JPH0447037B2 - - Google Patents

Info

Publication number
JPH0447037B2
JPH0447037B2 JP60153262A JP15326285A JPH0447037B2 JP H0447037 B2 JPH0447037 B2 JP H0447037B2 JP 60153262 A JP60153262 A JP 60153262A JP 15326285 A JP15326285 A JP 15326285A JP H0447037 B2 JPH0447037 B2 JP H0447037B2
Authority
JP
Japan
Prior art keywords
plating
painting
phase
resistance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60153262A
Other languages
Japanese (ja)
Other versions
JPS6213590A (en
Inventor
Itsusho Kyono
Tooru Pponjo
Koji Yamato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15326285A priority Critical patent/JPS6213590A/en
Publication of JPS6213590A publication Critical patent/JPS6213590A/en
Publication of JPH0447037B2 publication Critical patent/JPH0447037B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明はプレスなどの加工時や塗装後のめつき
密着性にすぐれ、耐赤錆性にすぐれ、塗装下地と
して好適で、塗装を含めた総合的防錆性にもすぐ
れた耐食鋼板、特に自動車用表面処理鋼板および
その製造方法に関するものである。 〈従来技術とその問題点〉 Znめつき鋼板は耐食性を目的とした表面処理
鋼板の中で最も一般的に使用されており、Znの
犠牲防食作用により素地の鋼板を保護するもので
ある。そのため家電製品、自動車車体、小物部
品、建築材料等に広くかつ大量に使用されてい
る。 しかし、近年、自動車車体の穴あき腐食やコズ
メテイツクコロージヨンが問題となり、その防食
が必要となつてきたことから、Znめつき鋼板の
耐食性不足および塗装性不良が指摘され、その改
善が必須となつた。その結果、近年、Feを合金
化させた合金化溶融Znめつき鋼板がη相を含有
しないために、塗装後の耐食性(すなわち、耐ブ
リスター性、耐穴あき性)に特にすぐれているこ
とから、大量に使用されるようになつた。 しかし、これは、加熱拡散によつて製造される
ことから、めつき密着性が十分でなく、プレス加
工時にパウダリングを生じ、プレス欠陥を発生す
ること、原板材質の制約があること、塗装鮮映性
に劣ることなどの問題を有していた。 そこで、Zn−Fe合金めつきを電気めつき法で
製造することができれば、上述の欠点が解消され
ると期待できるために、従来、各種の開発がなさ
れてきており、特開昭54−107838号、同57−
19393号、同57−60087号、同57−200589号などに
開示されている。その結果、合金化溶融Znめつ
き鋼板に近い塗装後耐食性を有し、かつ加工時の
密着性などにすぐれているものも一部には見られ
る。 しかし、自動車用表面処理鋼板に要求される性
能は、塗装後耐食性や加工時の密着性だけでな
く、これら以外にも必須の性能がある。すなわ
ち、上述の合金化溶融Znめつき鋼板と従来のZn
−Fe合金電気めつき鋼板には、塗装後のめつき
密着性が重大な欠陥として残されていた。すな
ち、自動車の実際の使用環境は静的なものではな
く、走行中に小石や砂粒等による強い衝撃を受け
る場合がある。このような場合には、車体塗装の
塗膜がZn−Fe合金めつき層ごと素地から剥離し
てしまうので、その防食能力が発揮されないどこ
ろか、素地鋼板が露出するために逆に腐食が促進
される結果となる。一方、Znめつき鋼板の場合
には塗膜が、めつきごと剥離するような現象は見
られない。 さらに、ZnめつきやZnを主体とする合金めつ
きの場合には塗装性能が冷延鋼板と比較して劣る
という欠陥があつた。例えば、リン酸塩処理は塗
装の下地処理として必須のものであるが、被処理
物(この場合めつき鋼板)からの溶出金属を利用
する反応メカニズムであるため、Hoepite(Zn3
(PO42・4H2O)が生成する。一方冷延鋼板の場
合には主としてPhosphophyllite(Zn2Fe(PO42
4H2O)が生成する。HoepiteはPhosphophyllite
と比較して耐アルカリ性や脱水性能に劣るため
に、耐水2次密着性に劣るものとなる。さらに、
結晶がち密に生成しにくいこととの相乗効果によ
りブリスターなどの耐食性劣化を起こしやすい。
そこでP比(Phosphophyllite/Phosphophyllite
+Hoepite)が主要な評価基準とされているが、
前述した理由でZnを主体とする合金めつきでは
P比を高くすることは不可能であつた。 また、Zn系合金めつき鋼板を車体外板の外面
に使用する場合には、カチオン型電着塗装におい
て通電により生じるいわゆるクレーターと呼ばれ
る塗膜欠陥を生じ易いという欠点がある。この現
象はZn系合金めつきであるかぎり免れ得ないも
のであつて、クレーターの発生しやすい厳しい通
電条件においてはクレーターの発生の見られるこ
とがある。クレーターが発生すると、塗膜欠陥で
あるので塗膜の機能を損うおそれのあること、ま
た、中ぬりや上ぬりを施した後の塗膜の均一性や
鮮映性に悪影響を与え、商品価値を著しく損う。 そこで、Zn系合金めつき鋼板に対して安全に
また厳しい通電条件でもカチオン型電着塗装を行
うことができるように2層型めつき鋼板が開発さ
れている。すなわち、Zn合金めつき鋼板上にFe
またはFeを主体とする層を施したものであつて
特開昭56−133488号、同56−142885号などに開示
されている。 冷延鋼板(Fe主体)が耐クレーター性を含む
塗装性に優れていることから容易に類推されるよ
うに、上記の2層型めつき鋼板は耐クレーター性
を含む塗装性にすぐれたものになつている。しか
し、表層にFeを含有しているために、耐クレー
ター性にはすぐれているものの、逆に耐赤錆は不
良なものとなつている。すなわち、表層のFeは、
リン酸塩処理等によつて溶出するとは言え、耐ク
レーター性を確保するためには、Feの比較的大
量の残存が必要であり、耐赤錆の劣化を引きおこ
すものである。耐赤錆性を劣化しない程度の微量
の上層Feの付着量ではクレーターは改善されず、
クレーターを改善するために比較的大量のFeを
付着せしめれば耐赤錆性は劣化する。 上記の二律背反を解決するためには、下層の
Zn系合金めつきの犠牲防食能力を大きくするこ
とが考えられるが、従来のZn含有率90wt%以下
でη相を含まないZn−Fe合金めつきでは、めつ
き被膜中のFeを犠牲防食するにさえ十分な犠牲
防食能を有しておらず、赤錆発生を防止すること
はできなかつた。また、下層がZnめつきやη相
を含むZn−Fe合金めつきの場合には、赤錆発生
を防止することはできても、上層にFe層を施し
てさえ、塗装後の耐食性は不良であつた。 そこで、本発明のZn90wt%超、97wt%以下で
η相を含有しないZn−Fe合金めつきを下層に施
し、その上層にFe−Pめつきを施したところ、
耐クレーター性を含む塗装性と耐赤錆性および塗
装後の耐食性のいずれにもすぐれた性能を示すこ
とを見い出した。 〈発明の目的〉 本発明者は、上述した実状に鑑みてなされたも
ので、その目的とするところは、塗装後めつき密
着性、塗装後耐食性、耐赤錆性にもすぐれさらに
リン酸塩処理性、耐クレーター性にもすぐれた
Zn−Fe系合金電気めつき鋼板提供しようとする
ものである。 以下本発明を更に詳細に説明する。 本発明者らはまず塗装後のめつき密着性を支配
する因子の究明から始めた。すなわち、塗装後の
めつき密着性は純Znめつき鋼板は良好で、また
従来のZn−Fe合金めつき鋼板の大部は塗装後の
めつき密着性が不良であることから、Zn含有率
の影響を調査したところ次のような事実をつきと
めた。すなわち、第1図に示すごとくZn含有率
が90wt%以下では、塗装後めつき密着性は不良
であり90wt%を超えると良好になることを見い
出した。 なお第2図に示すように、めつきによる収縮応
力はZn90wt%以下で急激に大きくなつており、
これが塗装後めつき密着性不良の原因になつてい
るものと考えられる。 次に、塗装後の耐食性(耐ブリスター性、耐穴
あき性)は合金化溶融Znめつきにおいて良く知
られているようにη相が存在すると不良であり、
η相が存在しない場合には良好であつた。しか
し、特開昭57−19393号、同57−200589号に開示
されているような公知技術を以つてしてはZn含
有率90wt%超のZn−Fe合金電気めつきは必ずη
相を含有するものであつた。すなわち、Zn含有
率90wt%超でη相を含有しないでZn−Fe合金電
気めつきの性能は未知なものであるばかりでな
く、製造することさえ成し得ていなかつた。 そこで、Zn含有率90wt%超でなおかつη相を
含有しないZn−Fe合金電気めつき鋼板を得る製
造方法について研究を重ねた。 Zn−Fe系合金めつきを行うめつき浴は、塩化
物浴を主体とする。これは、後述の添加物や電流
密度の効果が最も発揮されやすいことを見い出し
たためである。金属イオンとしてはZn2+とFe2+
を主体とするが、その濃度は合計で0.5mol/
以上、溶解限以内である。この理由は、
0.5mol/未満ではヤケが生じやすくなるため
であり、一方溶解限を越えると固体が生成するの
みでデメリツトとなるだけである。 Fe2+/Fe2++Zn2+比(モル比)は0.03〜0.12が
望ましい。これはZn含有率を90wt%超97wt%以
下に制御するためである。 めつき浴には電導度助剤として、KCl、
NH4Cl、NaCl、CaCl2、MgCl2の内より選ばれ
た1種以上を250g/以上含有する。これは大
量に添加することによる伝導度向上、電力の低
減、およびZnの優先析出を抑制するためである。
すなわち、Cl-イオンを大量添加することにより
Znの優先析出は抑制される傾向にある。 電流密度は50〜200A/dm2、好ましくは70〜
150A/dm2が適当である。電流密度が50A/d
m2未満ではη相が析出しやすくなるためであり、
200A/dm2を越えるとヤケが生じやすくなり、
また密着性の不良な場合があるためである。 浴温は25〜70℃が望ましい。25℃未満では密着
性が劣化し、逆に70℃を超えると黒色外観となり
やすい。 PHは1.0〜4.5が望ましい。1.0未満では陰極析出
効率が低下するばかりでなく、装置の腐食が著し
い。一方、4.5を超えるとFe2+の酸化が著しく早
くなるためである。 上記塩類の他にη相の析出を抑制するために特
異的に有効なポリエーテル類を添加するのがよ
い。特にすぐれているのはポリエチレングリコー
ル、ポリプロピレングリコール、ポリエチレング
リコール、ポリプロピレングリコールコポリマー
およびその誘導体である。これらの化合物を1種
以上添加することにより、η相の析出が抑制され
るので、η相を含有しないZn90wt%超のZn−Fe
合金電気めつき鋼板を得ることができる。添加量
は合計で0.05〜10g/、好ましくは0.1〜5
g/が適当である。0.05g/未満ではη相の
析出を抑制するには不十分であり、また10g/
を超えて添加しても効果は飽和しており無意味で
ある。 以上の製造方法によつて得られるめつきはZn
含有率90wt%超97wt%以下でありかつη相を含
有しない。また、白色〜白灰色の均一な色調を示
し、まためつき密着性も良好である。上述の方法
で製造されたZn−Fe合金電気めつき鋼板の上層
に本発明者らが開発したリン酸塩処理性、耐クレ
ーター性にすぐれたFe−Pめつきを施した。 Fe−Pめつきには塩化物浴または硫酸塩浴を
主体とした浴を使用する。これは高速、高電流密
度めつきが可能なためである。浴成分としては
Fe2+イオンを0.3mol/以上溶解限以内含有す
る。その理由は、0.3mol/未満ではヤケが生
じやすく、高電流密度のめつきには不適当なため
であり、また溶解限を超えると固体が生じるのみ
であつてなんらのメリツトもない。 さらに、めつき中にPを含有させるために、次
亜リン酸塩を0.001〜25g/含有する。次亜リ
ン酸塩はNaH2PO2・H2OやH3PO2のような薬剤
の形で添加すればよい。添加量を0.001〜25g/
に限定した理由は、0.001g/未満ではめつ
き中に十分なPが含有されず、25g/を超える
とめつき中のP含有率が高くなりすぎるので非晶
質傾向のめつきとなり、リン酸塩処理などの反応
性が劣化するためである。 電流密度は20−200A/dm2に限定されるが、
その理由は20A/dm2未満では非晶質のめつきと
なりやすいためである。すなわち非晶質のめつき
となつた場合には耐酸性にすぐれ、エツチングさ
れにくいためにリン酸塩処理液との反応性が低い
ので、十分なリン酸塩被膜が生成しなくなるため
である。一方、200A/dm2を超えると、ヤケが
生じやすくなりまた、電圧が高すなるので不適当
である。 さて、本発明2層型のFe−P/Zn−Feめつき
鋼板を製造するためには、上述の条件でZn−Fe
めつきを施して水洗いした後連続して直ちにFe
−Pめつきを施す必要がある。すなわち、Zn−
Feめつきの表面は、放置したり、オイリングし
たりすることによつて、汚れが生じたり、酸化膜
が生じるためである。そのような場合に、その直
上にFe−Pめつきを行うと、一見正常なめつき
が生成するけれども、ミクロ的な欠陥部や不めつ
き部が生成する。そのため、期待される耐クレー
ター性に劣つた製品となつてしまう。 また、Zn−Feめつき後Fe−Pめつきを連続し
て行わず、電解脱脂や酸洗などでの通常の一般的
なめつきの前処理をZn−Feめつきに対して使用
すると、めつきそのものが冷延鋼板よりも活性な
ために、侵されえしまう。特に電解脱脂では、ア
ルカリ液にるエツチングや陽極溶解によつてZn
−Feめつきが溶解してしまう。また、酸洗でも
同様であり、Zn−Feめつきの溶解が著しい。 そこで、軽度の前処理を行うことが考えられる
が、この場合でも、少量の溶解を避けることは因
難である。 Zn−Feめつきの溶解がおこつた場合には、Fe
を含有しているために、黒色のスマツトを著しく
生成しやすい。すなわち、Znが選択溶解し、Fe
リツチなスマツトが生成するためであり、Znめ
つきの場合には見られない現象である。この生成
したスマツトのために、その上層にFe−Pめつ
きを施すと、一見正常なめつきが生成するけれど
も、ミクロ的な欠陥部や不めつき部が生成する。 そのため、前述の前処理の有無を問わず、Zn
−Feめつきに続いて連続的にFe−Pめつきを行
わないかぎり、すぐれた耐クレーター性を得るこ
とはできない。 このようにして初めて得られたZn含有率90wt
%超97%以下でη相を含有しないZn−Fe合金電
気めつき鋼板は、すぐれた塗装後耐食性を示すこ
とを初めて見い出した。すなわち第4図に示すが
ごとく、η相を含有するZn−Fe合金めつきはZn
めつきに近い塗装後耐食性を示すのに対し、η相
を含有しないZn−Fe合金めつきは合金化溶融Zn
めつきに匹敵するすぐれた塗装後耐食性を示すこ
とが明らかとなつた。 また第3図に示すごとく、Zn含有率90wt%超
97wt%以下でη相を含有しないZn−Fe合金めつ
きは、Zn含有率90wt%未満でη相を含有しない
Zn−Fe合金めつきと比較して耐赤錆性に著しく
すぐれていることが明らかである。 すなわち、本発明によつて初めて耐クレーター
性と耐赤錆性および塗装後耐食性さらに塗装後め
つき密着性を兼ね備えたZn−Fe系めつき鋼板を
得ることができた。これらの耐クレーター性、塗
装後耐食性、耐赤錆性、塗装後めつき密着性は自
動車車体外板に使用するために表面処理鋼板に要
求される不可欠の基本的な性能であり、本発明に
よつて初めて解決されたものである。 なお、本発明のZn90wt%超97wt%以下でη相
を含有しないZn−Fe合金めつきの特異な効果は、
Zn含有率が高いために赤錆発生を防止する十分
な犠牲防食能を有しながらかつ同時にη相を含有
しないために塗装後の耐食性にすぐれているため
と考えられる。 Fe−Pめつきの付着量は0.5〜5g/m2が好ま
しい。その理由は、0.5g/m2未満では耐クレー
ター性改良効果はほとんど見られず、また5g/
m2を超えると赤錆が発生しがちであるためであ
る。また、P含有率は0.003〜15wt%が好ましい。
その理由は、この範囲で耐クレーター性が良好で
あるばかりでなく、リン酸塩処理性にすぐれてお
り、冷延鋼板よりも微細な結晶が生成するためで
ある。 〈実施例〉 次に実施例を掲げて本発明を具体的に説明す
る。 表1にZn90wt%超97wt%以下でη相を含有し
ないZn−Fe合金電気めつき鋼板の製造法並びに
比較例を示す。なお、η相の有無はX線回折によ
つた。めつき浴は表1に示された薬剤を使用して
いるが、薬品中不純物や操作中に起こるFe2+
酸化によつて生成するFe3+を含有している。ま
た、一部の浴はクエン酸等の薬剤を別の目的で添
加している。例えばクエン酸はFe3+水酸化物沈
澱を抑制するため、酢酸やH3BO3はPH緩衝性を
持たせるためである。 比較例ではいずれもη相の存在が認められる
が、本発明例ではいずれもZn90wt%を超えても
η相の存在は認められない。 Fe−Pめつき条件は下記のとおりであり、Zn
−Feめつき後水洗しその後直ちに行い、通電電
気量の変更によつて付着量を変え、NaH2PO2
H2O添加量によつてP含有率を変更した。 浴組成 FeCl2・nH2O 200g/ KCl 150g/ NaH2PO2・H2O 0.01〜1.0g/ PH2.0,浴温50℃ 電流密度40〜100A/dm2 表2に上層にFe−Pめつきを施したZn90wt%
超97wt%以下でη相を含有しないZn−Fe合金電
気めつき鋼板並びに比較例の各種性能を示す。 比較例では、Zn含有率90wt%未満のものは、
塗装後耐食性にすぐれているが、赤錆が発生しや
すく、また、塗装後のめつき密着性に劣つてい
る。また、Zn含有率90wt%以上でη相を含有す
るものは塗装後のめつき密着性と赤錆防止にはす
ぐれているけれども、塗装後の耐食性には著しく
劣つている。 一方、本発明例では、塗装後のめつき密着性、
耐赤錆性および塗装後の耐食性のいずれにもすぐ
れていることがわかる。 本発明例は、塗装後のめつき密着性、耐赤錆性
および塗装後の耐食性にすぐれているうえに、耐
クレーター性にもすぐれていることがわかる。 (試験条件) (1) 表1中のη相の有無はX線回折によつて調査
した。 (2)表2中の3コート後の密着性はめつき後に通常
のリン酸塩処理(ボンデライト#3030,デイツ
プ型日本パーカライジング製)、カチオン型電
着塗装(日本ペイント社製 パワートツプU−
30,20μm)、中ぬり(関西ペイント社製 ES
プライマー30μm)、上ぬり(関西ペイント製
TM−13,30μm)を施した後、dupont衝撃試
験(ポンチ径1/2インチ、重量1Kg、50cm)を
行い、めつきが塗膜ごと剥離するかどうかによ
り判定した。 (3) 塗装後クロスカツト部の耐赤錆性は、上述の
3コート塗装後クロスカツトを施した後塩水噴
霧試験360時間後の赤錆発生状況を観察した。 (4) 塗装後耐食性は、カチオン電着塗装材にクロ
スカツトを施した後、塩水噴霧試験を840時間
行い、クロスカツト部の片側最大剥離巾(mm)
を測定することによつて評価した。 (5) 耐クレーター性はカチオン型電着塗装に際し
て意図的に塗膜欠陥を発生しやすい条件にして
行つた。電圧300V、浴温27℃、試料面積/対
極面積=1/5にて膜厚を20〜25μmになるよ
うクーロン制御して行つた。試料は50cm2であ
り、表中の数字はクレーター個数である。
<Industrial Application Fields> The present invention has excellent plating adhesion during press processing and after painting, has excellent red rust resistance, is suitable as a base for painting, and has excellent overall rust prevention including painting. The present invention relates to a corrosion-resistant steel sheet, particularly a surface-treated steel sheet for automobiles, and a method for manufacturing the same. <Prior art and its problems> Zn-plated steel sheets are the most commonly used surface-treated steel sheets for corrosion resistance, and protect the base steel sheet through the sacrificial anti-corrosion action of Zn. Therefore, it is widely used in large quantities in home appliances, automobile bodies, small parts, building materials, etc. However, in recent years, pitting corrosion and cosmetic corrosion of automobile bodies have become a problem, and corrosion prevention has become necessary.As a result, it has been pointed out that Zn-plated steel sheets lack corrosion resistance and poor paintability, and it is essential to improve them. It became. As a result, in recent years, alloyed hot-dip Zn-plated steel sheets alloyed with Fe do not contain the η phase, and therefore have particularly excellent corrosion resistance (i.e., blister resistance and puncture resistance) after coating. , has come to be used in large quantities. However, since this is manufactured by heating and diffusion, the plating adhesion is not sufficient, powdering occurs during press processing, resulting in press defects, there are restrictions on the material of the base plate, and the paint quality is poor. It had problems such as poor image quality. Therefore, if Zn-Fe alloy plating can be produced by electroplating, it is expected that the above-mentioned drawbacks will be overcome, and various developments have been made in the past. No. 57-
It is disclosed in No. 19393, No. 57-60087, No. 57-200589, etc. As a result, some products have corrosion resistance after coating that is close to that of alloyed hot-dip Zn-plated steel sheets, and also have excellent adhesion during processing. However, the performance required of surface-treated steel sheets for automobiles is not only corrosion resistance after painting and adhesion during processing, but also other essential performances. In other words, the above-mentioned alloyed hot-dip Zn plated steel sheet and conventional Zn
-Fe alloy electroplated steel sheets had a serious defect in plating adhesion after painting. That is, the environment in which a car is actually used is not static, and the car may receive strong impacts from pebbles, sand, etc. while driving. In such cases, the car body paint film peels off from the base together with the Zn-Fe alloy plating layer, so its anti-corrosion ability is not demonstrated, and the base steel sheet is exposed, which accelerates corrosion. This results in On the other hand, in the case of Zn-plated steel sheets, there is no phenomenon in which the coating film peels off along with the plating. Furthermore, in the case of Zn plating or Zn-based alloy plating, there was a drawback in that the coating performance was inferior to that of cold-rolled steel sheets. For example, phosphate treatment is essential as a base treatment for painting, but since the reaction mechanism uses metal leached from the object to be treated (in this case, a plated steel plate), Hoepite (Zn 3
(PO 4 ) 2・4H 2 O) is generated. On the other hand, in the case of cold-rolled steel sheets, Phosphophyllite (Zn 2 Fe (PO 4 ) 2
4H 2 O) is produced. Hoepite is Phosphophyllite
Since it is inferior in alkali resistance and dehydration performance compared to that of , it is inferior in water resistant secondary adhesion. moreover,
Combined with the fact that crystals are difficult to form densely, corrosion resistance deterioration such as blistering is likely to occur.
Therefore, the P ratio (Phosphophyllite/Phosphophyllite
+Hoepite) is considered to be the main evaluation criterion,
For the reasons mentioned above, it has been impossible to increase the P ratio with alloy plating mainly composed of Zn. Furthermore, when a Zn-based alloy coated steel sheet is used for the outer surface of a vehicle body, there is a drawback that it is susceptible to coating film defects called so-called craters caused by energization in cationic electrodeposition coating. This phenomenon cannot be avoided as long as Zn-based alloy plating is used, and under severe current conditions where craters are likely to occur, craters may be observed. If a crater occurs, it is a paint film defect that may impair the functionality of the paint film, and it may also have a negative impact on the uniformity and sharpness of the paint film after applying the middle or top coat. Significant loss of value. Therefore, a two-layer plated steel sheet has been developed so that cationic electrodeposition coating can be applied safely to Zn-based alloy coated steel sheet even under severe current conditions. In other words, Fe is deposited on a Zn alloy-plated steel sheet.
Alternatively, a layer mainly composed of Fe is applied, which is disclosed in JP-A-56-133488 and JP-A-56-142885. As can be easily inferred from the fact that cold-rolled steel sheets (mainly made of Fe) have excellent paintability including crater resistance, the two-layer galvanized steel sheet described above has excellent paintability including crater resistance. It's summery. However, because the surface layer contains Fe, although it has excellent crater resistance, it has poor red rust resistance. In other words, Fe in the surface layer is
Although it is eluted by phosphate treatment, etc., a relatively large amount of Fe must remain in order to ensure crater resistance, which causes deterioration of red rust resistance. Craters will not be improved if the amount of upper layer Fe is deposited in a small amount that does not deteriorate red rust resistance.
If a relatively large amount of Fe is deposited to improve craters, the red rust resistance will deteriorate. In order to resolve the above trade-off, it is necessary to
It may be possible to increase the sacrificial corrosion protection ability of Zn-based alloy plating, but with conventional Zn-Fe alloy plating with a Zn content of 90wt% or less and containing no η phase, it is difficult to sacrificially prevent Fe in the plating film. However, it did not have sufficient sacrificial anti-corrosion ability and was unable to prevent the occurrence of red rust. In addition, if the lower layer is Zn plating or Zn-Fe alloy plating containing η phase, it may be possible to prevent red rust, but even if an Fe layer is applied to the upper layer, the corrosion resistance after painting will be poor. Ta. Therefore, when the Zn-Fe alloy plating of the present invention containing more than 90 wt% Zn and less than 97 wt% and no η phase was applied to the lower layer, and Fe-P plating was applied to the upper layer,
It has been found that it exhibits excellent performance in both paintability including crater resistance, red rust resistance, and corrosion resistance after painting. <Object of the Invention> The present inventor has made the invention in view of the above-mentioned actual situation, and aims to provide excellent plating adhesion after painting, corrosion resistance after painting, and red rust resistance, and to improve phosphate treatment. Excellent durability and crater resistance
The purpose is to provide a Zn-Fe alloy electroplated steel sheet. The present invention will be explained in more detail below. The present inventors first began by investigating the factors that govern plating adhesion after painting. In other words, pure Zn-plated steel sheets have good plating adhesion after painting, and most conventional Zn-Fe alloy-plated steel sheets have poor plating adhesion after painting. When investigating the effects of this, we found the following facts: That is, as shown in FIG. 1, it has been found that when the Zn content is 90 wt% or less, the plating adhesion after coating is poor, and when it exceeds 90 wt%, it becomes good. As shown in Figure 2, the shrinkage stress due to plating increases rapidly below 90wt% Zn.
This is thought to be the cause of poor plating adhesion after painting. Next, as is well known in alloyed hot-dip Zn plating, the corrosion resistance (blister resistance, puncture resistance) after painting is poor if the η phase is present.
Good results were obtained when the η phase did not exist. However, using known techniques such as those disclosed in JP-A-57-19393 and JP-A-57-200589, electroplating of Zn-Fe alloys with a Zn content of more than 90 wt% is always η
It contained a phase. That is, not only is the performance of electroplating a Zn-Fe alloy with a Zn content of more than 90 wt % and no η phase unknown, but it has not even been possible to manufacture it. Therefore, we conducted repeated research on a manufacturing method for producing a Zn-Fe alloy electroplated steel sheet with a Zn content of more than 90 wt% and no η phase. The plating bath for Zn-Fe alloy plating is mainly a chloride bath. This is because it has been found that the effects of additives and current density, which will be described later, are most likely to be exhibited. Zn 2+ and Fe 2+ as metal ions
The main concentration is 0.5mol/
The above is within the solubility limit. The reason for this is
This is because if it is less than 0.5 mol/mol, it tends to cause discoloration, whereas if it exceeds the solubility limit, solids will only be produced, which is only a disadvantage. The Fe 2+ /Fe 2+ +Zn 2+ ratio (molar ratio) is preferably 0.03 to 0.12. This is to control the Zn content to more than 90 wt% and less than 97 wt%. In the plating bath, KCl,
Contains 250 g or more of one or more selected from NH 4 Cl, NaCl, CaCl 2 and MgCl 2 . This is to improve conductivity, reduce power, and suppress preferential precipitation of Zn by adding a large amount.
That is, by adding a large amount of Cl - ions,
Preferential precipitation of Zn tends to be suppressed. Current density is 50~200A/ dm2 , preferably 70~
150A/ dm2 is suitable. Current density is 50A/d
This is because the η phase tends to precipitate below m2 .
Exceeding 200A/ dm2 will easily cause discoloration.
This is also because the adhesion may be poor. The bath temperature is preferably 25-70℃. At temperatures below 25°C, adhesion deteriorates, and at temperatures above 70°C, a black appearance tends to occur. PH is preferably 1.0 to 4.5. If it is less than 1.0, not only will the cathodic deposition efficiency decrease, but the equipment will be severely corroded. On the other hand, if it exceeds 4.5, the oxidation of Fe 2+ becomes extremely rapid. In addition to the above-mentioned salts, it is preferable to add polyethers that are specifically effective for suppressing precipitation of the η phase. Particularly preferred are polyethylene glycol, polypropylene glycol, polyethylene glycol, polypropylene glycol copolymers and their derivatives. By adding one or more of these compounds, the precipitation of η phase is suppressed, so Zn-Fe containing more than 90 wt% Zn that does not contain η phase
An alloy electroplated steel sheet can be obtained. The total amount added is 0.05-10g/, preferably 0.1-5
g/ is appropriate. If it is less than 0.05g/, it is insufficient to suppress the precipitation of η phase, and if it is less than 10g/
Even if it is added in excess of this amount, the effect will be saturated and it will be meaningless. The plating obtained by the above manufacturing method is Zn.
The content is more than 90 wt% and 97 wt% or less, and does not contain η phase. Furthermore, it exhibits a uniform color tone of white to white-gray, and also has good adhesion. The upper layer of the Zn--Fe alloy electroplated steel sheet produced by the method described above was coated with Fe--P plating, which was developed by the present inventors and has excellent phosphate treatment properties and crater resistance. For Fe-P plating, a bath mainly consisting of a chloride bath or a sulfate bath is used. This is because high speed, high current density plating is possible. As a bath component
Contains Fe 2+ ions of 0.3 mol/or more within the solubility limit. The reason for this is that if it is less than 0.3 mol/mol, it tends to cause discoloration and is unsuitable for high current density plating, and if it exceeds the solubility limit, only a solid is formed and there is no merit. Furthermore, in order to contain P during plating, 0.001 to 25 g/hypophosphite is contained. Hypophosphite may be added in the form of a drug such as NaH 2 PO 2 .H 2 O or H 3 PO 2 . Add amount 0.001~25g/
The reason for limiting this is that if it is less than 0.001 g/l, sufficient P will not be contained in the plating, and if it exceeds 25 g/l, the P content in the plating will become too high, resulting in plating that tends to be amorphous. This is because reactivity such as salt treatment deteriorates. Although the current density is limited to 20-200A/ dm2 ,
The reason is that less than 20 A/dm 2 tends to result in amorphous plating. That is, when the plating becomes amorphous, it has excellent acid resistance and is difficult to be etched, so that the reactivity with the phosphate treatment solution is low, so that a sufficient phosphate film cannot be formed. On the other hand, if it exceeds 200 A/dm 2 , it is unsuitable because it tends to cause discoloration and the voltage becomes too high. Now, in order to produce the two-layer type Fe-P/Zn-Fe plated steel sheet of the present invention, Zn-Fe
Immediately after plating and washing with water, Fe
- It is necessary to apply P plating. That is, Zn−
This is because the Fe-plated surface becomes dirty or forms an oxide film when left unattended or oiled. In such a case, if Fe--P plating is performed directly on the surface, a seemingly normal plating will be produced, but microscopic defects and unmet parts will be produced. This results in a product that is inferior to the expected crater resistance. In addition, if you do not perform Fe-P plating continuously after Zn-Fe plating and use normal general plating pre-treatments such as electrolytic degreasing and pickling for Zn-Fe plating, the plating Because it is more active than cold-rolled steel, it can be attacked. In particular, in electrolytic degreasing, Zn is removed by etching with alkaline solution or anodic dissolution.
-Fe plating dissolves. The same problem occurs with pickling, and the Zn-Fe plating is significantly dissolved. Therefore, a mild pretreatment may be considered, but even in this case, it is difficult to avoid a small amount of dissolution. If dissolution of Zn-Fe plating occurs, Fe
, it is extremely easy to produce black smut. In other words, Zn selectively dissolves and Fe
This is because rich smuts are generated, a phenomenon that is not observed in the case of Zn plating. Because of this generated smut, when Fe--P plating is applied to the upper layer, although the plating appears to be normal, microscopic defects and unmet parts are generated. Therefore, regardless of the pretreatment mentioned above, Zn
- Unless Fe plating is followed by Fe--P plating, excellent crater resistance cannot be obtained. Zn content of 90wt obtained for the first time in this way
It has been discovered for the first time that a Zn-Fe alloy electroplated steel sheet containing no η phase in an amount of more than 97% exhibits excellent corrosion resistance after coating. In other words, as shown in Figure 4, the Zn-Fe alloy plating containing η phase is
Zn-Fe alloy plating that does not contain η phase shows corrosion resistance after painting close to that of plating, whereas Zn-Fe alloy plating that does not contain η phase
It has become clear that it exhibits excellent corrosion resistance after painting, comparable to plating. In addition, as shown in Figure 3, the Zn content exceeds 90wt%.
Zn-Fe alloy plating that does not contain η phase at a Zn content of less than 97wt%, does not contain an η phase at a Zn content of less than 90wt%.
It is clear that the red rust resistance is significantly superior to that of Zn-Fe alloy plating. That is, by the present invention, for the first time, it was possible to obtain a Zn--Fe based plated steel sheet that combines crater resistance, red rust resistance, post-painting corrosion resistance, and post-painting plating adhesion. These properties such as crater resistance, post-painting corrosion resistance, red rust resistance, and post-painting plating adhesion are indispensable basic performances required of surface-treated steel sheets for use in automobile body exterior panels, and the present invention has achieved these properties. This is the first time it has been solved. The unique effects of the present invention's Zn-Fe alloy plating with Zn of more than 90wt% and less than or equal to 97wt% and containing no η phase are as follows:
This is thought to be because it has sufficient sacrificial corrosion prevention ability to prevent red rust due to its high Zn content, and at the same time, it has excellent corrosion resistance after painting because it does not contain the η phase. The amount of Fe-P plating applied is preferably 0.5 to 5 g/m 2 . The reason for this is that at less than 0.5g/ m2 , there is almost no effect of improving crater resistance, and at less than 5g/m2,
This is because if it exceeds m 2 , red rust tends to occur. Further, the P content is preferably 0.003 to 15 wt%.
The reason for this is that in this range, not only is the crater resistance good, but also the phosphating property is excellent, and finer crystals are produced than in cold-rolled steel sheets. <Examples> Next, the present invention will be specifically explained with reference to Examples. Table 1 shows a method for manufacturing a Zn-Fe alloy electroplated steel sheet containing more than 90 wt% Zn and 97 wt% or less and no η phase, as well as comparative examples. The presence or absence of the η phase was determined by X-ray diffraction. The plating bath uses the chemicals shown in Table 1, but it contains Fe 3+ produced by impurities in the chemicals and oxidation of Fe 2+ that occurs during operation. Also, some baths have chemicals such as citric acid added for other purposes. For example, citric acid is used to suppress Fe 3+ hydroxide precipitation, and acetic acid and H 3 BO 3 are used to provide pH buffering properties. In all of the comparative examples, the presence of η phase is observed, but in all of the present invention examples, the presence of η phase is not observed even when Zn exceeds 90 wt%. The Fe-P plating conditions are as follows, and the Zn
-After plating with Fe, rinse with water and immediately thereafter, change the amount of applied electricity to change the amount of electricity applied, and apply NaH 2 PO 2 .
The P content was changed depending on the amount of H 2 O added. Bath composition FeCl 2・nH 2 O 200g/ KCl 150g/ NaH 2 PO 2・H 2 O 0.01~1.0g/ PH2.0, bath temperature 50℃ Current density 40~100A/dm 2 Table 2 shows Fe-P in the upper layer. Zn90wt% with plating
This figure shows various performances of Zn-Fe alloy electroplated steel sheets containing no η phase at less than 97 wt% and comparative examples. In comparative examples, those with a Zn content of less than 90wt%
Although it has excellent corrosion resistance after painting, it is prone to red rust and has poor plating adhesion after painting. Furthermore, those containing η phase with a Zn content of 90 wt% or more have excellent plating adhesion and prevention of red rust after painting, but are significantly inferior in corrosion resistance after painting. On the other hand, in the example of the present invention, plating adhesion after painting,
It can be seen that both red rust resistance and corrosion resistance after painting are excellent. It can be seen that the examples of the present invention have excellent plating adhesion, red rust resistance, and corrosion resistance after painting, and are also excellent in crater resistance. (Test conditions) (1) The presence or absence of the η phase in Table 1 was investigated by X-ray diffraction. (2) Adhesion after 3 coats in Table 2 After plating, regular phosphate treatment (Bonderite #3030, dip type made by Nippon Parkerizing), cationic electrodeposition coating (made by Nippon Paint Co., Ltd. Power Top U-
30, 20μm), medium color (Kansai Paint Co., Ltd. ES
Primer 30μm), topcoat (manufactured by Kansai Paint)
TM-13, 30 μm), a dupont impact test (punch diameter 1/2 inch, weight 1 kg, 50 cm) was performed, and the plating was judged based on whether the entire coating film peeled off. (3) Resistance to red rust on the cross-cut area after painting was determined by observing the occurrence of red rust after 360 hours of a salt spray test after cross-cutting after the above-mentioned 3-coat painting. (4) Corrosion resistance after painting is determined by performing a salt spray test for 840 hours after cross-cutting the cationic electrodeposition coating material, and measuring the maximum peeling width (mm) on one side of the cross-cut area.
It was evaluated by measuring. (5) Crater resistance was tested under conditions that were intentionally more likely to cause coating film defects during cationic electrodeposition coating. Coulomb control was performed so that the film thickness was 20 to 25 μm at a voltage of 300 V, a bath temperature of 27° C., sample area/counter electrode area = 1/5. The sample size is 50 cm 2 and the numbers in the table are the number of craters.

【表】【table】

【表】【table】

【表】 〈発明の効果〉 本発明の方法によれば、内層としてZn90wt%
超97wt%以下でη相を含有しないZn−Fe系合金
めつき層、外層としてP含有率が0.003〜15wt%、
付着量が0.5g/m2以上のFe−P系合金めつき層
を少なくとも一方の面に有する表面処理鋼板が得
られる。 このようにして得られる本発明の鋼板は塗装後
のめつき密着性、耐赤錆性および塗装後の耐食性
にすぐれている上に、耐クレーター性にもすぐれ
ている。
[Table] <Effects of the invention> According to the method of the present invention, Zn90wt% is used as the inner layer.
Zn-Fe alloy plating layer containing no η phase with a P content of 0.003 to 15 wt% as the outer layer, less than 97 wt%,
A surface-treated steel sheet having an Fe--P alloy plating layer with an adhesion amount of 0.5 g/m 2 or more on at least one surface is obtained. The steel sheet of the present invention thus obtained has excellent plating adhesion, red rust resistance, and corrosion resistance after painting, as well as excellent crater resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、3コート塗装後のめつき密着性を
dupont衝撃試験における剥離高さで評価したも
のとZn含有率との関係を示すグラフである。第
2図は、めつきによつて発生する曲げ応力とZn
含有率との関係を示すグラフである。第3図は3
コート後のクロスカツト部の耐赤錆性とZn含有
率との関係を示すグラフである。第4図は、カチ
オン電着塗装材のクロスカツト部の耐ブリスター
性と相およびZn含有率との関係を示す説明図で
ある。
Figure 1 shows the plating adhesion after 3 coats.
It is a graph showing the relationship between what was evaluated by the peeling height in the dupont impact test and the Zn content. Figure 2 shows the bending stress generated by plating and the Zn
It is a graph showing the relationship with content rate. Figure 3 is 3
It is a graph showing the relationship between the red rust resistance of the cross-cut portion after coating and the Zn content. FIG. 4 is an explanatory diagram showing the relationship between the blister resistance of the cross-cut portion of the cationic electrodeposition coating material and the phase and Zn content.

Claims (1)

【特許請求の範囲】 1 P含有率が0.003〜15.0wt%、付着量が0.5
g/m2以上のFe−P系合金めつき層を鋼板の少
なくとも片面に有し、その内層にZn含有率が
90wt%超、97wt%以下であつてかつη相を含有
しないZn−Fe系合金めつき層を有することを特
徴とする塗装性、塗装後のめつき密着性および耐
食性に優れた表面処理鋼板。 2 P含有率が0.003〜15.0wt%、付着量が0.5
g/m2以上のFe−P系合金めつき層を鋼板の少
なくとも片面に有し、その内層にZn含有率が
90wt%超、97wt%以下であつてかつη相を含有
しないZn−Fe系合金めつき層を製造するに際し、
Zn2+およびFe2+を合計で0.5mol/以上含有し、
そのモル比Fe2+/Fe2++Zn2+が0.03〜0.12であ
り、電導度助剤としてKCl、NH4Cl、NaCl、
CaCl2、およびMgCl2の内より選ばれた1種以上
を合計で250g/以上、さらに置換または未置
換のポリエーテル類の1種以上を0.05〜10g/
含有する塩化物浴にて電流密度50〜200A/dm2
にてZn−Fe合金電気めつきを施して水洗いし、
その後連続して、塩化物浴または硫酸塩浴を主体
とし、Fe2+イオンを0.3mol/以上溶解限まで
含み、さらに次亜リン酸塩を0.001〜25g/含
有する浴から電流密度20〜200A/dm2にてFe−
Pめつきを施すことを特徴とする塗装性、塗装後
のめつき密着性および耐食性に優れた表面処理鋼
板の製造方法。
[Claims] 1 P content is 0.003 to 15.0wt%, adhesion amount is 0.5
The steel plate has an Fe-P alloy plating layer of g/m 2 or more on at least one side, and the inner layer has a Zn content.
A surface-treated steel sheet having excellent paintability, plating adhesion after painting, and corrosion resistance, characterized by having a Zn-Fe alloy plating layer of more than 90 wt% and 97 wt% or less and containing no η phase. 2 P content is 0.003-15.0wt%, adhesion amount is 0.5
The steel plate has an Fe-P alloy plating layer of g/m 2 or more on at least one side, and the inner layer has a Zn content.
When producing a Zn-Fe based alloy plating layer that is more than 90wt% and less than 97wt% and does not contain η phase,
Contains a total of 0.5 mol/or more of Zn 2+ and Fe 2+ ,
The molar ratio Fe 2+ /Fe 2+ + Zn 2+ is 0.03 to 0.12, and KCl, NH 4 Cl, NaCl,
A total of 250 g/or more of one or more selected from CaCl 2 and MgCl 2 , and 0.05 to 10 g/more of one or more substituted or unsubstituted polyethers.
Current density 50 to 200 A/dm 2 in a chloride bath containing
Zn-Fe alloy electroplated at
Thereafter, the current density is 20 to 200 A from a bath mainly composed of a chloride bath or a sulfate bath, containing Fe 2+ ions up to the solubility limit of 0.3 mol/or more, and further containing 0.001 to 25 g/hypophosphite. Fe− at /dm 2
A method for producing a surface-treated steel sheet with excellent paintability, plating adhesion after painting, and corrosion resistance, characterized by applying P plating.
JP15326285A 1985-07-11 1985-07-11 Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production Granted JPS6213590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15326285A JPS6213590A (en) 1985-07-11 1985-07-11 Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15326285A JPS6213590A (en) 1985-07-11 1985-07-11 Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production

Publications (2)

Publication Number Publication Date
JPS6213590A JPS6213590A (en) 1987-01-22
JPH0447037B2 true JPH0447037B2 (en) 1992-07-31

Family

ID=15558607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15326285A Granted JPS6213590A (en) 1985-07-11 1985-07-11 Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPS6213590A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699836B2 (en) * 1988-01-26 1994-12-07 新日本製鐵株式会社 Zinc-chromium alloy electroplated steel sheet
JPH0713317B2 (en) * 1988-09-20 1995-02-15 川崎製鉄株式会社 Zinc-based alloy electroplated steel sheet with excellent powdering resistance and crater resistance
KR100356177B1 (en) * 1999-12-16 2002-10-18 주식회사 포스코 Potasium chloride sludge for electroplating
KR100419658B1 (en) * 1999-12-20 2004-02-25 주식회사 포스코 An additive for chloride zn-fe alloy electrodeposite and chloride zn-fe alloy electrodeposite solution containg the same
KR100910520B1 (en) * 2002-09-12 2009-07-31 주식회사 포스코 Method for manufacturing Zn- Fe Electro plating steel sheet with superior phosphatzing properties and productivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211592A (en) * 1983-05-14 1984-11-30 Kawasaki Steel Corp Fe-p plated steel sheet having excellent phosphate chemical convertibility

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211592A (en) * 1983-05-14 1984-11-30 Kawasaki Steel Corp Fe-p plated steel sheet having excellent phosphate chemical convertibility

Also Published As

Publication number Publication date
JPS6213590A (en) 1987-01-22

Similar Documents

Publication Publication Date Title
JPS63143293A (en) Double-layer electroplated steel sheet
JPS626758B2 (en)
JPH0447037B2 (en)
JPH0210236B2 (en)
JPH0142356B2 (en)
JPH055914B2 (en)
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JP2712924B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion, chemical conversion treatment and coating film adhesion
JPS6367560B2 (en)
JPH04337098A (en) Zn-ni-mo multi-ply electrogalvanized steel sheet excellent in corrosion resistance and plating adhesion
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPH0512439B2 (en)
JP2636589B2 (en) Zinc-nickel-chromium alloy electroplated steel sheet with excellent corrosion resistance, plating adhesion and chemical conversion treatment
JPS61119694A (en) Production of electroplated steel plate
JPH0210878B2 (en)
JP2808649B2 (en) Post-processing method of zinc or zinc alloy coated steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JP3358468B2 (en) Zinc-based composite plated metal sheet and method for producing the same
JP2930688B2 (en) Method for producing Zn-Ni-based alloy electroplated steel sheet having excellent chipping resistance
JP2569993B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JP3211413B2 (en) Surface treatment method for Al or Al alloy material
JPH01290796A (en) Electroplated steel sheet having high corrosion resistance
JPS6320316B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term