractory.

上述した方法によシネ活性ガスを吹込むと、溶解期にお
いては、ホットゾーン6にある溶融物が強く撹拌され、
この撹拌によって、コールドシー77に存在する未溶解
の鋼スクラップ8に、ホットシー76にある溶融物が飛
散し、前記溶融物によって鋼スクラツプ8の溶解が促進
される。なお前記飛散した溶融物は、アーク熱によって
その温度が上昇するから、前記鋼スクラツプ7の溶解促
進は一層助長される。
When the cine active gas is injected by the method described above, the melt in the hot zone 6 is strongly agitated during the melting period,
By this stirring, the molten material in the hot sea 76 is scattered onto the unmelted steel scrap 8 present in the cold sea 77, and the melting of the steel scrap 8 is promoted by the molten material. Incidentally, since the temperature of the scattered molten material increases due to the arc heat, the melting of the steel scrap 7 is further promoted.

従来溶解期においては、助燃用バーナによって石油系燃
料を吹付ける補助燃焼と、補助燃焼エネルギーとしてバ
ーナおよびランスによる酸素吹込みのみによらざるを得
なかったが、この発明によれば、上記補助燃焼と、補助
燃焼エネルギーの併用効果に加えて、溶解期のほぼ全′
期を通じて撹拌を行なうことができるので、溶解効率が
著しく向上する。その結果、電力原単位が低減し、また
早期に造滓が可能となるので、反応効率が向上し、生石
灰原単位の低減を図ることができる。
Conventionally, during the melting stage, it was necessary to perform auxiliary combustion by spraying petroleum fuel using an auxiliary combustion burner, and to blow oxygen using a burner and a lance as auxiliary combustion energy, but according to the present invention, the auxiliary combustion In addition to the combined effect of auxiliary combustion energy, almost all of the melting period
Since stirring can be carried out throughout the period, dissolution efficiency is significantly improved. As a result, the power consumption per unit of production is reduced and slag formation becomes possible at an early stage, so that the reaction efficiency is improved and the quicklime consumption rate can be reduced.

次に精錬期においては、ホットゾーン6にある高温の鋼
浴の移動ににって、溶鋼の温度偏差や成分の不均一が減
少する結果、電力原単位は低減し且つ精錬時間は短縮さ
れ、また、高温度のスラグによる耐火物の影響も減少し
て、耐火物原単位が低減される。
Next, during the refining period, as the high-temperature steel bath in the hot zone 6 is moved, the temperature deviation and non-uniformity of the composition of the molten steel are reduced, and as a result, the power consumption rate is reduced and the refining time is shortened. In addition, the influence of high-temperature slag on refractories is also reduced, and the unit consumption of refractories is reduced.

更に、脱炭効率の向上によって低炭素鋼の精錬が容易と
なり、そして、スラグと溶鋼間の反応が促進される結果
、Ill 、 Feのロスが少なくなシ、Fe出鋼歩留
は向上する上、脱酸条件が良くなって、Fe−8iやF
e−Mnなどの添加元素歩留も向上する。また、脱P1
脱S1脱O等の反応も促進され、CaO原単位の低減が
Nれる。
Furthermore, improved decarburization efficiency facilitates refining of low-carbon steel, and as a result of promoting the reaction between slag and molten steel, the loss of Ill and Fe is reduced, and the Fe steel extraction yield is improved. , the deoxidizing conditions have improved, and Fe-8i and F
The yield of additive elements such as e-Mn is also improved. Also, de-P1
Reactions such as S1 removal and O removal are also promoted, and the CaO basic unit is reduced.

次に、この発明を実施例によシ更に説明する。Next, the present invention will be further explained using examples.

@1表及び第2表には、前述したこの発明の方法に従っ
て操業を行なったときの実施例が従来例と共に示されて
いる。第1表は原料装入例、製鋼時間、電力原単位、操
業原単位、溶解能率および出鋼歩留を示したものであり
、第2表は精錬jυ]における溶鋼温度、C値、S値、
スラグ中のIll 、 lit 、値および合金鉄歩留
を示したものである、。
Tables 1 and 2 show examples and conventional examples in which operations were carried out according to the method of the present invention described above. Table 1 shows examples of raw material charging, steelmaking time, electric power consumption, operating consumption, melting efficiency, and tapping yield, and Table 2 shows the molten steel temperature, C value, and S value during refining. ,
This figure shows the values of Ill, lit, and ferroalloy yield in the slag.

従来例1ば、炉内の鋼スフシップお上び鋼浴の表面上に
ランスによって酸素を吹4−Jけ、JJ、つ、炉壁廿た
は炉蓋から俗調の表面上にバーナによって石油系燃F)
 k吹付ける補助燃焼法によってa%業した場合である
。従来例2は、炉床部の鋼浴深さがΣ以下に当る炉床に
、電極の下を避け、炉内の上方に向けて同心円状に多数
のガス吹込みノズルを設け、前記ノズルから鋼浴内に酸
素及び不活イ1ニガスを吹込む底吹き法を、実験炉で行
なった場合の値について実炉に換算した例を示すもので
ある。
Conventional Example 1 For example, oxygen is blown with a lance onto the surface of the steel bath and the steel bath in the furnace, and oil is blown onto the surface from the furnace wall or furnace lid with a burner. System fuel F)
This is the case where a% combustion is achieved by the auxiliary combustion method using k spray. In conventional example 2, a large number of gas blowing nozzles are provided concentrically upward in the furnace, avoiding the area under the electrodes, in the hearth where the steel bath depth is below Σ. This figure shows an example in which the values obtained when a bottom blowing method in which oxygen and inert gas are blown into a steel bath are carried out in an experimental furnace are converted to those in an actual furnace.

なお、上記実施例及び従来例2は、何れも従q(例工の
補助燃焼法を併用した。
In addition, in both the above-mentioned embodiment and conventional example 2, the auxiliary combustion method of sub-q (example) was also used.

第1表における操業原単位中の02は、上述した補助燃
焼法によるランスからの吹付は量である。
02 in the operating unit in Table 1 is the amount of spray from the lance by the above-mentioned auxiliary combustion method.

また本発明の実施例では、N2は溶解期と精錬期のほぼ
全期間にわたシ、炉床に設けた3箇のノズルからホット
ゾーンに向けて吹込んだ吹込み量、そしてArは精錬期
の最後の3分間における前記ホットゾーンに向けて吹込
んだ吹込み量である。なお、N2の吹込み開始は、溶鋼
が若干生成してから開始してもよい。また、従来例2の
底吹き02は溶解期に、底吹きArは精錬期にそれぞれ
吹込んだ吹込み量である。
In addition, in the embodiment of the present invention, N2 was used during almost the entire period of the melting period and the refining period, Ar was blown into the hot zone from three nozzles installed in the hearth, and Ar was used during the refining period. This is the amount of air blown into the hot zone during the last 3 minutes of . Note that the injection of N2 may be started after some molten steel has been generated. Further, in Conventional Example 2, the bottom blowing 02 is the blowing amount during the melting period, and the bottom blowing Ar is the blowing amount during the refining period.

第1表及び第2表から明らかなように、不発りJ法の実
施例の場合は、従来例1の補助燃焼法に比べて、製鋼時
間、電力原単位、CaO原単位#は低減し、溶解能率お
よび出鋼歩留は向上すると共に、溶鋼温度およびC値の
偏差も少く、脱S率の向上、スラグ中のT、、Fe値の
減少および合金鉄の歩留向上を図ることができた。
As is clear from Tables 1 and 2, in the case of the non-explosion J method, compared to the auxiliary combustion method of Conventional Example 1, the steelmaking time, electric power consumption rate, and CaO consumption rate # are reduced. The melting efficiency and tapping yield are improved, and the deviations in molten steel temperature and C value are small, making it possible to improve the S removal rate, reduce the T and Fe values in slag, and improve the yield of ferroalloy. Ta.

また、従来例2の底吹き法の場合は、本発明法の実施例
に比べて溶解時間は早くなるが、一方、炉床のガス吹込
み用ノズル周辺の耐火物が激しく損耗するためその補修
に長時間を要する結果、製鋼時間全体では実施例の方が
短く、吹付補修−材の原単位も高い。更に、従来例2の
場合は、多数のノズルからガスが吹込まれるので、湯面
の泡立ちが多くなり、電価と溶鋼との間に流れる電流が
不安定となって電力消費量が増大する結果、精錬期の電
力原単位は実施例の場合より高かった。
In addition, in the case of the bottom blowing method of Conventional Example 2, the melting time is faster than in the example of the method of the present invention, but on the other hand, the refractories around the gas injection nozzle in the hearth are severely worn out, so they need to be repaired. As a result, the overall steel manufacturing time is shorter in the example, and the unit consumption of the sprayed repair material is also higher. Furthermore, in the case of Conventional Example 2, gas is blown in from a large number of nozzles, which increases bubbling on the surface of the molten metal, making the current flowing between the electric charge and the molten steel unstable and increasing power consumption. As a result, the electricity consumption rate during the refining period was higher than that of the example.

次に、本発明法の作用及び効果を列挙する。Next, the functions and effects of the method of the present invention will be listed.

■ 溶解期においては、鋼スクラツプの溶解が促進さ1
−する結果、生t2’f’、能率の向上および電力原単
位の低減を図ることができ、また、早期造滓によって溶
解初期から高塩基度操業が可能となジ、CaO原単位が
低減される。
■ During the dissolution stage, the dissolution of steel scrap is accelerated1
- As a result, it is possible to improve raw t2'f', improve efficiency, and reduce electric power consumption.In addition, early slag formation enables high basicity operation from the initial stage of melting, reducing CaO consumption. Ru.

■ 精錬期においては、スラグとメタルとの間の反応が
促進される結果、下記の効果が挙がる。
■ During the refining period, the reaction between slag and metal is promoted, resulting in the following effects.

a、スラグ中のIll 、 Fe値が低減するので、F
eの出鋼歩留シが向上する。
a. Since the Ill and Fe values in the slag decrease, F
The tapping yield of e is improved.

b、鋼中のO値が低減するので、脱酸剤および合金鉄の
歩留が向上する。
b. Since the O value in the steel is reduced, the yield of deoxidizer and ferroalloy is improved.

C2脱Pおよび脱S効率が向上するので、CaOの原単
位が低減する。
Since the C2 removal efficiency and S removal efficiency are improved, the basic unit of CaO is reduced.

d、溶鋼中のMn値が上昇するので、Mn投入量が減少
する。
d. Since the Mn value in molten steel increases, the amount of Mn input decreases.

e、脱C効率が向上するので、低C材の製造が可能とな
る。
e. Since the C removal efficiency is improved, it becomes possible to manufacture low C materials.

f、溶鋼の成分が均一化するので、品質のバラツキが減
少する。
f. Since the composition of molten steel becomes uniform, variations in quality are reduced.

■ 精錬期における鋼浴の温度が均一化するので、炉壁
耐人材の溶損が少なく、吹付補修刊の原単位が向上する
■ Since the temperature of the steel bath during the refining period is uniform, there is less erosion of the furnace wall reinforcements, and the basic unit of spraying repair work is improved.

■ 精錬時間が短縮されるので、生産能率の向」−およ
び電力原単位の低減を図ることができる。
■ Since refining time is shortened, it is possible to improve production efficiency and reduce power consumption.

以上述べたように、この発明方法によ九ば、溶解期及び
精錬期における加熱が均一化されてコールドゾーンが無
くなり、溶解及び精錬時間が短縮されて生産能率の向上
及び電力その他の操業原単位の低減を図ることができる
等、幾多の工業上優れた効果がもたらされる。
As described above, according to the method of the present invention, heating during the melting and refining periods is made uniform, there is no cold zone, the melting and refining times are shortened, production efficiency is improved, and electric power and other operating basic units are reduced. Many excellent industrial effects are brought about, such as the ability to reduce

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法の1つの実施態様を示す電気炉炉
底部の概略水平断面図、第2図は同じく概略縦断面図で
ある。図面において、 ]・・・電気炉 2・・・内壁 3・・・炉床 4・・・鉄皮 5・・・電極 6・・・ホットゾーン 7・・・コールドシー78・・・鋼スクラップ9・・・
出鋼樋 10・・・助燃用バーナI】・・・溶鋼 12
・・・ノズル 出願人 東伸製鋼株式会社 代理人 潮 谷 奈津夫(他2名) (N \r
FIG. 1 is a schematic horizontal cross-sectional view of the bottom of an electric furnace showing one embodiment of the method of the present invention, and FIG. 2 is a schematic vertical cross-sectional view of the bottom of the electric furnace. In the drawings, ]... Electric furnace 2... Inner wall 3... Hearth 4... Steel shell 5... Electrode 6... Hot zone 7... Cold sea 78... Steel scrap 9 ...
Steel tapping trough 10... Burner for auxiliary combustion I】... Molten steel 12
...Nozzle applicant Toshin Steel Co., Ltd. Agent Natsuo Shioya (and 2 others) (N \r

Claims (2)

【特許請求の範囲】[Claims] (1) 電気炉の炉床部に設けたノズルから炉内にガス
を吹込み、前記ガスによって、溶解期には炉内の装入物
の溶解を促進し、そして、精錬期には鋼浴の化学反応を
促進することを、電極のアーク熱による溶解および精錬
と併用する電気炉の操業方法において、 前記炉内に吹込むガスとして不活性ガスを使用し、溶解
期に前記不活性ガスを炉内のホットゾーンに向けて、且
つ、前記装入物の溶解が完了した後の鋼浴面のほぼ中央
部に前記不活性ガスが収斂する方向に、前記炉床部゛に
設けた3箇以下のノズルから吹込むことによシ前記装入
物の溶解を促進することを特徴とする電気炉の操業方法
(1) Gas is blown into the furnace from a nozzle installed in the hearth of the electric furnace, and the gas accelerates the melting of the charge in the furnace during the melting period, and the steel bath during the refining period. A method of operating an electric furnace that uses melting and refining using arc heat of an electrode to promote a chemical reaction, in which an inert gas is used as the gas blown into the furnace, and the inert gas is Three points are provided in the hearth part toward the hot zone in the furnace and in a direction such that the inert gas converges at approximately the center of the steel bath surface after the melting of the charge is completed. A method for operating an electric furnace, characterized in that melting of the charge is promoted by blowing from the following nozzle.
(2)電気炉の炉床部に設けたノズルから炉内にガスを
吹込み、前記ガスによって、溶解期には炉内の装入物の
溶解を促進し、そして、精錬期には鋼浴の化学反応を促
進することを、電極のアーク熱による溶解および精錬と
併用する電気炉の操業方法において、 前記炉内に吹込むガスとして不活性ガスを使用し、溶解
期に、前記不活性ガスを炉内のホットゾーンに向けて、
且つ、前記装入物の溶解が完了した後の鋼浴面のほぼ中
央部に前記不活性ガスが収斂する方向に、前記炉床部に
設けた3箇以下のノズルから吹込むことによシ、前記装
入物の溶解を促進し、次いで、精錬期に、前記不活性ガ
スを、?1(記溶解期と同じように、前記炉床部に設け
た3箇以下のノズルから、炉内のホットゾーンに向けて
、且つ、前記装入物の溶解が完了した後の鋼浴面のほぼ
中央部に前記不活性ガスが収斂する方向に吹込むことに
よシ、鋼浴の化学反応を促進することを特徴とする電気
炉の操業方法。
(2) Gas is blown into the furnace from a nozzle installed in the hearth of the electric furnace, and the gas accelerates the melting of the charge in the furnace during the melting period, and the steel bath during the refining period. A method of operating an electric furnace that uses melting and refining using arc heat of an electrode to promote a chemical reaction, wherein an inert gas is used as the gas blown into the furnace, and during the melting period towards the hot zone in the furnace,
Further, the inert gas is blown in from three or less nozzles provided in the hearth part in a direction such that the inert gas converges on approximately the center of the steel bath surface after the melting of the charge is completed. , to promote the dissolution of the charge, and then during the refining stage, the inert gas, ? 1 (Similar to the above melting period, from three or less nozzles provided in the hearth part, towards the hot zone in the furnace and on the steel bath surface after the melting of the charge is completed) A method for operating an electric furnace, characterized in that a chemical reaction in a steel bath is promoted by blowing the inert gas in a converging direction approximately at the center.
JP58211019A 1983-11-11 1983-11-11 Method for operating electric furnace Granted JPS60103109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58211019A JPS60103109A (en) 1983-11-11 1983-11-11 Method for operating electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58211019A JPS60103109A (en) 1983-11-11 1983-11-11 Method for operating electric furnace

Publications (2)

Publication Number Publication Date
JPS60103109A true JPS60103109A (en) 1985-06-07
JPS631367B2 JPS631367B2 (en) 1988-01-12

Family

ID=16599000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58211019A Granted JPS60103109A (en) 1983-11-11 1983-11-11 Method for operating electric furnace

Country Status (1)

Country Link
JP (1) JPS60103109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634011A (en) * 1986-06-24 1988-01-09 Tooa Steel Kk Melting method for bottom blow of scrap in electric furnace
JPS634010A (en) * 1986-06-24 1988-01-09 Tooa Steel Kk Refining method for bottom blow of steel in electric furnace
AT396836B (en) * 1986-05-23 1993-12-27 Leybold Ag METHOD FOR MELTING AND DEGASSING PIECE INSERT MATERIAL
CN107299189A (en) * 2017-06-26 2017-10-27 钢铁研究总院 The device and its application method of a kind of spraying of electric furnace blown inert gas

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187579A (en) * 1981-05-15 1982-11-18 Ishikawajima Harima Heavy Ind Steel-making arc furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187579A (en) * 1981-05-15 1982-11-18 Ishikawajima Harima Heavy Ind Steel-making arc furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT396836B (en) * 1986-05-23 1993-12-27 Leybold Ag METHOD FOR MELTING AND DEGASSING PIECE INSERT MATERIAL
JPS634011A (en) * 1986-06-24 1988-01-09 Tooa Steel Kk Melting method for bottom blow of scrap in electric furnace
JPS634010A (en) * 1986-06-24 1988-01-09 Tooa Steel Kk Refining method for bottom blow of steel in electric furnace
CN107299189A (en) * 2017-06-26 2017-10-27 钢铁研究总院 The device and its application method of a kind of spraying of electric furnace blown inert gas
CN107299189B (en) * 2017-06-26 2019-04-26 钢铁研究总院 A kind of device and its application method of spraying of electric furnace blown inert gas

Also Published As

Publication number Publication date
JPS631367B2 (en) 1988-01-12

Similar Documents

Publication Publication Date Title
US4988079A (en) Apparatus for smelting and reducing iron ores
CA2449774A1 (en) Method for melting and decarburization of iron carbon melts
JPH073323A (en) Converter for steel production
JPH0349964B2 (en)
JPS60103109A (en) Method for operating electric furnace
KR100340570B1 (en) Manufacturing method of molten steel using twin shell electric furnace
JP2718093B2 (en) Electric furnace with tuyere
JPS62228417A (en) Method for adding starting material to melt reducing furnace
CN114107598A (en) Electric arc furnace smelting method based on hot charging molten iron
JPH09165613A (en) Scrap melting method
RU1827386C (en) Method of heating and fusion of solid metal charge in converter with combination oxygen-fuel blast
JPS58199810A (en) Operating method of converter
JPS62188712A (en) Melt reduction steel making method
JPH09202911A (en) Method for melting scrap under condition excellent in thermal efficiency
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
JPS6213513A (en) Refining method in refining furnace provided with top blowing lance
JPS61227119A (en) Manufacture of steel in converter using cold material containing iron as principal starting material
JPH0768574B2 (en) Metal oxide smelting reduction method and smelting reduction furnace
JP2022500556A (en) Refining method of low nitrogen steel using an electric furnace
JPS62211347A (en) Method for melting reduction
CN117344083A (en) Method for improving yield of metal raw materials in electric arc furnace
JPH01195211A (en) Method for melting and reducing iron oxide
JPH01195213A (en) Method for supplying raw powdery material into iron bath type melting and reducing furnace
EP1431403A1 (en) Direct smelting furnace and process therefor
JPH03115516A (en) Continuously refining method in converter type metallurgical furnace