JPH0210236B2 - - Google Patents

Info

Publication number
JPH0210236B2
JPH0210236B2 JP13609982A JP13609982A JPH0210236B2 JP H0210236 B2 JPH0210236 B2 JP H0210236B2 JP 13609982 A JP13609982 A JP 13609982A JP 13609982 A JP13609982 A JP 13609982A JP H0210236 B2 JPH0210236 B2 JP H0210236B2
Authority
JP
Japan
Prior art keywords
plating
alloy
layer
amount
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13609982A
Other languages
Japanese (ja)
Other versions
JPS5925992A (en
Inventor
Katsuhei Kikuchi
Hiroshi Hosoda
Hajime Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13609982A priority Critical patent/JPS5925992A/en
Publication of JPS5925992A publication Critical patent/JPS5925992A/en
Publication of JPH0210236B2 publication Critical patent/JPH0210236B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は裞耐食性および塗装埌の耐食性、溶接
性などの自動車甚防錆鋌板に芁求される諞性質に
優れた衚面凊理鋌板およびその補造方法に関する
ものである。 自動車甚の防錆凊理鋌板ずしおZnめ぀き鋌板
が䜿甚されおいるが、玔Zn局の腐食速床が速い
ため、特に苛酷な腐食環境、䟋えば寒冷地垯に散
垃される岩塩などの道路凍結防止剀に露される堎
合、Znめ぀き付着量をかなり倚くしなければ
䞀䟋をあげるず、Zn付着量20〜40gm2を60〜
120gm2にする、長期間の防錆が期埅できなく
なり぀぀ある。しかし、め぀き付着量を倚くする
こずはコストアツプはもずより、性胜面でもめ぀
き密着性、加工性、溶接性の劣化を生じるなどの
䞍利がある。 䞀方、Znめ぀き局の掻性を抑制するため、電
䜍的にZnよりも貎な金属、䟋えばFe、Ni等をZn
ず合金析出させおめ぀き局の腐食速床を小さく
し、薄め぀き付着量䞀䟋を挙げるず、20〜
30gm2でも耐食性の優れたZn系合金め぀き鋌
板の開発が行われ、車䜓の䞀郚に採甚され぀぀あ
る。 ここで、Zn−Fe系合金め぀き鋌板は塗装前凊
理ずしおのりん酞凊理性が優れおいるため、塗装
埌の耐食性が良い。しかし、その合金め぀き局の
鋌板に察する保護防食効果が十分でないため、裞
耐食性は䞍十分である。たた、Zn−Ni系合金め
぀き鋌板はめ぀き局の腐食速床が著しく小さくな
るため、鋌板に察する保護防食効果が䜎䞋し、特
に加工埌においお鋌板からの赀錆発生が著しく、
その耐食性は必ずしも十分ではない。Zn−Ni系
合金め぀き鋌板におけるこのような加工埌の耐食
性劣化はめ぀き局䞭のNi含有量の増加により顕
著になる。その理由は、Ni含有量の増加に぀れ
お保護防食効果が䜎䞋し、加工時鋌板に達する亀
裂が倚数生ずるためである。䞊述のように、これ
たでのZnめ぀き鋌板たたはZn系合金め぀き鋌板
にはそれぞれ欠点があ぀た。 本発明者等は、䞊述のように単局め぀きでは裞
耐食性および塗装埌の耐食性、溶接性などの自動
車甚防錆鋌板に芁求される諞性質を党お向䞊させ
るこずは極めお困難であるずいう認識に基づくず
ずもに、所芁のめ぀き厚さ党おに合金添加成分を
含有させるこずによる経枈䞊、䜜業䞊の䞍利を陀
くずいう立堎に立脚し、研究を重ねた。その結
果、め぀き局の腐食速床を著しく枛少せしめ、か
぀め぀き局の合金化によ぀お生じ易くなる鋌板
め぀き原板からの赀錆発生を枛少せしめた耐
食性、溶接性などの自動車甚防錆鋌板に芁求され
る諞性胜に優れため぀き鋌板ずしお、鋌板䞊に
ZnたたはZn系合金め぀きを斜し、その䞊に第
局ずしおCo−たたはCo−Cr合金め぀きを斜し
た積局め぀き鋌板が所芁の性胜を満足するもので
あるこずを知芋した。 Co−たたはCo−Cr合金め぀きをZnたたはZn
系合金め぀き䞊に斜したものは、腐食環境におい
お生成する腐食生成物のうち、腐食時のカ゜ヌド
反応である酞玠還元反応の抑制に効果のある氎酞
化亜鉛ZnOH2が単盞め぀きに比べお、緻密で
しかも安定にめ぀き衚面に圢成されるためず考え
られ、冷熱サむクル腐食詊隓、耇合腐食詊隓など
の腐食環境においお極めお優れた耐食性を瀺し
た。 本発明はこのような知芋に基づいおなされたも
ので、本発明の第の態様によれば、鋌板䞊に、
第局ずしおめ぀き付着量が3gm2以䞊のZnた
たはZn系合金め぀き局、第局ずしおめ぀き付
着量が0.003〜3gm2で、め぀き皮膜のたたは
Cr含有量が0.01〜10wtのCo−たたはCo−Cr
合金め぀き局を有する耐食性、溶接性等の優れた
積局め぀き鋌板が提䟛される。本発明の第の態
様によれば、鋌板に垞法に埓いZnたたはZn系合
金め぀きを斜し、次いでCo10〜100g、た
たはCrを0.01〜10gを含有するコバルトめ぀
き济䞭でCo−たたはCo−Cr合金を電気め぀き
する工皋を有する高耐食性衚面凊理鋌板の補造方
法が提䟛される。 以䞋、本発明をさらに詳现に説明する。 衚面枅浄化凊理等通垞のめ぀き原板補造工皋を
経お補造された鋌板に、たずZnたたはZn系合金
め぀きを電気め぀き法あるいは溶融め぀き法によ
り予めめ぀きする。ここで、Znめ぀きずは電気
Znめ぀きおよび溶融Znめ぀きを包含し、Zz系合
金め぀きずは合金化溶融Znめ぀きZn−Fe、
Zn−Fe合金電気め぀き、Zn−Ni合金電気め぀
き、Zn−Al耇合電気め぀きを包含するずずもに、
Ni、Cr、Al、Mg、Mn、Fe、、、Sn、Mo、
In、Cu、Zr、Ti、Bi等を少なくずも皮総蚈で
0.1〜30wt含有するZn系合金め぀き電気め぀
き法、溶融め぀き法ずもに含むをも包含するも
のである。 この䞋局め぀き局ずしお䜿甚される金属は䞊述
のように鋌板に察する保護防食効果の匷いもの
Znめ぀き、あるいは保護防食効果を適床に抑
制したものZn系合金め぀きが甚いられる。
たた、䞋局め぀き局の厚さは耐食性、溶接性等か
ら〜60gm2の範囲が奜たしい。䞋局め぀き局
が3gm2未満では鋌板め぀き原板に察する
䞋局め぀き局による均䞀被芆性が十分でなく、た
た䞊局め぀き局ずの重畳効果を加味しおも満足す
べき赀錆発生防止効果が埗られない。60gm2を
超えるめ぀き付着量では、溶接性、加工性が劣化
するので奜たしくない。 本発明は、䞊述のように鋌板にZnたたはZnç³»
合金め぀きを斜しため぀き局の䞊に、さらにCo
−たたはCo−Cr合金め぀き局を圢成せしめる
もので、そのめ぀き付着量は第衚および第衚
からもわかるように0.003〜3gm2、奜たしくは
0.01〜1gm2であり、たため぀き皮膜䞭のたた
はCr含有量は0.01〜10wt、奜たしくは0.05〜
5wtである。そしお、このCo−たたはCo−
Cr合金め぀き局は極めお少ない付着量で優れた
性胜を発揮する。その効果ず掚定される理由は以
䞋の通りである。 (1) Co−たたはCo−Cr合金め぀き局は薄くポ
ヌラスなため、䞋局のZnたたはZn系合金め぀
き局を完党に被芆しおいないず考えられ、埓぀
お衚面ではZnずCo−たたはCo−Cr合金が现
かく均䞀に混圚しお分垃しおいる。このような
衚面状態のものを塩氎噎霧のごずき腐食環境に
さらした堎合、ZnずCo−たたはCo−Cr合金
ずの間に局郚電池を圢成し、露出しおいる衚面
のZnがアノヌドずなり溶出する。しかし、カ
゜ヌドずなるCo−たたはCo−Cr合金䞊で腐
食液䞭の溶存酞玠の還元反応により生成した氎
酞むオンOH-ず盎ちに反応しお氎酞化亜鉛Zn
OH2ずなり、衚面に沈着する。このZn
OH2は緻密でしかも安定な䞊、ポヌラスな
Co−たたはCo−Cr合金め぀き局により保持
されるため、䞋局のZnたたはZn系合金め぀き
局の腐食が著しく抑制される。 (2) たた、このCo−たたはCo−Cr合金め぀き
を斜すこずにより、りん酞塩凊理性および塗装
埌の性胜、特に電着塗装埌の耐食性を著しく向
䞊せしめる。すなわち、本発明の積局め぀き補
品の䞻芁な目的ずする自動車甚防錆鋌板は、䞀
般にりん酞凊理および塗装を行぀お䜿甚される
分野が倚いので、これらは優れた性胜が芁求さ
れる。本発明の衚面凊理鋌板は、りん酞塩凊理
においお均䞀緻密なりん酞塩結晶を埗るに必芁
なマむクロセルの圢成に察しお、䞊述の劂く
ZnずCo−たたはCo−Cr合金が现かく均䞀に
混圚しお分垃しおいるため、そのりん酞塩凊理
性が著しく向䞊する。 (3) さらに、このような䞊局め぀き局の効果によ
る優れたりん酞塩凊理性に加えお、塗装埌の性
胜、特に電着塗装埌の耐食性向䞊効果が著し
い。すなわち、均䞀で緻密なりん酞塩結晶の生
成により、塗膜ずの密着性を向䞊せしめ、か぀
腐食環境においお塗膜を通しお浞入しおくる腐
食溶液を均䞀緻密なりん酞塩結晶でめ぀き面に
到達するのを防止するため、塗装埌の耐食性を
向䞊せしめる。さらに、め぀き衚面は極めお安
定なため、たずえば塗膜を通しお腐食溶液がそ
の衚面に到達しおも、Co−たたはCo−Cr合
金め぀き皮膜ず緻密で安定な腐食生成物氎酞
化亜鉛皮膜によ぀お、電着塗膜にふくれ等の
欠陥が生じるのを防止し、その耐食性向䞊効果
が著しい。 (4) 䞀方、本発明による鋌板ではCo−たたは
Co−Cr合金め぀き局が衚面にあたるため、溶
接甚Cuチツプず䞋局に存圚するZnが合金を぀
くりにくくなるため、チツプ先端の圢状倉化を
防止し、連続溶接性が著しく向䞊する。さら
に、本発明による鋌板では耐食性が優れおいる
ため、䞋局のZnたたはZn系合金め぀き局の付
着量を少なくするこずが可胜であるこずから
も、溶接性に有利である。 䞊述した効果ず理由から、そしお埌に詳述する
結果を衚わした第衚および第衚からわかるよ
うに、䞊局め぀き局ずしおのCo−たたはCo−
Cr合金め぀き局の付着量は0.003gm2〜3gm2の
範囲にするのが良い。Co−たたはCo−Cr合金
め぀き局のめ぀き付着量が0.003gm2未満では効
果が認められず、たた3gm2を超えるず均䞀被
芆性が倧幅に良くなるので耐食性向䞊効果が䜎䞋
し、たたCo、ずもに高䟡なため経枈的な面か
らも奜たしくない。 次に、Co−たたはCo−Cr合金め぀き局に含
有されるたたはCrの効果に぀いおの理論的裏
づけは必ずしも明らかではないが、本発明者等の
実隓結果から次のこずが確認されおいる。すなわ
ち、Co䞭にたたはCrが合金あるいは共析状態
で含有された堎合、特に加工埌の耐食性が著しく
向䞊する。これは、加工時Co−たたはCo−Cr
合金め぀き局に入る亀裂が枛少するためず考えら
れる。たた、Co−たたはCo−Cr合金め぀きで
はCoずたたはCrの盞乗効果により、均䞀で緻
密で安定なZnOH2の圢成がより䞀局促進され
るこずによるものず考えられる。 以䞊のこずから、Co−たたはCo−Cr合金め
぀き局䞭のたたはCr含有量は0.01〜10wtの
範囲が適正であるこずが刀明した。その理由は、
たたはCr含有量が0.01wt未満では䞊述した
効果が認められず、䞀方10wtを超えるず効果
が飜和に達するずずもに、め぀き倖芳が悪くなる
ので奜たしくないからである。 本発明の防錆鋌板は、鋌板にZnたたはZn系合
金め぀きを斜した埌、匕き続いお電気め぀き法に
よりCo−たたはCo−Cr合金め぀きを行うこず
により補造される。Co−たたはCo−Cr合金め
぀き济組成ずしおは、金属Coずしお10〜100g
含有する氎溶液のコバルト酞塩氎溶液䞭に、氎
溶性のタングステン酞塩たたはクロム化合物を金
属たたはCrずしお0.01〜10g含有するよう
添加調敎し、適切なPHずしたものを甚いる。䜿甚
可胜なコバルト酞塩ずしおは、硫酞コバルト、塩
化コバルト、スルフアミン酞コバルト、ピロリン
酞コバルトアルカリ性PH8.3、ク゚ン酞コバル
ト酞性PH、アルカリ性PH10、ナフテン酞コ
バルトなどがあり、タングステン酞塩ずしおは代
衚的に、タングステン酞アンモニりム、タングス
テン酞ナトリりム、タングステン酞カリりム、タ
ングステン酞カルシりム、クロム化合物ずしお
は、塩化クロム、硫酞クロム、無氎クロム酞など
を挙げるこずができる。なお、Co−たたはCo
−Cr合金め぀き济にはめ぀き操業安定化を図る
ため、塩化アンモニりム、硫酞ナトリりム等の電
気䌝導助剀、ホり酞、ク゚ン酞アンモニりム等の
PH緩衝剀等を添加しおも良い。Co−たたはCo
−Cr合金め぀きは電気め぀き法でコヌテむング
されるため付着量が少ない堎合でも正確にコント
ロヌルするこずができる。なお、Co−たたは
Co−Cr合金め぀き皮膜䞭のたたはCr含有率は、
電流密床が倧きい皋、め぀き济枩が比范的䜎い皋
䞊がる傟向にあるから、必芁に応じおたたは
Cr含有率をコントロヌルするこずができる。た
た、Co−たたはCo−Crめ぀き局䞊にクロメヌ
トおよびタンニン酞系などの䞍溶性凊理を実斜す
るこずによ぀お、より耐食性の向䞊が達成でき
る。 以䞋、本発明を実斜䟋に぀き具䜓的に説明す
る。 実斜䟋 冷延鋌板を垞法に埓い電解脱脂、酞掗した埌、
以䞋の条件により各皮の第局のZnたたはZnç³»
合金め぀きを行぀た。 (A) 電気Znめ぀き (1) 济組成 塩化亜鉛 210g/ 塩化カリりム 360g/ (2) 济 æž© 55℃ (3) PH (4) 電流密床 30Am2 (5) め぀き付着量 20gm2 (B) Zn−Ni合金め぀き (1) 济組成 塩化亜鉛 130g/ 塩化ニツケル 240g/ 塩化アンモニりム 60g/ (2) 济 æž© 45℃ (3) PH (4) 電流密床 30Am2 (5) め぀き付着量 20gm2Ni含有量13wt
 (C) Zn−Fe合金め぀き (1) 济組成 塩化亜鉛 130g/ 塩化第䞀鉄 120g/ 塩化アンモニりム 60g/ ク゚ン酞 g/ (2) 济 æž© 50℃ (3) PH (4) 電流密床 30Am2 (5) め぀き付着量 20gm2Fe含有量15wt
 (D) Zn−Al耇合め぀き (1) 济組成 硫酞亜鉛 0.5M/ 氎酞化亜鉛 0.5M/ 氎酞化アルミニりム 0.2M/ ホり酞 30g/ アルミニりム粉末−250mesh
20〜30g/ (2) 济 æž© 40℃ (3) PH (4) 電流密床 30Am2 (5) め぀き付着量 20gm2Al含有量12wt
 (E) Zn−Cr合金め぀き (1) 济組成 塩化亜鉛 130g/ 塩化クロム 60g/ 塩化アンモニりム 60g/ (2) 济 æž© 50℃ (3) PH4.5 (4) 電流密床 30Am2 (5) め぀き付着量 20gm2Cr含有量3wt (F) 溶融Znめ぀き 䞀般のれンゞマヌ方匏によ぀お溶融Znめ぀
きを行぀た。め぀き付着量90gm2 䞊述したようにしお第局のZnたたはZn系合
金め぀きを行぀た埌、氎掗しお盎に䞋蚘の条件で
第局のCo−たたはCo−Cr合金め぀きを行぀
た。 (G) Co−合金め぀き (1) 济組成 硫酞コバルト 200g/ 塩化アンモニりム 60g/ ホり酞 30g/ タングステン酞ナトリりム 10
 (2) 济 æž© 40℃ (3) PH (4) 電流密床 〜10Am2 (5) め぀き付着量 電解電気量でコントロヌルし、Co−合
金め぀き局䞭の含有量は玄1wtずなるよ
うにコントロヌルした。 (H) Co−Cr合金め぀き (1) 济組成 塩化コバルト 150g/ 塩化アンモニりム 60g/ ホり酞 30g/ 塩化クロム 20g/ (2) 济 æž© 40℃ (3) PH (4) 電流密床 〜10Am2 (5) め぀き付着量 電解電気量でコントロヌルし、Co−合
金め぀き局䞭のCr含有量は玄1wtずなるよ
うにコントロヌルした。 このようにしお埗られた皮々の積局め぀き鋌板
に぀いお䞋蚘のような皮々の性胜詊隓を行぀た。
その結果を第衚および第衚にたずめお瀺す。
第衚および第衚の詊隓結果から明らかなよう
に、Co−たたはCo−Cr合金め぀きの付着量は
0.003〜3gm2ずするこずにより、そしおCo−
たたはCo−Cr合金め぀き局䞭のたたはCr含有
量を0.01〜10wtの範囲内に収めるこずにより、
特に自動車甚防錆鋌板ずしお芁求される裞耐食
性、塗装埌の耐食性、溶接性などの優れた鋌板が
埗られる。 (1) 裞耐食性 Co−合金は以䞋に瀺す冷熱サむクル腐食
詊隓CCTで行぀た。たた、Co−Cr合金は
以䞋に瀺す耇合腐食詊隓に準拠しお行぀た。 (1‐1) 冷熱サむククル腐食詊隓 (a) 塩氎噎霧詊隓JIS  2371  時
間 (b) 也燥60℃  時間 (c) 湿最60℃、盞察湿床95以䞊  
時間 (d) 冷凍−15℃  時間 䞊蚘(a)〜(d)をサむクルずしおサむク
ル日で144および240時間行぀た。
The present invention relates to a surface-treated steel sheet that is excellent in various properties required for a rust-proof steel sheet for automobiles, such as bare corrosion resistance, corrosion resistance after painting, and weldability, and a method for manufacturing the same. Zn-plated steel sheets are used as rust-prevention treated steel sheets for automobiles, but because the pure Zn layer corrodes at a high rate, they are not suitable for use in particularly harsh corrosive environments, such as road anti-icing agents such as rock salt sprayed in cold regions. If exposed, the amount of Zn plating must be considerably increased (for example, if the amount of Zn plating is 20 to 40g/ m2 ,
120g/ m2 ), it is becoming impossible to expect long-term rust prevention. However, increasing the amount of plating deposit not only increases costs but also has disadvantages in terms of performance, such as deterioration of plating adhesion, workability, and weldability. On the other hand, in order to suppress the activity of the Zn-plated layer, metals that are potentially more noble than Zn, such as Fe and Ni, are added to the Zn.
The corrosion rate of the plated layer is reduced by precipitating an alloy with
30g/m 2 ) has been developed and is being used in some car bodies. Here, since the Zn-Fe alloy plated steel sheet has excellent phosphoric acid treatment properties as a pre-painting treatment, it has good corrosion resistance after painting. However, since the alloy plating layer does not have a sufficient protective and anticorrosive effect on the steel plate, the bare corrosion resistance is insufficient. In addition, since the corrosion rate of the plated layer of Zn-Ni alloy plated steel sheets is significantly reduced, the protective and anticorrosive effect on the steel sheet is reduced, and the formation of red rust from the steel sheet is significant, especially after processing.
Its corrosion resistance is not necessarily sufficient. This deterioration in corrosion resistance of Zn-Ni alloy plated steel sheets after processing becomes more pronounced as the Ni content in the plated layer increases. The reason for this is that as the Ni content increases, the protective and anticorrosion effect decreases, and many cracks that reach the steel plate occur during processing. As mentioned above, conventional Zn-plated steel sheets and Zn-based alloy-plated steel sheets each have drawbacks. The present inventors recognize that, as mentioned above, it is extremely difficult to improve all the properties required for automotive rust-proof steel sheets, such as bare corrosion resistance, corrosion resistance after coating, and weldability, with single-layer plating. In addition to this, we conducted repeated research based on the standpoint of eliminating the economic and operational disadvantages caused by including alloying additives in all the required plating thicknesses. As a result, the corrosion rate of the plating layer has been significantly reduced, and the occurrence of red rust from the steel plate (plated original sheet), which is likely to occur due to alloying of the plating layer, has been reduced. As a matting steel plate with excellent performance required for rusted steel plates,
Zn or Zn-based alloy plating is applied, and a second
It has been found that a laminated plated steel plate coated with Co-W or Co-Cr alloy as a layer satisfies the required performance. Co-W or Co-Cr alloy plating with Zn or Zn
Among the corrosion products generated in a corrosive environment, the plating applied on the alloy plating contains a single phase of zinc hydroxide, Zn(OH) 2 , which is effective in suppressing the oxygen reduction reaction, which is a cathode reaction during corrosion. This is thought to be due to the fact that it is formed on the plated surface in a denser and more stable manner compared to the plated surface, and it showed extremely excellent corrosion resistance in corrosive environments such as cold/hot cycle corrosion tests and composite corrosion tests. The present invention has been made based on such knowledge, and according to the first aspect of the present invention, on a steel plate,
The first layer is a Zn or Zn-based alloy plating layer with a plating amount of 3 g/m 2 or more, and the second layer is a plating layer with a plating amount of 0.003 to 3 g/m 2 .
Co-W or Co-Cr with Cr content of 0.01~10wt%
A laminated plated steel plate having an alloy plated layer and having excellent corrosion resistance, weldability, etc. is provided. According to the second aspect of the present invention, a steel plate is plated with Zn or a Zn-based alloy according to a conventional method, and then coated with Co in a cobalt plating bath containing 10 to 100 g of Co and 0.01 to 10 g of W or Cr. A method for producing a highly corrosion-resistant surface-treated steel sheet is provided, which includes the step of electroplating -W or a Co-Cr alloy. The present invention will be explained in more detail below. First, Zn or Zn-based alloy plating is applied in advance to a steel plate manufactured through a normal plated original plate manufacturing process such as surface cleaning treatment by an electroplating method or a hot-dip plating method. Here, Zn plating means electric
Zn plating and fused Zn plating are included, and Zz alloy plating refers to alloyed fused Zn plating (Zn-Fe),
Including Zn-Fe alloy electroplating, Zn-Ni alloy electroplating, Zn-Al composite electroplating,
Ni, Cr, Al, Mg, Mn, Fe, W, V, Sn, Mo,
A total of at least one type of In, Cu, Zr, Ti, Bi, etc.
It also includes Zn-based alloy plating containing 0.1 to 30 wt% (including both electroplating method and hot-dip plating method). As mentioned above, the metal used for this lower plating layer is one that has a strong protective and anti-corrosion effect on steel sheets (Zn plating), or one that has a moderately suppressed protective and anti-corrosion effect (Zn-based alloy plating).
Further, the thickness of the lower plating layer is preferably in the range of 3 to 60 g/m 2 from the viewpoint of corrosion resistance, weldability, etc. If the lower plating layer is less than 3 g/m 2 , the uniform coverage of the lower plating layer on the steel plate (base plate) will not be sufficient, and even if the superimposed effect with the upper plating layer is taken into account, satisfactory red rust will occur. No preventive effect can be obtained. A plating weight exceeding 60 g/m 2 is undesirable because weldability and workability deteriorate. As described above, the present invention provides a method for applying Zn or Zn-based alloy plating to a steel plate, and then coating the plated layer with Co.
-W or Co-Cr alloy plating layer is formed, and as can be seen from Tables 1 and 2, the amount of plating is 0.003 to 3 g/m 2 , preferably
0.01~1g/ m2 , and the W or Cr content in the matte film is 0.01~10wt%, preferably 0.05~
It is 5wt%. And this Co-W or Co-
The Cr alloy plating layer exhibits excellent performance with an extremely small amount of adhesion. The reason for the presumed effect is as follows. (1) Since the Co-W or Co-Cr alloy plating layer is thin and porous, it is thought that it does not completely cover the underlying Zn or Zn-based alloy plating layer, and therefore the surface is composed of Zn and Co-W. Or the Co-Cr alloy is finely and uniformly mixed and distributed. When a product with such a surface condition is exposed to a corrosive environment such as salt spray, a local battery is formed between Zn and Co-W or Co-Cr alloy, and the exposed Zn on the surface becomes an anode and is eluted. do. However, on the Co-W or Co-Cr alloy that serves as the cathode, zinc hydroxide Zn immediately reacts with hydroxyl ions OH
(OH) 2 and deposits on the surface. This Zn
(OH) 2 is dense and stable, as well as porous.
Since it is held by the Co-W or Co-Cr alloy plating layer, corrosion of the underlying Zn or Zn-based alloy plating layer is significantly suppressed. (2) Furthermore, by applying this Co-W or Co-Cr alloy plating, phosphate treatment properties and performance after painting, especially corrosion resistance after electrodeposition painting, are significantly improved. That is, since rust-proof steel sheets for automobiles, which are the main object of the laminated plated product of the present invention, are generally used in many fields after being treated with phosphoric acid and painted, they are required to have excellent performance. The surface-treated steel sheet of the present invention is effective against the formation of microcells necessary to obtain uniformly dense phosphate crystals during phosphate treatment, as described above.
Since Zn and Co-W or Co-Cr alloy are finely and uniformly mixed and distributed, the phosphate treatability is significantly improved. (3) Furthermore, in addition to the excellent phosphate treatment properties due to the effect of the upper plating layer, the performance after coating, especially the corrosion resistance after electrodeposition coating, is significantly improved. In other words, the formation of uniform and dense phosphate crystals improves the adhesion with the paint film, and the uniform and dense phosphate crystals prevent corrosive solutions from penetrating through the paint film in a corrosive environment onto the plated surface. To prevent this from occurring, improve corrosion resistance after painting. Furthermore, because the plated surface is extremely stable, even if a corrosive solution reaches the surface through the coating, for example, a Co-W or Co-Cr alloy plated film and a dense and stable corrosion product (zinc hydroxide) will form. The film prevents defects such as blistering from occurring in the electrodeposition coating, and has a remarkable effect of improving corrosion resistance. (4) On the other hand, in the steel sheet according to the present invention, Co-W or
Since the Co-Cr alloy plating layer is on the surface, it becomes difficult for the Cu chip for welding and the Zn present in the underlying layer to form an alloy, which prevents the chip tip from changing shape and significantly improves continuous weldability. Furthermore, since the steel sheet according to the present invention has excellent corrosion resistance, it is possible to reduce the amount of the underlying Zn or Zn-based alloy plating layer, which is advantageous for weldability. For the above-mentioned effects and reasons, and as can be seen from Tables 1 and 2 showing the results detailed later, Co-W or Co-W as the upper plating layer.
The amount of the Cr alloy plating layer deposited is preferably in the range of 0.003g/m 2 to 3g/m 2 . If the plating weight of the Co-W or Co-Cr alloy plating layer is less than 0.003 g/ m2 , no effect will be observed, and if it exceeds 3 g/ m2 , the uniform coverage will be greatly improved, resulting in improved corrosion resistance. It is also unfavorable from an economical point of view because Co and W are both expensive. Next, although the theoretical basis for the effect of W or Cr contained in the Co-W or Co-Cr alloy plating layer is not necessarily clear, the following is confirmed from the experimental results of the present inventors. There is. That is, when W or Cr is contained in Co in an alloy or eutectoid state, the corrosion resistance especially after processing is significantly improved. This is Co-W or Co-Cr during processing.
This is thought to be due to fewer cracks entering the alloy plating layer. Furthermore, in Co-W or Co-Cr alloy plating, it is thought that the synergistic effect of Co and W or Cr further promotes the formation of uniform, dense, and stable Zn(OH) 2 . From the above, it has been found that the appropriate W or Cr content in the Co-W or Co-Cr alloy plating layer is in the range of 0.01 to 10 wt%. The reason is,
This is because if the W or Cr content is less than 0.01 wt%, the above-mentioned effects are not observed, whereas if it exceeds 10 wt%, the effect reaches saturation and the plating appearance deteriorates, which is not preferable. The rust-proof steel sheet of the present invention is manufactured by plating a steel sheet with Zn or a Zn-based alloy, and then subsequently plating with a Co-W or Co-Cr alloy using an electroplating method. The composition of the Co-W or Co-Cr alloy plating bath is 10 to 100 g/co of metal Co.
A water-soluble tungstate or chromium compound is added to the aqueous cobaltate solution containing 0.01 to 10 g of metal W or Cr, and the pH thereof is adjusted to an appropriate level. Usable cobalt salts include cobalt sulfate, cobalt chloride, cobalt sulfamate, cobalt pyrophosphate (alkaline PH8.3), cobalt citrate (acidic PH4, alkaline PH10), cobalt naphthenate, etc. Representative examples include ammonium tungstate, sodium tungstate, potassium tungstate, calcium tungstate, and chromium compounds include chromium chloride, chromium sulfate, and chromic anhydride. In addition, Co-W or Co
- In order to stabilize the plating operation in the Cr alloy plating bath, conductive additives such as ammonium chloride and sodium sulfate, boric acid, ammonium citrate, etc.
A PH buffer or the like may be added. Co-W or Co
- Since Cr alloy plating is applied by electroplating, it can be precisely controlled even when the amount of deposit is small. In addition, Co-W or
The W or Cr content in the Co-Cr alloy plating film is
The higher the current density and the lower the plating bath temperature, the higher the plating bath temperature.
Cr content can be controlled. Moreover, by performing insoluble treatment such as chromate and tannic acid on the Co-W or Co-Cr plating layer, corrosion resistance can be further improved. Hereinafter, the present invention will be specifically explained with reference to examples. Example After electrolytically degreasing and pickling a cold-rolled steel plate according to the conventional method,
Various types of first layer Zn or Zn-based alloy plating were performed under the following conditions. (A) Electric Zn plating (1) Bath composition Zinc chloride 210g/ Potassium chloride 360g/ (2) Bath temperature 55℃ (3) PH=5 (4) Current density 30A/dm 2 (5) Plating amount 20g /m 2 (B) Zn-Ni alloy plating (1) Bath composition Zinc chloride 130g/ Nickel chloride 240g/ Ammonium chloride 60g/ (2) Bath temperature 45℃ (3) PH=4 (4) Current density 30A/dm 2 (5) Plating amount 20g/m 2 (Ni content 13wt)
%) (C) Zn-Fe alloy plating (1) Bath composition Zinc chloride 130g/ Ferrous chloride 120g/ Ammonium chloride 60g/ Citric acid 5g/ (2) Bath temperature 50℃ (3) PH=2 (4) Current density 30A/dm 2 (5) Plating amount 20g/m 2 (Fe content 15wt
%) (D) Zn-Al composite plating (1) Bath composition Zinc sulfate 0.5M/ Zinc hydroxide 0.5M/ Aluminum hydroxide 0.2M/ Boric acid 30g/ Aluminum powder (-250mesh)
2030g/ (2) Bath temperature 40℃ (3) PH=5 (4) Current density 30A/dm 2 (5) Plating amount 20g/m 2 (Al content 12wt
%) (E) Zn-Cr alloy plating (1) Bath composition Zinc chloride 130g/ Chromium chloride 60g/ Ammonium chloride 60g/ (2) Bath temperature 50℃ (3) PH=4.5 (4) Current density 30A/dm 2 (5) Plating amount: 20g/m 2 (Cr content: 3wt%) (F) Molten Zn plating Molten Zn plating was performed using the general Sendzimer method. Plating amount: 90 g/m 2 After plating the first layer of Zn or Zn-based alloy as described above, wash with water and immediately apply the second layer of Co-W or Co-Cr alloy under the following conditions. I went to meet someone. (G) Co-W alloy plating (1) Bath composition Cobalt sulfate 200g/ Ammonium chloride 60g/ Boric acid 30g/ Sodium tungstate 10
g/ (2) Bath temperature 40℃ (3) PH=6 (4) Current density 1 to 10A/dm 2 (5) Plating deposition amount Controlled by the amount of electrolytic electricity, W in the Co-W alloy plating layer was The content was controlled to be approximately 1wt%. (H) Co-Cr alloy plating (1) Bath composition Cobalt chloride 150g/ Ammonium chloride 60g/ Boric acid 30g/ Chromium chloride 20g/ (2) Bath temperature 40℃ (3) PH=3 (4) Current density 1~ 10 A/dm 2 (5) Plating deposition amount The amount of plating was controlled by the amount of electrolytic electricity, and the Cr content in the Co-W alloy plating layer was controlled to be approximately 1 wt%. Various performance tests as described below were conducted on the various laminated plated steel sheets thus obtained.
The results are summarized in Tables 1 and 2.
As is clear from the test results in Tables 1 and 2, the coating weight of Co-W or Co-Cr alloy plating is
By setting it as 0.003~3g/ m2 , and Co-W
Or by keeping the W or Cr content in the Co-Cr alloy plating layer within the range of 0.01 to 10 wt%,
In particular, a steel plate with excellent bare corrosion resistance, corrosion resistance after coating, weldability, etc. required as a rust-proof steel plate for automobiles can be obtained. (1) Bare corrosion resistance The Co-W alloy was subjected to the cold cycle corrosion test (CCT) shown below. In addition, the Co-Cr alloy was subjected to a composite corrosion test shown below. (1-1) Cold cycle corrosion test (a) Salt spray test (JIS Z 2371)...4 hours (b) Dry (60℃)...2 hours (c) Wet (60℃, relative humidity 95% or more) ...4
Time (d) Freezing (-15°C)...2 hours The above (a) to (d) were treated as one cycle, and 2 cycles/day were carried out for 144 and 240 hours.

【衚】 (1‐2) 耇合腐食詊隓 (a) 塩氎噎霧詊隓JIS  2371  時
間 (b) 熱颚也燥60℃  時間 (c) 湿最詊隓50℃、盞察枩床70以䞊 
 時間 䞊蚘(a)〜(c)をサむクルずしおサむク
ル日で168および240時間行぀た。
[Table] (1-2) Combined corrosion test (a) Salt spray test (JIS Z 2371)...4 hours (b) Hot air drying (60℃)...1 hour (c) Humidity test (50℃, relative temperature over 70)

...3 hours The above (a) to (c) were carried out in 4 cycles/day for 168 and 240 hours.

【衚】 (2) りん酞塩凊理性 ボンデラむト3128日本パヌカラむゞング
(æ ª)補を50℃で140秒間スプレヌ凊理し、均䞀
で緻密で埮现な結晶ができる付着量により評䟡
した。なお、×評䟡では䞍均䞀でポヌラスで粗
倧な結晶ずな぀た。
[Table] (2) Phosphate treatment Bonderite #3128 (Nippon Parkerizing
Co., Ltd.) was sprayed at 50°C for 140 seconds, and evaluation was made based on the amount of adhered particles that produced uniform, dense, and fine crystals. In addition, in the case of x evaluation, the crystals were non-uniform, porous, and coarse.

【衚】 (3) 電着塗装埌の耐食性 ボンデラむト3128でりん酞塩凊理埌、パワ
ヌトツプ−30ブラツク日本ペむント(æ ª)補
を甚いお20ÎŒmのカチオン電着塗装を行い、䞊
述した冷熱サむクル腐食詊隓および耇合腐食詊
隓に準拠しおクロスカツト郚からの塗膜ふくれ
幅により評䟡した。
[Table] (3) Corrosion resistance after electrodeposition coating After phosphate treatment with Bonderite #3128, Power Top U-30 Black (manufactured by Nippon Paint Co., Ltd.)
A cationic electrodeposition coating of 20 ÎŒm was performed using a cationic electrodeposition coating, and the coating was evaluated based on the width of the coating film swelling from the cross-cut area in accordance with the above-mentioned cold/heat cycle corrosion test and composite corrosion test.

【衚】 (4) 溶接性 肉厚0.7mmの片面め぀き鋌板を甚い、め぀き
面を倖偎にしお重ね合わせおスポツト溶接を行
い、連続溶接可胜打点数で評䟡した。
[Table] (4) Weldability Using single-sided plated steel plates with a wall thickness of 0.7 mm, spot welding was performed by overlapping the plates with the plated side facing outward, and evaluation was performed based on the number of continuous welding points.

【衚】 本発明は䞊述の分野に限られず、䞋蚘のような
皮々の分野に適甚するこずができる。 (1) 本発明の積局め぀きはゞンクリツチプラむマ
ヌZn粉末等の金属粉を含む導電性有機コヌ
テむングの䞋地ずしおも奜適であり、極めお
優れた耐食性を発揮する。 (2) 本発明の積局め぀きは鋌板の片面あるいは䞡
面に適甚でき、䞡面め぀きの堎合甚途に応じお
差厚め぀き、異皮め぀きを行うこずができる。 (3) 本発明のCo−たたはCo−Cr合金め぀きに
おいお、たたはCrの代りにバナゞりム、チ
タン、モリブデン、ゞルコニりム等の金属を甚
いおも同様の効果を奏する。
[Table] The present invention is not limited to the above-mentioned fields, but can be applied to various fields as described below. (1) The laminated plating of the present invention is also suitable as a base for a zinc-rich primer (a conductive organic coating containing metal powder such as Zn powder), and exhibits extremely excellent corrosion resistance. (2) The laminated plating of the present invention can be applied to one or both sides of a steel plate, and in the case of double-sided plating, differential thickness plating or different types of plating can be performed depending on the application. (3) In the Co-W or Co-Cr alloy plating of the present invention, similar effects can be obtained even if metals such as vanadium, titanium, molybdenum, and zirconium are used instead of W or Cr.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  鋌板䞊に、第局ずしおめ぀き付着量が
3gm2以䞊のZnたたはZn系合金め぀き局および
第局ずしおめ぀き付着量が0.003〜3gm2で、
め぀き皮膜のたたはCr含有量が0.01〜10wt
のCo−たたはCo−Cr合金め぀き局を圢成しお
なるこずを特城ずする高耐食性衚面凊理鋌板。  鋌板にZnたたはZn系合金め぀きを斜し、次
いでCoを10〜100g、たたはCrを0.01〜
10g含有するコバルトめ぀き济䞭でCo−た
たはCo−Cr合金を電気め぀きするこずを特城ず
する高耐食性衚面凊理鋌板の補造方法。
[Claims] 1. On a steel plate, the amount of plating deposited as the first layer is
Zn or Zn-based alloy plating layer of 3 g/m 2 or more and a plating amount of 0.003 to 3 g/m 2 as the second layer,
W or Cr content of plating film is 0.01~10wt%
A highly corrosion-resistant surface-treated steel sheet, characterized by forming a Co-W or Co-Cr alloy plating layer. 2. Apply Zn or Zn-based alloy plating to a steel plate, then add 10 to 100 g of Co and 0.01 to 0.01 g of W or Cr.
A method for producing a highly corrosion-resistant surface-treated steel sheet, which comprises electroplating Co-W or Co-Cr alloy in a cobalt plating bath containing 10 g/cobalt.
JP13609982A 1982-08-04 1982-08-04 Surface treated steel sheet having high corrosion resistance and its production Granted JPS5925992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13609982A JPS5925992A (en) 1982-08-04 1982-08-04 Surface treated steel sheet having high corrosion resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13609982A JPS5925992A (en) 1982-08-04 1982-08-04 Surface treated steel sheet having high corrosion resistance and its production

Publications (2)

Publication Number Publication Date
JPS5925992A JPS5925992A (en) 1984-02-10
JPH0210236B2 true JPH0210236B2 (en) 1990-03-07

Family

ID=15167242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13609982A Granted JPS5925992A (en) 1982-08-04 1982-08-04 Surface treated steel sheet having high corrosion resistance and its production

Country Status (1)

Country Link
JP (1) JPS5925992A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU85453A1 (en) * 1984-07-06 1986-02-12 Cockerill Sambre Sa HOT GALVANIZED STEEL PRODUCT, IN PARTICULAR FOR USE AS A PHOSPHATE, AND PROCESS FOR PREPARING THE SAME
US4663245A (en) * 1985-05-16 1987-05-05 Nippon Steel Corporation Hot-dipped galvanized steel sheet having excellent black tarnish resistance and process for producing the same
JPS6228698U (en) * 1985-08-07 1987-02-21
JPH0689473B2 (en) * 1990-04-25 1994-11-09 新日本補鐵株匏䌚瀟 Anti-corrosion steel plate with excellent corrosion resistance
KR100455083B1 (en) * 2000-12-22 2004-11-08 죌식회사 포슀윔 Zn-Co-W alloy electroplated steel sheet with excellent corrosion resistance and welding property and electrolyte therefor
KR100854505B1 (en) 2007-02-23 2008-08-26 (죌)핎빛정볎 Plating layer using w-co and sn-co and method for plating the same

Also Published As

Publication number Publication date
JPS5925992A (en) 1984-02-10

Similar Documents

Publication Publication Date Title
JPH04214895A (en) Surface treated steel sheet excellent in plating performance and weldability and manufacture thereof
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
JPH0210236B2 (en)
JPS6160914B2 (en)
JPS6314071B2 (en)
JPH0142356B2 (en)
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JPH0536518B2 (en)
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JPS59123785A (en) Surface-treated steel sheet with high corrosion resistance
JPH025839B2 (en)
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
JPS58141397A (en) Surface-treated steel plate with high corrosion resistance and its manufacture
JPS5925993A (en) Surface-treated steel plate with high corrosion resistance
JPH0512439B2 (en)
JPH0715153B2 (en) Zinc-chromium multi-layer electroplated steel sheet
KR920010776B1 (en) High corrosion resistant steel sheets with two layer being of alloy metal and process for making
JPS6134520B2 (en)
KR930007927B1 (en) Two-layer plating alloy steel sheet of high corrosion resistance and method for producing the same
JP2000313967A (en) Surface treated steel sheet excellent in corrosion resistance
JPH0142359B2 (en)
JPS58100691A (en) Surface-treated steel plate with high corrosion resistance