JPH0447612A - Manufacture of insulated wire - Google Patents
Manufacture of insulated wireInfo
- Publication number
- JPH0447612A JPH0447612A JP15445690A JP15445690A JPH0447612A JP H0447612 A JPH0447612 A JP H0447612A JP 15445690 A JP15445690 A JP 15445690A JP 15445690 A JP15445690 A JP 15445690A JP H0447612 A JPH0447612 A JP H0447612A
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- crystalline polyolefin
- layer
- extrusion
- crosslinked
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229920000098 polyolefin Polymers 0.000 claims abstract description 31
- 238000004132 cross linking Methods 0.000 claims abstract description 29
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000003504 photosensitizing agent Substances 0.000 claims abstract description 9
- 238000001125 extrusion Methods 0.000 claims abstract description 7
- 239000004020 conductor Substances 0.000 claims abstract description 6
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000007765 extrusion coating Methods 0.000 abstract description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- 229920005601 base polymer Polymers 0.000 abstract description 2
- 239000003795 chemical substances by application Substances 0.000 abstract description 2
- 239000000805 composite resin Substances 0.000 abstract 1
- -1 polyethylene Polymers 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- RLUFBDIRFJGKLY-UHFFFAOYSA-N (2,3-dichlorophenyl)-phenylmethanone Chemical compound ClC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1Cl RLUFBDIRFJGKLY-UHFFFAOYSA-N 0.000 description 1
- BQAIQBLSDMASJP-UHFFFAOYSA-N (2-chlorophenyl)-(2,3,4,5,6-pentachlorophenyl)methanone Chemical compound ClC1=C(C=CC=C1)C(C1=C(C(=C(C(=C1Cl)Cl)Cl)Cl)Cl)=O BQAIQBLSDMASJP-UHFFFAOYSA-N 0.000 description 1
- IPJGAEWUPXWFPL-UHFFFAOYSA-N 1-[3-(2,5-dioxopyrrol-1-yl)phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC(N2C(C=CC2=O)=O)=C1 IPJGAEWUPXWFPL-UHFFFAOYSA-N 0.000 description 1
- BJELTSYBAHKXRW-UHFFFAOYSA-N 2,4,6-triallyloxy-1,3,5-triazine Chemical compound C=CCOC1=NC(OCC=C)=NC(OCC=C)=N1 BJELTSYBAHKXRW-UHFFFAOYSA-N 0.000 description 1
- UGVRJVHOJNYEHR-UHFFFAOYSA-N 4-chlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=CC=C1 UGVRJVHOJNYEHR-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FLBJFXNAEMSXGL-UHFFFAOYSA-N het anhydride Chemical compound O=C1OC(=O)C2C1C1(Cl)C(Cl)=C(Cl)C2(Cl)C1(Cl)Cl FLBJFXNAEMSXGL-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Processes Specially Adapted For Manufacturing Cables (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、架橋ポリオレフィンからなる絶縁層を何す
る絶縁電線の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an insulated wire in which an insulating layer is made of crosslinked polyolefin.
本発明者等は、先にポリエチレンやポリプロピレンなと
の結晶性ポリオレフィンをその結晶融点以上の温度で紫
外線照射すると、これら結晶性ポリオレフィンを極めて
効率よく短時間て紫外線架橋させることかできることを
知見し、既に特許出願している。The present inventors have discovered that by first irradiating crystalline polyolefins such as polyethylene and polypropylene with ultraviolet light at a temperature above their crystal melting point, these crystalline polyolefins can be crosslinked with ultraviolet light extremely efficiently and in a short time. A patent application has already been filed.
本発明は、この新技術を架橋ポリエチレンなとの架橋ポ
リオレフィンからなる絶縁層と半導電層を有する絶縁電
線の製造に応用したちのである。The present invention applies this new technology to the production of an insulated wire having an insulating layer and a semiconducting layer made of a crosslinked polyolefin such as crosslinked polyethylene.
従来、架橋ポリオレフィンからなる絶縁層と半導電層を
有する絶縁電線の製造に紫外線照射による架橋法を適用
した例は知られていない。Conventionally, there has been no known example of applying a crosslinking method using ultraviolet irradiation to the production of an insulated wire having an insulating layer and a semiconducting layer made of crosslinked polyolefin.
よって、この発明の課題は、紫外線照射架橋法によって
架橋ポリオレフィンからなる絶縁層とミ1′−導電層を
有する絶縁電線を製造する方法を提[1,することにあ
る。Therefore, an object of the present invention is to provide a method for manufacturing an insulated wire having an insulating layer made of a crosslinked polyolefin and a conductive layer by an ultraviolet irradiation crosslinking method.
かかる課題は、導体上に、結晶性ポリオレフィンからな
る絶縁層もしくは内部半導電層と結晶性ポリオレフィン
からなる絶縁層とを押出被覆し、ついでこの絶縁層に絶
縁層をなす結晶性ポリオレフィンの結晶融点以上の温度
で紫外線を照射して絶縁層を架橋したのち、この架橋絶
縁層上に外部半導電層を押出被覆することにより解決さ
れる。This problem is solved by extrusion coating an insulating layer or an internal semiconducting layer made of crystalline polyolefin and an insulating layer made of crystalline polyolefin on a conductor, and then coating the insulating layer with a temperature higher than the crystal melting point of the crystalline polyolefin forming the insulating layer. This problem is solved by cross-linking the insulating layer by irradiating it with ultraviolet light at a temperature of 200 mL, and then extrusion coating the outer semiconducting layer on the cross-linked insulating layer.
以下、この発明の詳細な説明する。The present invention will be explained in detail below.
まず、導体上に絶縁層もしくは内部半導電層と絶縁層ど
を押出被覆する。内部半導電層と絶縁層とを押出被覆す
る場合は、同時押出法によることが好ましい。First, an insulating layer or an internal semiconducting layer and an insulating layer are coated on the conductor by extrusion. When extrusion coating the internal semiconductive layer and the insulating layer, a coextrusion method is preferably used.
内部半導電層としては、エチレン−酢酸ビニル共重合体
、エチレン−エチルアクリレート共重合体などのベース
ポリマーに導電性カーボンブラックを配合した半導電性
樹脂組成物が用いられる。As the internal semiconductive layer, a semiconductive resin composition in which conductive carbon black is blended with a base polymer such as ethylene-vinyl acetate copolymer or ethylene-ethyl acrylate copolymer is used.
また、絶縁層としては、結晶性ポリオレフィンが用いら
れる。この結晶性ポリオレフィンとしては、ポリエチレ
ン、ポリプロピレン、ポリブテン1、ポリ−4−メチル
ペンテン−1、エチレン・プロピレン共重合体などのエ
チレン共重合体などがあるか、なかでも低密度ポリエチ
レン、高密度ポリエチレン、直鎖状ポリエチレン、超低
密度ポリエチレン、超高分子量ポリエチレンなどのポリ
エチレンが、紫外線による架橋効率が高いものとなって
好ましい。勿論、これらの混合物であってもよい。Further, as the insulating layer, crystalline polyolefin is used. Examples of this crystalline polyolefin include ethylene copolymers such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, and ethylene/propylene copolymers; among others, low-density polyethylene, high-density polyethylene, Polyethylenes such as linear polyethylene, ultra-low density polyethylene, and ultra-high molecular weight polyethylene are preferred because they have high crosslinking efficiency with ultraviolet rays. Of course, a mixture of these may be used.
この結晶性ポリオレフィンは、その単独、好ましくは光
増感剤あるいはこれと架橋助剤との混合物として用いら
れる。This crystalline polyolefin is used alone, preferably as a photosensitizer or as a mixture with a crosslinking aid.
ここでの光増感剤としては、ベンゾフェノン、4−りo
ロペンゾフェノン、2−クロロヘンゾフェ7ノ、i4’
−ジクロロベンゾフェノン、ヘキサクロロベンゾフェノ
ンなどのベンゾフェノン類やクロレンディックアンハイ
ドライド、[サンドリー10004 (商品名、モン
サント社製)なとが用いられる。この光増感剤の配合量
は、結晶性ポリオレフィン100重量部に対して0.2
〜3重量部程度が好ましく、0.2重量部未満ては架橋
効率向上効果が得られず、また3重電部を越えると過剰
となって、架橋後の成形物の電気的特性、機械的特性等
が低下して好ましくない。光増感剤の配合により、架橋
効率が格段に向上し、短時間で架橋を高いレベルまで持
ってい(ことが可能となる。Examples of the photosensitizer here include benzophenone, 4-ri
lopenzophenone, 2-chlorohenzophenone, i4'
- Benzophenones such as dichlorobenzophenone and hexachlorobenzophenone, chlorendic anhydride, and Sandry 10004 (trade name, manufactured by Monsanto) are used. The blending amount of this photosensitizer is 0.2 parts by weight per 100 parts by weight of crystalline polyolefin.
About 3 parts by weight is preferable; if it is less than 0.2 parts by weight, the effect of improving crosslinking efficiency cannot be obtained, and if it exceeds 3 parts by weight, it is excessive and the electrical properties and mechanical properties of the crosslinked molded product are deteriorated. It is not preferable because the characteristics etc. deteriorate. By incorporating a photosensitizer, the crosslinking efficiency is significantly improved, making it possible to achieve a high level of crosslinking in a short period of time.
また、架橋助剤としては、トリアリルンアヌレ−1・、
トリアリルイソンアヌレ−1・、N N’m−フェニ
レンジマレイミドなとの水素受容基を有する化合物が用
いられ、結晶性ポリオレフィン分子間の架橋反応に関与
し、架橋反応を促進するためのものである。この架橋助
剤の配合量は結晶性ポリオレフィン100重量部に対し
て通常0゜3〜4重量部の範囲が好ましい。0.3重量
部未ン&jではこれの添加の効果が十分に得られず、4
重量部を越えると過剰となり、架橋後の成形物の物性等
に悪影響を与えて不都合である。In addition, as a crosslinking aid, triallylune annule-1.
A compound having a hydrogen-accepting group such as triallylison annulet-1, N N'm-phenylene dimaleimide is used, and is used to participate in the cross-linking reaction between crystalline polyolefin molecules and promote the cross-linking reaction. It is. The amount of the crosslinking aid to be blended is preferably in the range of 0.3 to 4 parts by weight per 100 parts by weight of the crystalline polyolefin. If it is less than 0.3 parts by weight, the effect of adding it cannot be obtained sufficiently, and 4
If the amount exceeds 1 part by weight, it becomes excessive, which is disadvantageous because it adversely affects the physical properties of the molded product after crosslinking.
また、上記光増感剤および架橋助剤以外に、テトラキス
−〔メチレン−3−(3’ 、5’ −ジ第3ブチル−
4′−ヒドロキシフェニル)プロピオネート〕メタンな
との老化防止剤等の照射時の混度条件下で透明性を損わ
ない添加剤、充填剤あるいはサリチル酸エステル、ベン
ゾトリアゾール、ヒドロキシヘンシフエノンなとの紫外
線吸収剤を適宜配合することもできる。In addition to the above photosensitizer and crosslinking aid, tetrakis-[methylene-3-(3',5'-di-tert-butyl-
4'-Hydroxyphenyl)propionate] Additives and fillers that do not impair transparency under the mixing conditions during irradiation, such as anti-aging agents such as methane, or salicylic acid esters, benzotriazole, hydroxyhensiphenone, etc. An ultraviolet absorber may also be appropriately added.
内部半導電層および絶縁層の押出被覆は、通常の方法に
よって行うことかできる。Extrusion coating of the internal semiconducting and insulating layers can be carried out by conventional methods.
絶縁層の厚さは、紫外線の透過の点から5〜8ffff
が」二限となる。勿論、紫外線の強度(エネルキー密度
)や照射時間を大きく、長くすれば、さらに肉厚の絶縁
層でもよいが、結晶性ポリオレフィンの紫外線による劣
化も同時に進行するので注意が必要である。The thickness of the insulating layer is 5 to 8ffff from the point of view of ultraviolet light transmission.
is limited to two. Of course, if the intensity (energetic density) of the ultraviolet rays and the irradiation time are increased and the irradiation time is increased, a thicker insulating layer may be obtained, but care must be taken because the deterioration of the crystalline polyolefin due to the ultraviolet rays also progresses at the same time.
次いで、このようにして得られた絶縁層を、その結晶性
ポリオレフィンの結晶融点以」二の温度条件で紫外線を
照射する。Next, the insulating layer thus obtained is irradiated with ultraviolet rays at a temperature equal to or higher than the crystalline melting point of the crystalline polyolefin.
この温度条件は、原則として結晶融点以上とされるが、
好ましくはこの結晶融点よりも10〜20°C程度以上
高い温度とされる。しかし、あまりに高い温度では結晶
性ポリオレフィンの熱劣化が進んで望ましくない。絶縁
層が1種以上の結晶性ポリオレフィンからなるものでは
、その温度条件を最も高い結晶融点以上とする。In principle, this temperature condition is above the crystal melting point, but
Preferably, the temperature is about 10 to 20°C higher than the crystal melting point. However, too high a temperature is undesirable because thermal deterioration of the crystalline polyolefin progresses. When the insulating layer is made of one or more types of crystalline polyolefin, the temperature condition is set to be equal to or higher than the highest crystal melting point.
また、紫外線の照射条件としては、波長が300〜40
0nmの範囲か好ましく、その強度(工不ルキー密度)
か10−4〜10−eアインシュタイン/am2・分の
範囲が望ましい。照射時間は、架橋密度、絶縁層の厚さ
などによって変わり、通常は10〜60秒程度であるが
、この範囲に限られるものでなく、例えば絶縁層の表面
部のみを架橋するものであれば、さらに短時間であって
もよい。In addition, as for the irradiation conditions of ultraviolet rays, the wavelength is 300 to 40.
Preferably in the range of 0 nm, its strength (engineering density)
A range of 10-4 to 10-e Einstein/am2·min is desirable. The irradiation time varies depending on the crosslinking density, the thickness of the insulating layer, etc., and is usually about 10 to 60 seconds, but is not limited to this range. For example, if only the surface of the insulating layer is to be crosslinked. , it may be even shorter.
具体的な照A=j方法としては、連続方式あるいはバッ
チ方式のいずれてもよく、石英水銀灯、水素放電管、キ
セノンランプなどの紫外線光源と電気ヒータなとの加熱
装置を有するトンネル状の照射装置なとを用いればよい
。また、絶縁層の周囲外方に光源を均一に配して、全外
周部分に均一に照射することもできる。さらに、押出成
形機のダイの出口部分に接近して紫外線光源を配置して
おき、押出成形直後の結晶融点以上の高温状態で直接紫
外線を照射するようにしてもよい。The specific method of irradiation A=j may be either a continuous method or a batch method, and may be a tunnel-shaped irradiation device equipped with an ultraviolet light source such as a quartz mercury lamp, a hydrogen discharge tube, or a xenon lamp and a heating device such as an electric heater. You can use nato. Furthermore, the light sources can be uniformly arranged outside the periphery of the insulating layer to uniformly irradiate the entire outer periphery. Furthermore, an ultraviolet light source may be placed close to the exit portion of the die of the extrusion molding machine, and the ultraviolet light source may be directly irradiated with ultraviolet light at a high temperature equal to or higher than the crystal melting point immediately after extrusion.
このような条件での紫外線照射によって、例えばポリエ
チレンでは約90%までの架橋密度を持つ程度にまで架
橋でき、また厚さが3ml!程度のポリエチレンからな
る絶縁層では10〜30秒て架橋が行われる。By irradiating ultraviolet light under these conditions, for example, polyethylene can be crosslinked to a degree with a crosslinking density of up to approximately 90%, and the thickness is 3ml! Crosslinking takes 10 to 30 seconds for an insulating layer made of polyethylene.
ついで、このように紫外線架橋された絶縁層」二に、外
部半導電層を押出被覆する。この外部半導電層を構成す
る樹脂組成物としては、内部半導電層を構成する樹脂組
成物と同様のものが用いられる。外部半導電層の押出被
覆は、絶縁層の紫外線架橋に引き続いて連続して行って
もよく、また紫外線架橋後の電線を一旦、巻き取ったの
ち、改めて押出被覆してもよい。The thus UV-crosslinked insulating layer is then extrusion coated with an outer semiconducting layer. As the resin composition constituting the outer semiconductive layer, the same resin composition as the resin composition constituting the internal semiconductive layer is used. The extrusion coating of the external semiconductive layer may be carried out continuously following the ultraviolet crosslinking of the insulating layer, or the electric wire after ultraviolet crosslinking may be once wound up and then extrusion coating may be carried out again.
このようにして得られた絶縁電線は、必要に応じてさら
に塩化ビニル樹脂、クロロプレンコムなどからなる7−
スが施されたり、複数本を撚り合わせたのちシースを施
してケーブルなどとされる。The insulated wire thus obtained may be further made of vinyl chloride resin, chloroprenecomb, etc. as required.
It is often made into cables by twisting multiple strands together and then applying a sheath.
このような絶縁電線の製造方法によれば、絶縁層を構成
する結晶性ポリオレフィンか完全に無定形で透明性が良
好な状態で紫外線の照射を受けるため、紫外線がよく吸
収かつ透過され、絶縁層の深部にまで到達して架橋が行
われる。また、結晶融点以上となっているのて、ポリマ
ー分子の動きか活発となっており、架橋反応が一層速や
かに進行する。さらに、光増感剤を添加すれば、その増
感作用で先エネルキーの利用効率か向上し、架橋反応か
促進され、架橋助剤を添加したものでは活性基の濃度か
増加してポリマー分子鎖間の反応を促すことになる。し
たかって、極めて高い製造効率で架橋ポリオレフィン絶
縁電線を製造することができる。また、従来の過酸化物
架橋での大規模な架橋設備なとも不要となる。According to this method of manufacturing insulated wires, the crystalline polyolefin constituting the insulating layer is completely amorphous and has good transparency when irradiated with ultraviolet rays, so the ultraviolet rays are well absorbed and transmitted, and the insulating layer Cross-linking occurs by reaching deep parts of the body. Furthermore, since the temperature is above the crystal melting point, the movement of polymer molecules becomes active, and the crosslinking reaction proceeds more quickly. Furthermore, if a photosensitizer is added, the sensitizing effect will improve the utilization efficiency of the previous energy key and promote the crosslinking reaction, and if a crosslinking aid is added, the concentration of active groups will increase and the polymer molecular chain This will encourage a reaction between the two. Therefore, crosslinked polyolefin insulated wires can be manufactured with extremely high manufacturing efficiency. Furthermore, the large-scale crosslinking equipment required for conventional peroxide crosslinking is not required.
以下、具体例を示す。A specific example will be shown below.
メルトインデックス(Ml)か10の低密度ポリエチレ
ン(密度0 、 929/ Qll+″、融点110°
C)100重量部に、光増感剤として4−クロロベンゾ
フェノン1重量部、架橋助剤としてトリアリルシアヌレ
ート1重量部を添加した樹脂組成物を絶縁層とし、内部
半導電層および外部半導電層にはエチレン−酢酸ビニル
共重合体に導電性カーボンブラックを配合した半導電性
樹脂組成物を用いた。Low density polyethylene with melt index (Ml) of 10 (density 0, 929/Qll+'', melting point 110°
C) A resin composition prepared by adding 1 part by weight of 4-chlorobenzophenone as a photosensitizer and 1 part by weight of triallyl cyanurate as a crosslinking aid to 100 parts by weight was used as an insulating layer, and an inner semiconducting layer and an outer semiconducting layer were used. A semiconductive resin composition containing conductive carbon black and an ethylene-vinyl acetate copolymer was used for the layer.
これらの樹脂組成物を、断面積10011112の導体
」二にまず内部半導電層と絶縁層とを同時押出して被覆
し、厚さ3■の絶縁層を形成した。押出被覆後、絶縁層
の温度を150°C以」二保ちながら、紫外線照射筒に
導き、高圧水銀ランプにより紫外線を20秒照射し、こ
の直後に外部半導電層を160°Cの温度で押出被覆し
たのち、冷却槽で冷却して3層構造の絶縁電線を得た。These resin compositions were coated on a conductor having a cross-sectional area of 10011112 by coextruding an internal semiconductive layer and an insulating layer to form an insulating layer with a thickness of 3 cm. After extrusion coating, while maintaining the temperature of the insulating layer at 150°C or higher, it was introduced into an ultraviolet irradiation tube and irradiated with ultraviolet rays for 20 seconds using a high-pressure mercury lamp. Immediately after this, the outer semiconductive layer was extruded at a temperature of 160°C. After coating, it was cooled in a cooling tank to obtain an insulated wire with a three-layer structure.
この絶縁電線の絶縁層の架橋密度はゲル分率で85〜9
0%であり、また、絶縁電線の交流絶縁破壊電圧は21
0kvであった。The crosslinking density of the insulating layer of this insulated wire is 85 to 9 in terms of gel fraction.
0%, and the AC breakdown voltage of the insulated wire is 21
It was 0kv.
以」二説明したように、この発明の絶縁電線の製造方法
によれば、架橋ポリオレフィンからなる絶縁層を有する
絶縁電線を高い生産性で効率よく製造できる。また、製
造設備も簡便なものでよく、得られる絶縁電線の電気的
、機械的特性も優れたものとなるなとの効果を有する。As explained above, according to the method for producing an insulated wire of the present invention, an insulated wire having an insulating layer made of crosslinked polyolefin can be efficiently produced with high productivity. Further, the manufacturing equipment may be simple, and the resulting insulated wire has excellent electrical and mechanical properties.
Claims (2)
もしくは内部半導電層と結晶性ポリオレフィンからなる
絶縁層とを押出被覆し、ついでこの絶縁層に絶縁層をな
す結晶性ポリオレフィンの結晶融点以上の温度で紫外線
を照射して絶縁層を架橋したのち、この架橋絶縁層上に
外部半導電層を押出被覆することを特徴とする絶縁電線
の製造方法。(1) An insulating layer or internal semiconducting layer made of crystalline polyolefin and an insulating layer made of crystalline polyolefin are coated on the conductor by extrusion, and then the insulating layer has a temperature higher than the crystal melting point of the crystalline polyolefin forming the insulating layer. A method for producing an insulated wire, which comprises crosslinking an insulating layer by irradiating it with ultraviolet rays at a temperature, and then extruding and coating the crosslinked insulating layer with an external semiconducting layer.
剤が添加されていることを特徴とする請求項(1)記載
の絶縁電線の製造方法。(2) The method for producing an insulated wire according to claim (1), wherein a photosensitizer is added to the crystalline polyolefin constituting the insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15445690A JPH0447612A (en) | 1990-06-13 | 1990-06-13 | Manufacture of insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15445690A JPH0447612A (en) | 1990-06-13 | 1990-06-13 | Manufacture of insulated wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0447612A true JPH0447612A (en) | 1992-02-17 |
Family
ID=15584627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15445690A Pending JPH0447612A (en) | 1990-06-13 | 1990-06-13 | Manufacture of insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0447612A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH054235A (en) * | 1991-06-25 | 1993-01-14 | Hitachi Cable Ltd | Mbanufacture of resin molded object |
KR20240010000A (en) | 2021-06-24 | 2024-01-23 | 제이에프이 스틸 가부시키가이샤 | High-strength steel plate and its manufacturing method, and members |
-
1990
- 1990-06-13 JP JP15445690A patent/JPH0447612A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH054235A (en) * | 1991-06-25 | 1993-01-14 | Hitachi Cable Ltd | Mbanufacture of resin molded object |
KR20240010000A (en) | 2021-06-24 | 2024-01-23 | 제이에프이 스틸 가부시키가이샤 | High-strength steel plate and its manufacturing method, and members |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201905061A (en) | Radiation curable polyolefin formulation | |
JPH0517253B2 (en) | ||
JPH0212737B2 (en) | ||
JPH04185651A (en) | Production of crosslinked polyolefin molding | |
JP2019019327A (en) | Silane coupling agent preliminary mixing filler and filler containing the same | |
JPH0447612A (en) | Manufacture of insulated wire | |
JP2014096252A (en) | Wire and cable using silane crosslinked polyethylene and method of producing the same | |
EP1148518B1 (en) | A process for producing cross-linked polyethylene coated conducting wires | |
JPH04181609A (en) | Bridge insulation wire | |
JPH04185656A (en) | Preparation of expanded crosslinked polyolefin molding | |
JPH03287632A (en) | Production of crosslinked polyolefin molding | |
JPH0489844A (en) | Production of crosslinked polyolefin molding | |
JPS59102931A (en) | Production of crosslinked molded article | |
JP5191082B2 (en) | Electric wire, polyethylene resin material for power cable and composition thereof, and electric wire and power cable using them | |
JPH03296540A (en) | Preparation of crosslinked polyolefin molding | |
JPH04180940A (en) | Preparation of cross-linked polyolefin molding | |
JPH04114041A (en) | Preparation of crosslinked polyolefin foamed molding | |
JP5922599B2 (en) | Resin composition for silane cross-linked molded body and molded body using the same | |
JPS6042808B2 (en) | Improved crosslinking method for polyethylene resins | |
JPH07179705A (en) | Method for crosslinking fluororubber composition and its crosslinked molded product | |
JP3858511B2 (en) | Electric wire / cable | |
JPS631683B2 (en) | ||
JPH08111121A (en) | Electric insulating composition and electric wire/cable | |
JPH03296539A (en) | Preparation of crosslinked polyolefin molding | |
JPH0554729A (en) | Shielding wire |