JPH0448164B2 - - Google Patents

Info

Publication number
JPH0448164B2
JPH0448164B2 JP60161697A JP16169785A JPH0448164B2 JP H0448164 B2 JPH0448164 B2 JP H0448164B2 JP 60161697 A JP60161697 A JP 60161697A JP 16169785 A JP16169785 A JP 16169785A JP H0448164 B2 JPH0448164 B2 JP H0448164B2
Authority
JP
Japan
Prior art keywords
electrode
film thickness
insulator
capacitance
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60161697A
Other languages
Japanese (ja)
Other versions
JPS6222003A (en
Inventor
Hideaki Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP16169785A priority Critical patent/JPS6222003A/en
Publication of JPS6222003A publication Critical patent/JPS6222003A/en
Publication of JPH0448164B2 publication Critical patent/JPH0448164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、絶縁体膜厚測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring insulator film thickness.

(従来の技術) 一般に、絶縁体の膜厚を測定する方法として、
干渉計等を用いた光学的方法や、平行平板電極を
用いる方法が知られている。これらの測定方法の
うち、光学的方法は不透明な絶縁体膜に用いるこ
とができないため、不透明な絶縁体膜に対しても
測定可能な平行平板電極方法がよく用いられてい
る。
(Prior art) Generally, as a method of measuring the film thickness of an insulator,
An optical method using an interferometer or the like and a method using parallel plate electrodes are known. Among these measurement methods, the optical method cannot be used for opaque insulator films, so the parallel plate electrode method, which can measure even opaque insulator films, is often used.

従来の平行平板電極方法としては、例えば第2
図のようなものがあつた。以下、その構成を図を
用いて説明する。
As a conventional parallel plate electrode method, for example, the second
I found something like the picture. The configuration will be explained below using figures.

第2図において、1は測定すべき絶縁体で、こ
の絶縁体1の両面には、平行板状の電極2,3が
配設されている。電極2,3にはケーブル4,5
が接続され、このケーブル4,5を介して両電極
2,3間に電圧Vが印加される。なお、絶縁体1
はその誘電率がεで、膜厚がd、電極2,3はそ
の面積がAで厚みがtとする。
In FIG. 2, reference numeral 1 denotes an insulator to be measured, and parallel plate-shaped electrodes 2 and 3 are arranged on both sides of this insulator 1. Cables 4 and 5 are connected to electrodes 2 and 3.
are connected, and a voltage V is applied between both electrodes 2 and 3 via these cables 4 and 5. In addition, insulator 1
Assume that the dielectric constant is ε, the film thickness is d, the area of the electrodes 2 and 3 is A, and the thickness is t.

今、電極2,3間に電圧Vを印加したとき、両
電極2,3間には電極間に対して垂直な電気力線
が発生して平等電界が形成されると仮定する。
Now, it is assumed that when a voltage V is applied between the electrodes 2 and 3, lines of electric force perpendicular to the gap between the electrodes are generated and an equal electric field is formed between the electrodes 2 and 3.

すると、静電容量Cは、次式のようになる。 Then, the capacitance C becomes as shown in the following equation.

C=Q/V=εA/d …(1) 但し、Q:電極2,3の電荷。 C=Q/V=εA/d...(1) However, Q: electric charge of electrodes 2 and 3.

そこで、従来の測定方法では、誘電率ε及び面
積Aが既知の場合、電圧Vに対する電荷Qの変化
により、絶縁体1の膜厚dを測定するものであつ
た。
Therefore, in the conventional measuring method, when the dielectric constant ε and the area A are known, the film thickness d of the insulator 1 is measured based on the change in the charge Q with respect to the voltage V.

なお、他の測定方法として、電極2,3のいず
れか一方の面積を小さくして絶縁体1の膜厚dを
測定する方法も提案されているが、電極面に対し
て垂直でない電気力線の影響により、高精度な測
定結果を得ることが困難である。
As another measurement method, a method has been proposed in which the area of one of the electrodes 2 and 3 is reduced to measure the film thickness d of the insulator 1; It is difficult to obtain highly accurate measurement results due to the influence of

(発明が解決しようとする問題点) しかしながら、従来の第2図の測定方法では、
測定精度の向上を図るため、電極面に対して垂直
でない電気力線が無視できるように、絶縁体1の
膜厚dに対して電極2,3の厚さtを十分薄くす
るか、あるいは膜厚dに対して電極2,3の面積
Aを十分大きくすると共に、両電極2,3の面積
を等しくすることが必要となる。絶縁体1の膜厚
dが薄くなると、電極2,3の厚さtを薄くする
にも限度があるので、電極2,3の面積Aを十分
大きくして平等電界を得ている。そのため、絶縁
体1の面積が小さい場合や、絶縁体1が平面でな
く、曲面形状の場合には、平等電界を得ることが
困難となり、高精度の膜厚測定を行えないという
問題点があつた。
(Problems to be solved by the invention) However, in the conventional measurement method shown in FIG.
In order to improve measurement accuracy, the thickness t of the electrodes 2 and 3 should be made sufficiently thinner than the film thickness d of the insulator 1 so that lines of electric force that are not perpendicular to the electrode surface can be ignored. It is necessary to make the area A of the electrodes 2 and 3 sufficiently large relative to the thickness d, and to make the areas of both the electrodes 2 and 3 equal. When the film thickness d of the insulator 1 becomes thinner, there is a limit to how thin the thickness t of the electrodes 2 and 3 can be made, so the area A of the electrodes 2 and 3 is made sufficiently large to obtain an equal electric field. Therefore, if the area of the insulator 1 is small, or if the insulator 1 is not flat but has a curved shape, it becomes difficult to obtain a uniform electric field, which poses the problem of not being able to measure the film thickness with high precision. Ta.

本発明は、前記従来技術が持つていた問題点と
して、絶縁体が小面積のときや、曲面形状のとき
には、高精度な膜厚測定が行えないという点につ
いて解決した絶縁体膜厚測定方法を提供するもの
である。
The present invention provides an insulator film thickness measurement method that solves the problem of the prior art, which is that highly accurate film thickness measurement cannot be performed when the insulator has a small area or has a curved shape. This is what we provide.

(問題点を解決するための手段) 本発明は、前記問題点を解決するために、絶縁
体膜厚測定方法において、誘電率εが既知で膜厚
Dが未知である絶縁体の両面に、第1の電極と、
前記第1の電極及び前記絶縁体の幅よりも小さい
幅Wで、かつ既知の長さL及び既知の厚さTの第
2の電極とを、それぞれ配置する。前記第1と第
2の電極間に所定の電圧を印加し、前記第1の電
極における前記第2の電極と対向する面と、前記
第2の電極における前記第1の電極と対向する面
及びその側面との間に、フリンジング効果を持つ
電気力線を発生させて前記第1と第2の電極間に
おける前記長さLの単位長さ当りの静電容量Ct
を測定する。そして、前記誘電率ε、膜厚D、幅
W及び厚さTより一義的に決まる単位長さ当りの
静電容量Ctoと、測定された前記静電容量Ct、幅
W及び厚さTとを演算して、前記未知の膜厚Dを
算出するようにしている。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a method for measuring the thickness of an insulator, in which the dielectric constant ε is known and the film thickness D is unknown on both sides of the insulator. a first electrode;
The first electrode and a second electrode having a width W smaller than the width of the insulator, a known length L, and a known thickness T are respectively arranged. A predetermined voltage is applied between the first and second electrodes, and a surface of the first electrode facing the second electrode, a surface of the second electrode facing the first electrode, and Electric lines of force having a fringing effect are generated between the first and second electrodes to increase the capacitance Ct per unit length of the length L between the first and second electrodes.
Measure. Then, the capacitance Cto per unit length that is uniquely determined from the dielectric constant ε, film thickness D, width W, and thickness T, and the measured capacitance Ct, width W, and thickness T. The unknown film thickness D is calculated by calculation.

(作 用) 本発明によれば、以上のように絶縁体膜厚測定
方法を構成したので、第1と第2の電極間にはフ
リンジング効果を持つ電気力線が発生し、その電
気力線による両電極間の静電容量Ctの測定値と、
予め設定された絶縁体のε及び第2の電極のW、
Tと、ε、D、W、Tより一義的に決まる静電容
量Ctoとを演算することによつて未知の膜厚Dの
算出が行える。ここで、第2の電極の側面から発
生する電気力線は、第1と第2の電極間の容量を
増大して該第2の電極の幅Wを小さくさせる働き
がある。このようにフリンジング効果を持つ電気
力線を利用するため、第1及び第2の電極におけ
る形状選定の自由度が増し、特に第2の電極の幅
Wを小さくすることによつて絶縁体が小面積や、
曲面形状であつても、高精度な膜厚測定が行え
る。したがつて前記問題点を除去できるのであ
る。
(Function) According to the present invention, since the insulator film thickness measuring method is configured as described above, lines of electric force having a fringing effect are generated between the first and second electrodes, and the electric force is Measured value of capacitance Ct between both electrodes by wire,
ε of the insulator and W of the second electrode set in advance,
The unknown film thickness D can be calculated by calculating T and the capacitance Cto which is uniquely determined from ε, D, W, and T. Here, the electric lines of force generated from the side surface of the second electrode have the function of increasing the capacitance between the first and second electrodes and reducing the width W of the second electrode. Since lines of electric force with a fringing effect are used in this way, the degree of freedom in selecting the shapes of the first and second electrodes is increased, and in particular, by reducing the width W of the second electrode, the insulator can be small area,
Highly accurate film thickness measurements can be performed even on curved surfaces. Therefore, the above-mentioned problem can be eliminated.

(実施例) 第1図は、本発明の実施例を示すもので、絶縁
体膜厚測定方法に用いられる絶縁体膜厚測定装置
の概略の構成図である。
(Example) FIG. 1 shows an example of the present invention, and is a schematic configuration diagram of an insulator film thickness measuring apparatus used in an insulator film thickness measuring method.

第1図において、11は半導体素子における
PSG層、シリコン酸化層等の絶縁体であり、こ
の絶縁体11は、誘電率ε、膜厚Dで比較的大き
な面積を有している。絶縁体11の両面には、第
1の電極12と第2の電極13とが配置されてい
る。第1の電極12は、導電性を有する金属層
や、半導体基板等で構成され、絶縁体11と同じ
ように比較的大きな面積を有している。第2の電
極13は、導電性を有するAl等の金属層や、半
導体基板等で構成され、奥行きの長さL、左右の
幅W、及び厚まTで、フリンジング効果を考慮し
てその幅Wが絶縁体11及び第1の電極12の幅
よりも小さく形成され、かつ厚さTが膜厚Dに対
して無視されない程度に厚く形成されている。
In FIG. 1, 11 is in the semiconductor element.
The insulator 11 is an insulator such as a PSG layer or a silicon oxide layer, and has a dielectric constant ε, a film thickness D, and a relatively large area. A first electrode 12 and a second electrode 13 are arranged on both sides of the insulator 11 . The first electrode 12 is made of a conductive metal layer, a semiconductor substrate, or the like, and, like the insulator 11, has a relatively large area. The second electrode 13 is made of a conductive metal layer such as Al, a semiconductor substrate, etc., and has a depth L, a left and right width W, and a thickness T, taking into consideration the fringing effect. The width W is formed to be smaller than the widths of the insulator 11 and the first electrode 12, and the thickness T is formed to be thicker than the film thickness D so as not to be ignored.

第1および第2の電極12,13にはそれぞれ
ケーブル14,15が接続され、このケーブル1
4,15を介して測定装置本体16に接続されて
いる。測定装置本体16は、絶縁体11の膜厚D
を求める装置であり、測定部17、記憶部18及
び演算部19を具えている。測定部17は、電圧
Vを出力する電源と静電容量測定器とを具えてい
る。記憶部18は種々のデータを記憶するメモリ
装置を有し、さらに演算部19は測定装置本体1
6を制御する制御回路と種々の演算を行なう演算
回路とを具え、例えばCPU等で構成されている。
Cables 14 and 15 are connected to the first and second electrodes 12 and 13, respectively.
It is connected to the measuring device main body 16 via 4 and 15. The measuring device main body 16 has a film thickness D of the insulator 11.
This is a device for determining the , and includes a measurement section 17 , a storage section 18 , and a calculation section 19 . The measurement unit 17 includes a power source that outputs a voltage V and a capacitance measuring device. The storage unit 18 has a memory device that stores various data, and the calculation unit 19 has a memory device that stores various data.
6 and an arithmetic circuit that performs various calculations, and is composed of, for example, a CPU.

以上のような装置を用い、測定部17から電圧
Vを出力し、これを第1と第2の電極12,13
間に印加すると、フリンジング効果により、第2
の電極13の第1の電極12と対向する面及びそ
の側面からの電気力線のほとんどが、第1の電極
12面に終端し、また第1の電極12からの電気
力線のほとんどが、第2の電極13に終端する。
Using the above-mentioned device, a voltage V is output from the measuring section 17, and this is applied to the first and second electrodes 12, 13.
If applied between
Most of the lines of electric force from the surface of the electrode 13 facing the first electrode 12 and the side thereof terminate at the surface of the first electrode 12, and most of the lines of electric force from the first electrode 12 are It terminates at the second electrode 13.

ここで、第2の電極13を、長さLを一定にし
て幅W及び厚さTを種々変えると共に、絶縁体1
1を、誘電率ε(=3.9)を一定にして膜厚Dを
種々変えて、各総容量Coを例えばデバイスシミ
ユレータの数値解より求め、さらに長さLの単位
長さ1(cm)当りの静電容量Ctoを求めると、第
3図のような静電容量特性図が得られる。
Here, the length L of the second electrode 13 is kept constant, the width W and the thickness T are varied, and the insulator 1
1, the dielectric constant ε (=3.9) is kept constant, the film thickness D is varied, and each total capacitance Co is determined, for example, from a numerical solution of a device simulator, and the unit length of length L is 1 (cm). When the per-unit capacitance Cto is determined, a capacitance characteristic diagram as shown in FIG. 3 is obtained.

第3図では、横軸にW/D、縦軸にCtoをと
り、T/Dが10、5.0、2.0、1.0、0.1のときの各
静電容量曲線がX1〜X5で示されている。な
お、直線Yは平行板電極の静電容量特性を示して
いる。
In FIG. 3, the horizontal axis represents W/D and the vertical axis represents Cto, and the capacitance curves when T/D is 10, 5.0, 2.0, 1.0, and 0.1 are indicated by X1 to X5. Note that the straight line Y indicates the capacitance characteristic of the parallel plate electrodes.

この第3図から次式のような静電容量Ctoの一
次近似式が得られる。
From this FIG. 3, a first-order approximation formula for the capacitance Cto as shown in the following formula can be obtained.

Cto=A(W/D)+B(T/D)+C…(1) ここで、A、B、Cは定数で、Aは傾き、Bは
補正値、Cは縦軸切片である。式(1)より、絶縁体
11の膜厚Dを導けば、次のようになる。
Cto=A(W/D)+B(T/D)+C...(1) Here, A, B, and C are constants, A is the slope, B is the correction value, and C is the vertical axis intercept. The film thickness D of the insulator 11 can be derived from equation (1) as follows.

D=AW+BT/Ct−C …(2) この式(2)を含む第3図のデータを予め記憶部1
8に格納しておき、次のようにして絶縁体11の
膜厚Dを求める。
D=AW+BT/Ct-C...(2) The data in FIG. 3 including this formula (2) is stored in advance in the storage unit 1.
8, and the film thickness D of the insulator 11 is determined as follows.

まず、第2の電極13として幅W=4(μm)、
厚さT=1(μm)、長さL=1.8(cm)を用い、絶
縁体11の誘電率ε=3.9のときの静電容量Coを
測定部17で測定する。次いで、測定部17によ
つて長さL=1.8(cm)の1(cm)当りの静電容量
Ct=2.5(PF/cm)を算出する。
First, as the second electrode 13, the width W=4 (μm),
Using thickness T=1 (μm) and length L=1.8 (cm), the capacitance Co when the dielectric constant ε=3.9 of the insulator 11 is measured by the measurement unit 17. Next, the capacitance per 1 (cm) of the length L = 1.8 (cm) is measured by the measuring unit 17.
Calculate Ct=2.5 (PF/cm).

ここで、求めようとする膜厚Dが例えば1
(μm)〜10(μm)の範囲内にあるとする。する
と、演算部19は、第3図の横軸W/D=0.4〜
4.0の範囲内おいて、T/D=0.1〜1.0の静電容量
曲線X4,X5における平均値から、定数A=
0.38(PF/cm)、B=0.15(PF/cm)、C=0.8
(PF/cm)を求め、さらにこれらの定数A〜C、
Cto=2.5(PF/cm)、W=4(μm)、T=1(μm)
を上記式(2)に代入して膜厚Dを次のように算出す
る。
Here, the film thickness D to be determined is, for example, 1
(μm) to 10 (μm). Then, the calculation unit 19 calculates the horizontal axis W/D in FIG. 3 from 0.4 to
Within the range of 4.0, constant A=
0.38 (PF/cm), B=0.15 (PF/cm), C=0.8
(PF/cm), and further calculate these constants A to C,
Cto=2.5 (PF/cm), W=4 (μm), T=1 (μm)
is substituted into the above equation (2) to calculate the film thickness D as follows.

D=0.98(μm) 膜厚Dの実際値は1(μm)であるため、±2%
の高精度な膜厚測定が行えたことになる。
D=0.98 (μm) The actual value of film thickness D is 1 (μm), so ±2%
This means that we were able to measure the film thickness with high accuracy.

而して、本実施例の測定方法では、絶縁体11
の誘電率εを一定にしてその膜厚Dと、第2の電
極13の幅W、厚さTとを種々変化させたときの
単位長さ当りの静電容量Ctoに対する静電容量特
性データと、そのデータに基づく式(2)とを予め求
めておく。そして、実際に測定しようとする絶縁
体11の単位長さ当りの静電容量Ctを測定する。
次いで式(2)の定数A、B、Cを求め、この定数
A、B、Cと測定容量Ct、および第2の電極1
3の幅W、厚さTとを式(2)に代入して演算すれ
ば、未知の膜厚Dが得られる。
Therefore, in the measurement method of this embodiment, the insulator 11
Capacitance characteristic data for the capacitance Cto per unit length when the film thickness D, the width W, and the thickness T of the second electrode 13 are varied while keeping the dielectric constant ε constant. , Equation (2) based on the data is determined in advance. Then, the capacitance Ct per unit length of the insulator 11 to be actually measured is measured.
Next, find the constants A, B, and C in equation (2), and calculate the constants A, B, and C, the measured capacitance Ct, and the second electrode 1.
By substituting the width W and thickness T of 3 into equation (2), the unknown film thickness D can be obtained.

このような測定方法によれば、第1と第2の電
極12,13間に、フリンシング効果による電気
力線が発生させて静電容量Ctを測定する。この
電気力線は、第2の電極13の側面からも発生す
るため、両電極12,13間の寄生容量が増大
し、従来のような大きな第2の電極を使わずに、
膜厚を測定できる。したがつて、小さな第2の電
極13を用いて小面積の絶縁体膜厚を簡単かつ高
精度に測定できるばかりか、絶縁体11が曲面形
状の場合でも、その曲面を実質的に平面とみなし
て比較的高い精度で膜厚測定が行える。
According to such a measurement method, lines of electric force are generated between the first and second electrodes 12 and 13 due to the fringing effect, and the capacitance Ct is measured. Since these electric lines of force are also generated from the side surface of the second electrode 13, the parasitic capacitance between the two electrodes 12 and 13 increases.
Film thickness can be measured. Therefore, not only can the insulator film thickness in a small area be easily and highly accurately measured using the small second electrode 13, but even if the insulator 11 has a curved shape, the curved surface can be regarded as substantially flat. film thickness can be measured with relatively high accuracy.

また、本実施例の測定装置では、前記静電容量
特性データとそのデータに基づく式(2)とを記憶部
18に格納しておく。そして、実際に測定しよう
とする絶縁体11の静電容量Ctを測定部17で
測定し、測定容量Ctと前記記憶部18内のデー
タとを用いて演算部19で未知の膜厚Dを演算、
算出すれば、膜厚測定が簡単に行える。この装置
では、上記方法の利点を有するばかりか、第1と
第2の電極12,13は測定装置用として特別に
作つた電極を用いてもよく、あるいは既設の導電
性部材や半導体部材等を電極として用いてもよ
い。例えば、大形装置における金属板上の塗装膜
厚を測定する場合は、その金属板を第1の電極1
2にして小さな第2の電極13を塗装膜上に接触
させ、塗装膜の厚さを測定することが可能とな
る。
Further, in the measuring device of this embodiment, the capacitance characteristic data and equation (2) based on the data are stored in the storage unit 18. Then, the capacitance Ct of the insulator 11 to be actually measured is measured by the measurement unit 17, and the unknown film thickness D is calculated by the calculation unit 19 using the measured capacitance Ct and the data in the storage unit 18. ,
Once calculated, the film thickness can be easily measured. This device not only has the advantages of the above method, but the first and second electrodes 12 and 13 may be electrodes specially made for the measuring device, or may be made of existing conductive members, semiconductor members, etc. It may also be used as an electrode. For example, when measuring the coating film thickness on a metal plate in a large device, the metal plate is connected to the first electrode 1.
2, it is possible to bring the small second electrode 13 into contact with the paint film and measure the thickness of the paint film.

なお、本発明の方法は、図示の実施例に限定さ
れず、種々の変形が可能である。例えば、上記実
施例では式(1)のように一次近似式を用いている
が、一次近似式を用いた場合、正確な膜厚Dが得
られる範囲が狭いので、多次式の近似式を用いれ
ば、さらに測定精度が向上する。
Note that the method of the present invention is not limited to the illustrated embodiment, and various modifications are possible. For example, in the above embodiment, a first-order approximation formula is used as shown in equation (1), but if the first-order approximation formula is used, the range in which an accurate film thickness D can be obtained is narrow, so a multi-order approximation formula is used. If used, measurement accuracy will be further improved.

(発明の効果) 以上詳細に説明したように、本発明の測定方法
によれば、電圧を印加して第1と第2の電極間に
フリンジング効果による電気力線を発生させて静
電容量Ctを測定する。この電気力線は、第2の
電極の側面からも発生するため、両電極間の容量
が増大し、従来のような大きな第2の電極を使わ
ずに、膜厚を測定できる。このように、フリンジ
ング効果を積極的に利用し、小さな第2の電極を
用いて静電容量Ctを測定した後、演算処理によ
つて膜厚を求めるので、小さな箇所や曲面形状箇
所等の膜厚も、簡単かつ高精度に測定できる。
(Effects of the Invention) As explained in detail above, according to the measuring method of the present invention, a voltage is applied to generate electric lines of force between the first and second electrodes due to the fringing effect, thereby increasing the capacitance. Measure Ct. Since these electric lines of force are also generated from the side surface of the second electrode, the capacitance between the two electrodes increases, and the film thickness can be measured without using a large second electrode as in the conventional method. In this way, the fringing effect is actively used to measure the capacitance Ct using a small second electrode, and then the film thickness is determined through calculation processing, so it is possible to measure the capacitance Ct using a small second electrode. Film thickness can also be measured easily and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の方法に用いられる絶
縁体膜厚測定装置の概略構成図、第2図は従来の
絶縁体膜厚測定方法を示すための図、第3図は第
1図の方法を説明するための静電容量特性図であ
る。 11……絶縁体、12……第1の電極、13…
…第2の電極、14,15……ケーブル、16…
…測定装置本体、17……測定部、18……記憶
部、19……演算部。
FIG. 1 is a schematic configuration diagram of an insulating film thickness measuring device used in the method of the embodiment of the present invention, FIG. 2 is a diagram showing a conventional insulating film thickness measuring method, and FIG. 3 is a diagram similar to that shown in FIG. FIG. 3 is a capacitance characteristic diagram for explaining the method. 11... Insulator, 12... First electrode, 13...
...Second electrode, 14, 15...Cable, 16...
... Measuring device main body, 17... Measuring section, 18... Storage section, 19... Calculating section.

Claims (1)

【特許請求の範囲】 1 誘電率εが既知で膜厚Dが未知である絶縁体
の両面に、第1の電極と、前記第1の電極及び前
記絶縁体の幅よりも小さい幅Wで、かつ既知の長
さL及び既知の厚さTの第2の電極とを、それぞ
れ配置し、 前記第1と第2の電極間に所定の電圧を印加
し、前記第1の電極における前記第2の電極と対
向する面と、前記第2の電極における前記第1の
電極と対向する面及びその側面との間に、フリン
ジング効果を持つ電気力線を発生させて前記第1
と第2の電極間における前記長さLの単位長さ当
りの静電容量Ctを測定し、 前記誘電率ε、膜厚D、幅W及び厚さTより一
義的に決まる単位長さ当りの静電容量Ctoと、測
定された前記静電容量Ct、幅W及び厚さTとを
演算して、 前記未知の膜厚Dを算出することを特徴とする
絶縁体膜厚測定方法。
[Scope of Claims] 1. A first electrode and a width W smaller than the width of the first electrode and the insulator are provided on both sides of an insulator having a known dielectric constant ε and an unknown film thickness D, and a second electrode having a known length L and a known thickness T, respectively, and applying a predetermined voltage between the first and second electrodes, generating electric lines of force having a fringing effect between the surface of the second electrode facing the first electrode and the surface of the second electrode facing the first electrode and the side surfaces thereof;
The capacitance Ct per unit length of the length L between the electrode and the second electrode is measured, and the capacitance Ct per unit length is determined uniquely from the dielectric constant ε, film thickness D, width W, and thickness T. A method for measuring an insulator film thickness, characterized in that the unknown film thickness D is calculated by calculating the capacitance Cto, the measured capacitance Ct, the width W, and the thickness T.
JP16169785A 1985-07-22 1985-07-22 Method and instrument for measuring thickness of insulator film Granted JPS6222003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16169785A JPS6222003A (en) 1985-07-22 1985-07-22 Method and instrument for measuring thickness of insulator film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16169785A JPS6222003A (en) 1985-07-22 1985-07-22 Method and instrument for measuring thickness of insulator film

Publications (2)

Publication Number Publication Date
JPS6222003A JPS6222003A (en) 1987-01-30
JPH0448164B2 true JPH0448164B2 (en) 1992-08-06

Family

ID=15740142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16169785A Granted JPS6222003A (en) 1985-07-22 1985-07-22 Method and instrument for measuring thickness of insulator film

Country Status (1)

Country Link
JP (1) JPS6222003A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514789A (en) * 1974-06-29 1976-01-16 Ishikawajima Harima Heavy Ind Fujuyunadono kaishutei
JPS58165002A (en) * 1982-03-25 1983-09-30 Hiromi Ogasawara Measuring device for thickness of dielectric film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS514789A (en) * 1974-06-29 1976-01-16 Ishikawajima Harima Heavy Ind Fujuyunadono kaishutei
JPS58165002A (en) * 1982-03-25 1983-09-30 Hiromi Ogasawara Measuring device for thickness of dielectric film

Also Published As

Publication number Publication date
JPS6222003A (en) 1987-01-30

Similar Documents

Publication Publication Date Title
US5528153A (en) Method for non-destructive, non-contact measurement of dielectric constant of thin films
Olthuis et al. Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors
CN111537561B (en) Method and system for measuring interface thermal resistance
JPH0257695B2 (en)
JPH0448164B2 (en)
US7488610B2 (en) Insulator film characteristic measuring method and insulator film characteristic measuring apparatus
JP3442871B2 (en) Apparatus for measuring thickness or displacement using capacitance meter, and method for measuring thickness or displacement using capacitance meter
JPH0546495B2 (en)
JPH11154696A (en) Method of measuring mosfet capacitance
JP2904656B2 (en) Semiconductor wafer charge measurement method
JPH0862180A (en) Ion-capturing device for ion-amount measuring apparatus
JPH041471Y2 (en)
JPH11337602A (en) Instrument and method for measuring potential distribution in wafer
JP4786140B2 (en) Relative permittivity measuring method and relative permittivity measuring apparatus
JPS61233323A (en) Method for measuring solution level
JP2850793B2 (en) Semiconductor device and method for measuring characteristics thereof
Filippov et al. Measurement of the metal-semiconductor contact resistance and control of the specific resistance of semiconductor films
JPS5924999Y2 (en) conductivity meter
JPH03131703A (en) Method for measuring thickness of thin film
JP2006201006A (en) Transfer impedance evaluation method for piezoelectric thin film
JPH095373A (en) Method and equipment for locally evaluating thin film
JP2021032582A (en) Corrosion sensor
JP3362639B2 (en) Electrical evaluation system for insulating film of semiconductor device
JP2900041B2 (en) Displacement measuring device
SU396765A1 (en) METHOD FOR DETERMINING THE BATTERY CHARGE