JPH0142356B2 - - Google Patents

Info

Publication number
JPH0142356B2
JPH0142356B2 JP60112490A JP11249085A JPH0142356B2 JP H0142356 B2 JPH0142356 B2 JP H0142356B2 JP 60112490 A JP60112490 A JP 60112490A JP 11249085 A JP11249085 A JP 11249085A JP H0142356 B2 JPH0142356 B2 JP H0142356B2
Authority
JP
Japan
Prior art keywords
plating
corrosion resistance
bath
oxide
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60112490A
Other languages
Japanese (ja)
Other versions
JPS61270398A (en
Inventor
Shigeru Unno
Koji Yamato
Hajime Kimura
Toshiro Ichida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60112490A priority Critical patent/JPS61270398A/en
Priority to ES543958A priority patent/ES8607426A1/en
Priority to US06/741,824 priority patent/US4650724A/en
Priority to AU43360/85A priority patent/AU584095B2/en
Priority to EP85107065A priority patent/EP0182964B1/en
Priority to CA000483455A priority patent/CA1253450A/en
Priority to DE8585107065T priority patent/DE3566419D1/en
Priority to KR1019850003985A priority patent/KR900002162B1/en
Priority to US06/884,182 priority patent/US4702802A/en
Publication of JPS61270398A publication Critical patent/JPS61270398A/en
Publication of JPH0142356B2 publication Critical patent/JPH0142356B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、裸耐食性、塗装後の性能(耐食性お
よび塗料密着性)および溶接性等の諸性質に優れ
た複合電気めつき鋼板およびその製造方法に関す
るものである。 <従来の技術とその問題点> 亜鉛めつき鋼板は、耐食性が要求される自動
車、家電製品、建築材料などに防錆処理鋼板とし
て広く使用されている。これは、純亜鉛層が鋼板
の鉄に対して卑であるので、ピンホールなどのめ
つきの欠陥や加工により生じた地鉄の露出部分に
対しては、亜鉛が先り腐食されるという犠牲防食
効果があり、鋼板の赤錆発生を防止する効果があ
るからである。しかし、純亜鉛は塩水噴霧あるい
は湿潤環境において導電性の腐食生成物を生成
し、腐食速度が著しく大きく、さらに塗装された
塗膜下では亜鉛の腐食生成物により塗膜ふくれが
生じ、ついには剥離に至るなどの純Znが活性で
ある故の欠点がある。 一方、Znめつきの耐食性を向上させるため、
Znめつき層の活性を抑制する意味で、Znよりも
電位的に貴な金属、例えばCo、Ni、Cr、Fe等を
合金析出させる方法が考えられており、多くの文
献、特許が見られる。例えば Znめつき浴に、Co、Mo、WおよびFeを添
加含有させる方法。(特公昭47−16522) めつき層中に、Mo、W、Coの酸化物およ
び/さらにNi、Sn、Pb、Feを含有させる方
法。(特公昭49−19979) Znめつき浴に、Co、Cr3+、Cr6+、In、Zrを
添加含有させて、めつきを行ない、Znめつき
皮膜自体の裸耐食性を向上させると同時にクロ
メート処理性の改善を図る方法。(特公昭56−
517) 三価クロム塩をCr3+として3g/以上溶解
させた酸性Zn電気めつき浴にて、めつきを行
ない、均一で良好な表面色調および光沢を有
し、耐食性を向上させる方法。(特公昭58−
56039) などがあげられる。 しかし、これらの方法で得られる鋼板は、純
Znめつきよりも裸耐食性は向上するが、塗装後
の耐食性に関してはりん酸塩処理後カチオン電着
塗装を施した場合、塗膜のふくれを生じわすい欠
点があつた。また、の方法は、めつき浴中に
Cr3+、Cr6+を添加してめつきをすることで、亜鉛
めつき鋼板のクロメート処理性を向上させ、クロ
メート処理後の耐食性を改良することを目的とし
ており、めつき皮膜自体の耐食性の向上、りん酸
塩処理後カチオン電着塗装を施した場合の耐食性
の改良効果はない。 <発明の目的> 本発明の目的は、前記従来技術の欠点を解消
し、無塗装および塗装後の耐食性に優れ、さらに
加工性、塗料密着性および溶接性に優れた複合め
つき鋼板およびその製造方法を提供することにあ
る。 <発明の構成> このような目的は以下の本発明によつて達成さ
れる。 すなわち本発明は、電気Znめつき層中に金属
CoおよびCo酸化物を全Co量として0.1〜10wt%、
Cr酸化物およびCr水酸化物を全Cr量として0.05
〜5wt%、Al酸化物およびAl水酸化物を全Al量
として1.6〜8wt%含有させてなることを特徴とす
る高耐食性複合めつき鋼板である。 また本発明は、酸性電気Znめつき浴中にCo2+
の水溶性化合物を1種あるいは、2種以上金属コ
バルトとして0.3〜60g/、Cr3+の水溶性化合
物を1種あるいは2種以上金属クロムとして0.2
〜2.5g/、擬ベーマイト状アルミナゾルをア
ルミナ換算で0.5〜20g/添加して、めつきを
行なうことを特徴とする高耐食性複合めつき鋼板
の製造方法である。 以下本発明の高耐食性複合めつき鋼板およびそ
の製造方法について詳細に説明する。 Znめつき層中にCoを含有すると裸耐食性が向
上する。これは、めつき層中のZnとCoが腐食す
る過程でCo2+が生成し、保護効果の優れた腐食
生成物の生成と、その安定性に寄与するからであ
る。 CoはESCA(高電子分光分析法)によれば金属
及び酸化物の状態であり全Co量は0.1〜10wt%が
望ましい。 本発明の複合めつき鋼板において、Co含有量
を0.1〜10.0wt%と定めたが、その理由は、Co含
有量が0.1wt%未満では裸耐食性向上の効果が発
揮されず、10.0wt%を超えると上記効果が飽和
し、それ以上含有させることは経済上好ましくな
いからである。さらにはめつき外観が黒くなり、
商品価値が下がることともなり、また、合金含有
率が高くなるにつれ、めつき層の硬度が高くな
り、加工性の低下をもたらすためである。 CrはCo、Alとの共存でめつき皮膜自体の裸耐
食性を向上させる効果があり、特に腐食初期にお
いてその効果が著しい。さらに、Crは塗膜密着
性を向上させる効果が大きい。本発明の複合めつ
き鋼板においては、上記のCr含有量を0.05〜5wt
%と定めたが、その理由は、Crが0.05wt%未満
では、Co、Alと共存しても裸耐食性の向上効果
は見られず、5wt%を越えると上記の効果が飽和
し、めつき密着性もやや低下するからである。 Alは、めつき層中に酸化物あるいは水酸化物
の形で共析していると考えられ、めつき層中への
Crの共析の促進効果と、Co、Crと共に腐食環境
下で緻密で安定な腐食生成物皮膜を形成し、Zn
の溶出を抑制する効果を有する。本発明の複合め
つき鋼板においては、上記のAlの含有量は1.6〜
8wt%が好ましい。その理由は、Alの含有量が
0.05wt%以上になると耐食性の向上が見られる
が、特に1.6wt%以上では十分な耐食性向上効果
が得られ、8wt%を越えるとめつき密着性がやや
低下するためである。 本発明の複合めつき鋼板の製造方法は、酸性電
気Znめつき浴中に、Co2+の水溶性化合物を1種
あるいは2種以上金属コバルトとして0.3〜60
g/、Cr3+の水溶性化合物を1種あるいは2種
以上金属クロムとして0.2〜2.5g/、擬ベーマ
イト状アルミナゾルをAl2O3換算で0.5〜20g/
添加する。 このめつき液はPH1以上、電流密度40A/dm2
以上であり、好ましくはPH2〜3.5、電流密度
60A/dm2以上とするのがよい。 ここでCo2+の水溶性化合物としては、塩化コ
バルト、硫酸コバルト、硝酸コバルト等又は、公
知の酸性亜鉛めつき浴中に溶解するものがある。 Cr3+の水溶性化合物としては、塩化クロム、硝
酸クロム、硫酸クロム、硫酸クロムカリウム等が
ある。 次に本発明の複合めつき鋼板の製造方法におい
て電気Znめつき浴に添加含有させる成分の効果
について説明する。 (1) Co2+は、めつきの際にZnと共析して、めつ
き被膜を不働態化させ、めつき層の溶解を抑制
することにより、裸耐食性を向上させる。めつ
き浴中へのCo添加量は0.3〜60g/である。
この理由は、0.3g/未満だとめつき層中へ
のCo共析量が少なく、十分な耐食性が得られ
ず、60g/を越えると、めつき外観が黒色を
呈し、めつき密着性も悪くなり、経済的にも好
ましくないからである。 (2) Cr3+はめつき層中にクロムの酸化物及び水酸
化物として共析し、Co、Al酸化物(AlOOHと
推定)と共にめつき層自体の耐食性(裸耐食
性)を向上させる。さらに塗膜との密着性を改
善する。アルミナゾル(擬ベーマイト状)はめ
つき層中にAl酸化物(AlOOH)として共析す
る。アルミナゾルは、粒径が5〜30nmの擬ベ
ーマイト状のものがよい。無定形アルミナゾル
(粒径100〜200nm)ではめつき層中にAlが共
析しにくく、増粘がはげしいので好ましくな
い。この擬ベーマイト状(AlOx(OH)yの形)
のアルミナゾルを添加することにより、一般に
均一かつ多量に共析しにくいCrをAl酸化物と
共に均一かつ多量に析出させることができる。 その理由は、3価のクロムが負に帯電したア
ルミナゾルに吸着され、両者が同時に共析する
からである。 析出したCr、Al酸化物はCoと共にめつき層
自体の裸耐食性をさらに向上させ、さらにめつ
き表面に安定な腐食生成物(水酸化亜鉛)を形
成保持する。 また、りん酸塩処理後カチオン電着塗装後の
耐食性も、Zn−Co−Cr系めつきに比較してア
ルミナゾルを添加したものは飛躍的に向上す
る。この理由は明確ではないが、適度な犠牲防
食性と良好な塗膜密着性とが相まつて塗膜のふ
くれ及び地鉄の溶出を抑制しているものと考え
られる。 めつき浴中に添加するCr3+は金属クロムとし
て0.2〜2.5g/である。この場合浴中のアル
ミナゾルは0.5g/(Al2O3換算)以上必要で
ある。前記理由は、0.2g/未満だと塗膜密
着性、耐食性向上に十分な効果が得られず、
2.5g/を越えるとめつき密着性が低下する
と共にめつき表面に緑色酸化物が付着し、外観
を悪くするので好ましくないからである。 またアルミナゾルの添加量は0.5〜20g/
(Al2O3換算)である。その理由は0.5g/未
満だと、めつき層中へのCr、Alの共析量が不
十分で耐食性、塗膜密着性の向上に十分な効果
が得られず、20g/を越えるとめつき液の粘
度が増加しめつきが困難となるからである。 なおAl元素の定量法は原子吸光法を用いる
と酸可溶性のAlしか分析出来ないので、
EPMA(X線マイクロアナライザー)を用いて
検量線によつて全Al量を定量分析するのがよ
い。 第1図は、Zn−Co−Cr−Al系めつきを施した
鋼板の断面模式図である。同図において、1はめ
つき層、2は鋼板、4はAl酸化物(AlOOH)を
示す。第1図に示すように、Al酸化物がめつき
表層に存在することにより、めつき被膜の絶縁抵
抗が高くなり、適正溶接電流範囲が低い方へ移行
し、そのため少ない溶接電流で発熱を高くするこ
とができる。 つまり、適正溶接電流範囲はZn−Co−Cr系で
は6.5〜13KAであるのに対し、Zn−Co−Cr−Al
系では6〜12.5KAであり、低い溶接電流で溶接
が可能となるため、スポツト溶接における連続打
点数や多くなる。 本発明の複合めつき鋼板の製造方法では、塩化
物浴、硫酸浴等の酸性浴にて電気Znめつきを行
うものである。 上述した浴組成において、めつき液のPHは1.0
以上、好ましくは2〜3.5とするのがよい。その
理由は、PHが1.0未満だとCrがめつき層中に共析
しにくいためである(第2図参照)。また、PHが
3.5を越えるとめつき浴にCrの水酸化物が生成し、
連続めつきラインでの操業上めつき浴が不安定と
なる等の不利が生ずるのでPHを3.5以下とするの
が望ましい。 電流密度は、40A/dm2以上好ましくは60A/
dm2以上とするのがよい。その理由は、電流密度
が40A/dm2未満だとめつき外観が黒灰色を呈
し、めつき密着性が劣化するためである。 <実施例> 以下、本発明を実施例および比較例を挙げて具
体的に説明する。 冷延鋼板(SPCC)をアルカリ電解脱脂し、5
%塩酸で酸洗した後、水洗し、以下の条件により
めつきを行つた。撹拌はポンプにより行い、液流
速は約60m/minで、陽極に純亜鉛板を使用し、
極間距離は10mm、液温は50℃で行つた。目付量は
20g/m2とした。 また、Alは水分散性コロイドゾルである日産
化学製アルミナゾル#520をめつき液中に添加し
た。 以下実施例および比較例のめつき浴の諸条件を
記す。 実施例 1〜9 塩化物浴 ZnCl2 200g/ KCl 350g/ CoCl2×6H2O (金属Coとして 0.3〜5.9g/) CrCl3・6H2O (金属Crとして 0.2〜2.5g/) アルミナゾル(擬ベーマイト状・粒径15nm)
(チクソトロピー性無) 0.5〜20g/ (Al2O3換算) PH3、浴温50℃、電流密度100A/dm2 実施例 10〜13 硫酸浴 ZnSO4 350g/ Na2SO4 40g/ CoSO4・7H2O (金属Coとして 1.2〜59.2g/) CrCl3・6H2O 12g/ (金属Crとして 2.5g/) アルミナゾル(擬ベーマイト状・粒径15nm)
0.5〜20g/ PH3、浴温50℃、電流密度80A/dm2 比較例 1〜2 塩化物浴 アルミナゾルとして粒径100nm、無定形の
ものを2g/添加した以外は実施例1〜9と同
様とした。 比較例 3〜5 塩化物浴 CoCl2・6H2O (金属Coとして 0.2g/) CrCl3・6H2O (金属Crとして 0.1〜2.6g/) アルミナゾル(擬ベーマイト状・粒径15nm)
2g/ (Al2O3換算) ZnCl2、KCl、めつき条件は実施例1〜9と同
様とした。 比較例 6〜7 塩化物浴 めつき条件をPH3、浴温50℃、電流密度30A/
dm2とした以外は実施例1〜9と同様とした。 比較例 8〜10 硫酸浴 CoSO4・7H2O (金属Coとして 10.5〜70g/) K2Cr2(SO44・24H2O (金属Crとして 1.0〜2.6g/) アルミナゾル(擬ベーマイト状・粒径15nm)
0.1〜30g/ (Al2O3換算) ZnSO4、Na2SO4、めつき条件は実施例10〜13
と同様とした。 上記実施例および比較例で得られためつき鋼板
について以下に記す試験を行つた。その結果を表
1(実施例)および表2(比較例)に示す。 尚、めつき層中のCo、Crについては原子吸光
法、AlについてはEPMAを用いて定量を行なつ
た。 (1) めつき密着性評価方法 Dupont衝撃試験(撃心径1/4インチ、重さ1
Kg、高さ50cm)を行つた後のめつき層の剥離状
態で評価した。 ◎:剥離なし 〇:ごくわずかに剥離 △:わずかに剥離 ×:剥離 (2) 加工性評価方法 第3図に示すようにめつき鋼板5にカツプ絞
りを施し、絞り面についてテープ剥離を行い、
重量減少を測定して評価した。 ◎:0〜2mg 〇:2〜5mg △:5mg以上 ×:絞れず (3) 耐食性評価方法 裸耐食性と塗装後の耐食性を総合的に評価し
た。 (3‐1) 裸耐食性 塩水噴霧試験(JIS Z2371)を行い、720
時間後の板厚減少値を測定し評価した。 (3‐2) 塗装後耐食性 リン酸塩処理(日本パーカライジング社
製、ボンデライト#3030)を行つたのち、カ
チオン電着塗装(日本ペイント製パワートツ
プU−30グレー)を20μm施した試料につい
て、素地鋼板に達するまでのクロスカツトを
入れ、塩水噴霧(JIS Z2371)340時間後の
ふくれ(ブリスター)巾で評価した。 板厚減少値 ふくれ巾 (裸耐食性) (塗装後耐食性) ◎:0.2mm以下 ◎:0〜2mm 〇:0.2〜0.4mm 〇:2〜4mm △:0.4〜0.6mm △:4〜6mm ×:0.6mm以上 ×:6mm以上
<Industrial Field of Application> The present invention relates to a composite electroplated steel sheet having excellent properties such as bare corrosion resistance, post-painting performance (corrosion resistance and paint adhesion), and weldability, and a method for manufacturing the same. <Prior art and its problems> Galvanized steel sheets are widely used as rust-prevention treated steel sheets for automobiles, home appliances, building materials, etc. that require corrosion resistance. This is because the pure zinc layer is base against the iron of the steel sheet, so if there are plating defects such as pinholes or exposed areas of the base steel due to processing, the zinc will corrode first, which is sacrificial corrosion protection. This is because it is effective and has the effect of preventing the occurrence of red rust on steel plates. However, pure zinc produces conductive corrosion products when exposed to salt spray or in a humid environment, resulting in extremely high corrosion rates.Furthermore, under the painted coating, the zinc corrosion products cause the coating to blister and eventually peel. There are drawbacks to pure Zn due to its active nature, such as . On the other hand, in order to improve the corrosion resistance of Zn plating,
In order to suppress the activity of the Zn-plated layer, a method has been considered to precipitate an alloy of metals that are potentially nobler than Zn, such as Co, Ni, Cr, Fe, etc., and there are many documents and patents on this method. . For example, a method in which Co, Mo, W, and Fe are added to a Zn plating bath. (Japanese Patent Publication No. 47-16522) A method of containing oxides of Mo, W, and Co and/or Ni, Sn, Pb, and Fe in a plating layer. (Special Publication No. 49-19979) Plating is carried out by adding Co, Cr 3+ , Cr 6+ , In, and Zr to the Zn plating bath, and at the same time improves the bare corrosion resistance of the Zn plating film itself. A method for improving chromate treatment properties. (Tokuko Showa 56-
517) A method of plating in an acidic Zn electroplating bath in which 3 g/or more of trivalent chromium salt as Cr 3+ is dissolved to provide uniform and good surface color and gloss and improve corrosion resistance. (Tokuko Showa 58-
56039) etc. However, the steel sheets obtained by these methods are pure
Although bare corrosion resistance is better than that of Zn plating, the corrosion resistance after coating has the disadvantage that the coating film tends to blister when cationic electrodeposition coating is applied after phosphate treatment. Also, the method is during the plating bath.
By plating with the addition of Cr 3+ and Cr 6+ , the purpose is to improve the chromate treatment properties of galvanized steel sheets and improve the corrosion resistance after chromate treatment. There is no improvement in corrosion resistance when cationic electrodeposition coating is applied after phosphate treatment. <Object of the Invention> The object of the present invention is to provide a composite plated steel sheet that eliminates the drawbacks of the prior art, has excellent corrosion resistance both unpainted and after painting, and has excellent workability, paint adhesion, and weldability, and its production. The purpose is to provide a method. <Structure of the Invention> Such an object is achieved by the following present invention. In other words, the present invention includes metal in the electroplated Zn layer.
Co and Co oxide 0.1 to 10 wt% as total Co amount,
Cr oxide and Cr hydroxide as total Cr amount 0.05
This is a highly corrosion-resistant composite plated steel sheet characterized by containing Al oxide and Al hydroxide in an amount of 1.6 to 8 wt% based on the total amount of Al. In addition, the present invention provides Co 2+ in an acidic electroplating bath.
0.3 to 60 g of one or more water-soluble compounds as metal cobalt, and 0.2 to 0.2 g of one or more water-soluble Cr 3+ compounds as metal chromium.
This is a method for producing a highly corrosion-resistant composite plated steel sheet, which is characterized in that plating is performed by adding ~2.5g/pseudo-boehmite-like alumina sol/0.5~20g/alumina equivalent. The highly corrosion-resistant composite galvanized steel sheet of the present invention and its manufacturing method will be explained in detail below. Including Co in the Zn plating layer improves bare corrosion resistance. This is because Co 2+ is generated during the process of corrosion of Zn and Co in the plating layer, contributing to the generation of corrosion products with excellent protective effects and their stability. According to ESCA (high electron spectroscopy), Co is in a metal and oxide state, and the total amount of Co is preferably 0.1 to 10 wt%. In the composite galvanized steel sheet of the present invention, the Co content is set at 0.1 to 10.0wt%.The reason is that if the Co content is less than 0.1wt%, the effect of improving bare corrosion resistance will not be exhibited, This is because if it exceeds the above effect, it becomes saturated and it is economically undesirable to contain more than that amount. Furthermore, the appearance of the fitting becomes black,
This is because the commercial value decreases, and as the alloy content increases, the hardness of the plated layer increases, resulting in a decrease in workability. When Cr coexists with Co and Al, it has the effect of improving the bare corrosion resistance of the plating film itself, and this effect is particularly noticeable in the early stages of corrosion. Furthermore, Cr has a great effect of improving paint film adhesion. In the composite plated steel sheet of the present invention, the above Cr content is 0.05 to 5wt.
The reason for this is that if Cr is less than 0.05wt%, no improvement in bare corrosion resistance will be seen even if it coexists with Co and Al, and if it exceeds 5wt%, the above effect will be saturated and the plating will be reduced. This is because the adhesion is also slightly reduced. Al is thought to be eutectoid in the form of oxide or hydroxide in the plating layer, and
The eutectoid promoting effect of Cr and the formation of a dense and stable corrosion product film together with Co and Cr in a corrosive environment, and Zn
It has the effect of suppressing the elution of. In the composite plated steel sheet of the present invention, the above Al content is 1.6 to
8wt% is preferred. The reason is that the Al content is
When the content is 0.05wt% or more, corrosion resistance is improved, but when the content is 1.6wt% or more, a sufficient corrosion resistance improvement effect is obtained, and when it exceeds 8wt%, the plating adhesion slightly decreases. The method for manufacturing a composite plated steel sheet of the present invention includes adding one or more water-soluble Co 2+ compounds as metallic cobalt in an amount of 0.3 to 60% in an acidic electrolytic Zn plating bath.
g/, 0.2 to 2.5 g of one or more water-soluble compounds of Cr 3+ as metallic chromium, and 0.5 to 20 g of pseudoboehmite-like alumina sol in terms of Al 2 O 3
Added. This plating liquid has a pH of 1 or higher and a current density of 40A/dm 2
or more, preferably PH2 to 3.5, current density
It is better to set it to 60A/dm 2 or more. Here, water-soluble compounds of Co 2+ include cobalt chloride, cobalt sulfate, cobalt nitrate, etc., or compounds that can be dissolved in a known acidic zinc plating bath. Water-soluble compounds of Cr 3+ include chromium chloride, chromium nitrate, chromium sulfate, chromium potassium sulfate, and the like. Next, the effects of the components added to the electric Zn plating bath in the method for producing a composite plated steel sheet of the present invention will be explained. (1) Co 2+ eutectoids with Zn during plating, passivates the plating film, and suppresses dissolution of the plating layer, thereby improving bare corrosion resistance. The amount of Co added to the plating bath is 0.3 to 60 g/.
The reason for this is that if it is less than 0.3g/, the amount of Co eutectoid in the plating layer will be small and sufficient corrosion resistance will not be obtained, and if it exceeds 60g/, the plating appearance will be black and the plating adhesion will be poor. This is because it is economically unfavorable. (2) Cr 3+ eutectoids as chromium oxide and hydroxide in the plating layer, and together with Co and Al oxide (estimated to be AlOOH), improves the corrosion resistance (bare corrosion resistance) of the plating layer itself. Furthermore, it improves adhesion with the paint film. Alumina sol (pseudo-boehmite-like) eutectoids as Al oxide (AlOOH) in the plating layer. The alumina sol is preferably pseudo-boehmite-like with a particle size of 5 to 30 nm. Amorphous alumina sol (particle size of 100 to 200 nm) is not preferred because Al is difficult to eutectoid in the plating layer and thickening is severe. This pseudoboehmite-like (AlO x (OH) y form)
By adding this alumina sol, Cr, which is generally difficult to co-deposit uniformly and in large amounts, can be precipitated uniformly and in large amounts together with Al oxide. The reason for this is that trivalent chromium is adsorbed to the negatively charged alumina sol, and both co-deposit simultaneously. The precipitated Cr and Al oxides, together with Co, further improve the bare corrosion resistance of the plating layer itself, and also form and maintain stable corrosion products (zinc hydroxide) on the plating surface. Furthermore, the corrosion resistance after cationic electrodeposition coating after phosphate treatment is also dramatically improved when alumina sol is added compared to Zn-Co-Cr based plating. Although the reason for this is not clear, it is thought that appropriate sacrificial corrosion protection and good paint film adhesion combine to suppress blistering of the paint film and elution of the base metal. The amount of Cr 3+ added to the plating bath is 0.2 to 2.5 g/metal chromium. In this case, the amount of alumina sol in the bath is required to be 0.5 g/(in terms of Al 2 O 3 ) or more. The above reason is that if the amount is less than 0.2 g/l, sufficient effects in improving coating film adhesion and corrosion resistance cannot be obtained;
This is because if it exceeds 2.5 g/l, the adhesion of the plating decreases and green oxides adhere to the plating surface, which deteriorates the appearance, which is not preferable. Also, the amount of alumina sol added is 0.5 to 20g/
(in terms of Al 2 O 3 ). The reason for this is that if it is less than 0.5g/, the amount of Cr and Al eutectoid in the plating layer is insufficient and sufficient effects in improving corrosion resistance and coating adhesion cannot be obtained, and if it exceeds 20g/, plating will occur. This is because the viscosity of the liquid increases, making it difficult to tighten. Note that when using atomic absorption spectroscopy, only acid-soluble Al can be analyzed for quantitative determination of Al element.
It is preferable to quantitatively analyze the total amount of Al using a calibration curve using EPMA (X-ray microanalyzer). FIG. 1 is a schematic cross-sectional view of a steel plate coated with Zn-Co-Cr-Al system plating. In the figure, 1 shows a plating layer, 2 shows a steel plate, and 4 shows an Al oxide (AlOOH). As shown in Figure 1, the presence of Al oxide on the plating surface increases the insulation resistance of the plating film, shifting the appropriate welding current range to the lower side, and therefore increasing heat generation with a small welding current. be able to. In other words, the appropriate welding current range is 6.5 to 13KA for Zn-Co-Cr system, while Zn-Co-Cr-Al
The welding current is 6 to 12.5 KA in the system, and since welding can be performed with a low welding current, the number of continuous welding points in spot welding increases. In the method for producing a composite plated steel sheet of the present invention, electrolytic Zn plating is performed in an acidic bath such as a chloride bath or a sulfuric acid bath. In the bath composition mentioned above, the pH of the plating solution is 1.0.
Above, it is preferably 2 to 3.5. The reason for this is that if the pH is less than 1.0, Cr is difficult to eutectoid in the plating layer (see Figure 2). Also, the PH
If it exceeds 3.5, Cr hydroxide is generated in the plating bath,
Since there are disadvantages such as instability of the plating bath during operation in a continuous plating line, it is desirable to keep the pH at 3.5 or less. The current density is 40A/dm2 or more , preferably 60A/dm2 or more.
It is better to set it to dm 2 or more. The reason for this is that when the current density is less than 40 A/dm 2 , the plating appearance becomes blackish gray and the plating adhesion deteriorates. <Example> Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Alkaline electrolytic degreasing of cold rolled steel plate (SPCC), 5
After pickling with % hydrochloric acid, washing with water, and plating under the following conditions. Stirring is performed by a pump, the liquid flow rate is approximately 60 m/min, and a pure zinc plate is used as the anode.
The distance between the electrodes was 10 mm, and the liquid temperature was 50°C. The basis weight is
It was set to 20g/ m2 . Furthermore, for Al, alumina sol #520 manufactured by Nissan Chemical, which is a water-dispersible colloidal sol, was added to the plating solution. The conditions of the plating baths of Examples and Comparative Examples are described below. Examples 1 to 9 Chloride bath ZnCl 2 200 g/KCl 350 g/ CoCl 2 ×6H 2 O (0.3 to 5.9 g/as metal Co) CrCl 3 6H 2 O (0.2 to 2.5 g/as metal Cr) Alumina sol (pseudo boehmite-like/particle size 15nm)
(No thixotropy) 0.5-20g/ (Al 2 O 3 equivalent) PH3, bath temperature 50℃, current density 100A/dm 2 Examples 10-13 Sulfuric acid bath ZnSO 4 350g/ Na 2 SO 4 40g/ CoSO 4・7H 2 O (1.2 to 59.2 g/as metal Co) CrCl 3・6H 2 O 12 g/ (2.5 g/ as metal Cr) Alumina sol (pseudo-boehmite-like, particle size 15 nm)
0.5-20g/PH3, bath temperature 50℃, current density 80A/dm 2Comparative Examples 1-2 Chloride bath Same as Examples 1-9 except that 2g/amorphous alumina sol with a particle size of 100nm was added. did. Comparative Examples 3 to 5 Chloride bath CoCl 2・6H 2 O (0.2 g/as metal Co) CrCl 3・6H 2 O (0.1 to 2.6 g/ as metal Cr) Alumina sol (pseudo-boehmite-like, particle size 15 nm)
2 g/(in terms of Al 2 O 3 ) ZnCl 2 , KCl, and plating conditions were the same as in Examples 1 to 9. Comparative Examples 6-7 Chloride bath Plating conditions: PH3, bath temperature 50℃, current density 30A/
The procedure was the same as in Examples 1 to 9 except that dm2 was used. Comparative Examples 8 to 10 Sulfuric acid bath CoSO 4・7H 2 O (10.5 to 70 g/as metal Co) K 2 Cr 2 (SO 4 ) 4・24H 2 O (1.0 to 2.6 g/ as metal Cr) Alumina sol (pseudo-boehmite-like・Particle size 15nm)
0.1-30g/ (Al 2 O 3 equivalent) ZnSO 4 , Na 2 SO 4 , plating conditions are as in Examples 10-13
The same is true. The following tests were conducted on the tempered steel plates obtained in the above Examples and Comparative Examples. The results are shown in Table 1 (Example) and Table 2 (Comparative Example). Incidentally, Co and Cr in the plating layer were determined using atomic absorption spectrometry, and Al was determined using EPMA. (1) Plating adhesion evaluation method Dupont impact test (center of impact diameter 1/4 inch, weight 1
The peeling state of the plating layer was evaluated after the test was carried out. ◎: No peeling 〇: Slightly peeling △: Slightly peeling ×: Peeling (2) Workability evaluation method As shown in Fig. 3, cup drawing is applied to the plated steel plate 5, and tape peeling is performed on the drawn surface.
The weight loss was measured and evaluated. ◎: 0 to 2 mg ○: 2 to 5 mg △: 5 mg or more ×: Unable to squeeze (3) Corrosion resistance evaluation method Bare corrosion resistance and corrosion resistance after painting were comprehensively evaluated. (3-1) Bare corrosion resistance A salt spray test (JIS Z2371) was conducted and 720
The plate thickness reduction value after time was measured and evaluated. (3-2) Corrosion resistance after painting Samples were treated with phosphate (Bonderite #3030, manufactured by Nippon Parkerizing Co., Ltd.), and then cationic electrodeposition coating (Power Top U-30 Gray, manufactured by Nippon Paint Co., Ltd.) was applied to a thickness of 20 μm. A cross-cut was made until reaching 1, and the blister width was evaluated after 340 hours of salt spray (JIS Z2371). Plate thickness reduction value Bulge width (bare corrosion resistance) (corrosion resistance after painting) ◎: 0.2mm or less ◎: 0~2mm 〇: 0.2~0.4mm 〇: 2~4mm △: 0.4~0.6mm △: 4~6mm ×: 0.6 mm or more ×: 6 mm or more

【表】【table】

【表】 <発明の効果> 本発明により得られる鋼板は、めつき層自体の
裸耐食性と共に塗装後の耐食性にも優れ、さらに
加工性、塗料密着性および溶接性を向上すること
ができる。 さらに、浴組成を規定するだけでよいため、容
易に複合めつき鋼板を製造することができる。
[Table] <Effects of the Invention> The steel sheet obtained by the present invention has excellent corrosion resistance in the plating layer itself as well as corrosion resistance after coating, and can further improve workability, paint adhesion, and weldability. Furthermore, since it is only necessary to specify the bath composition, composite plated steel sheets can be easily produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Zn−Co−Cr−Al系めつきを施した
鋼板の断面模式図である。第2図は、ZnCl2200
g/、KCl350g/、CoCl2・6H2O12g/、
CrCl2・6H2O13.5g/、アルミナゾル2g/
、浴温温50℃、電流密度150A/dm2、におけ
るめつき液のPHと、めつき層中へのCr共析量と
の関係を示すグラフである。第3図は、加工性評
価試験において、カツプ絞り加工を施しためつき
鋼板の断面図である。 符号の説明、1……めつき層、2……鋼板、4
……Al酸化物(AlOOH)、5……めつき鋼板。
FIG. 1 is a schematic cross-sectional view of a steel plate coated with Zn-Co-Cr-Al system plating. Figure 2 shows ZnCl 2 200
g/, KCl350g/, CoCl 2・6H 2 O12g/,
CrCl 2・6H 2 O13.5g/, alumina sol 2g/
2 is a graph showing the relationship between the pH of the plating solution and the amount of Cr eutectoided into the plating layer at a bath temperature of 50° C. and a current density of 150 A/dm 2 . FIG. 3 is a cross-sectional view of a tamed steel plate subjected to cup drawing in a workability evaluation test. Explanation of symbols, 1...Plated layer, 2...Steel plate, 4
...Al oxide (AlOOH), 5...Plated steel plate.

Claims (1)

【特許請求の範囲】 1 電気Znめつき層中に金属CoおよびCo酸化物
を全Co量として0.1〜10wt%、Cr酸化物およびCr
水酸化物を全Cr量として0.05〜5wt%、Al酸化物
およびAl水酸化物を全Al量として1.6〜8wt%含
有させてなることを特徴とする高耐食性複合めつ
き鋼板。 2 酸性電気Znめつき浴中にCo2+の水溶性化合
物を1種あるいは2種以上金属コバルトとして
0.3〜60g/、Cr3+の水溶性化合物を1種ある
いは2種以上金属クロムとして0.2〜2.5g/、
擬ベーマイト状アルミナゾルをアルミナ換算で
0.5〜20g/添加して、めつきを行なうことを
特徴とする高耐食性複合めつき鋼板の製造方法。
[Claims] 1. Metallic Co and Co oxide are contained in the electrolytic Zn plating layer in an amount of 0.1 to 10 wt% based on the total amount of Co, Cr oxide and Cr
A highly corrosion-resistant composite plated steel sheet, characterized in that it contains hydroxide in a total Cr content of 0.05 to 5 wt%, and Al oxide and Al hydroxide in a total Al content of 1.6 to 8 wt%. 2 Adding one or more water-soluble compounds of Co 2+ as metallic cobalt in an acidic electrolytic Zn plating bath.
0.3 to 60 g/, 0.2 to 2.5 g/of one or more Cr 3+ water-soluble compounds as metal chromium,
Pseudo-boehmite alumina sol in terms of alumina
A method for producing a highly corrosion-resistant composite plated steel sheet, which comprises adding 0.5 to 20 g/plating.
JP60112490A 1984-11-28 1985-05-25 Composite plated steel sheet having high corrosion resistance and its manufacture Granted JPS61270398A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60112490A JPS61270398A (en) 1985-05-25 1985-05-25 Composite plated steel sheet having high corrosion resistance and its manufacture
ES543958A ES8607426A1 (en) 1984-11-28 1985-06-05 High corrosion resistance composite plated steel strip and method for making.
US06/741,824 US4650724A (en) 1984-11-28 1985-06-06 High corrosion resistance composite plated steel strip
AU43360/85A AU584095B2 (en) 1984-11-28 1985-06-06 High corrosion resistance composite plated steel strip and method for making
EP85107065A EP0182964B1 (en) 1984-11-28 1985-06-07 High corrosion resistance composite plated steel strip and method for making
CA000483455A CA1253450A (en) 1984-11-28 1985-06-07 High corrosion resistance composite plated steel strip and method for making
DE8585107065T DE3566419D1 (en) 1984-11-28 1985-06-07 High corrosion resistance composite plated steel strip and method for making
KR1019850003985A KR900002162B1 (en) 1984-11-28 1985-06-07 High corrosion resistance composite plated steel strip and method for making
US06/884,182 US4702802A (en) 1984-11-28 1986-07-09 Method for making high corrosion resistance composite plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60112490A JPS61270398A (en) 1985-05-25 1985-05-25 Composite plated steel sheet having high corrosion resistance and its manufacture

Publications (2)

Publication Number Publication Date
JPS61270398A JPS61270398A (en) 1986-11-29
JPH0142356B2 true JPH0142356B2 (en) 1989-09-12

Family

ID=14587948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60112490A Granted JPS61270398A (en) 1984-11-28 1985-05-25 Composite plated steel sheet having high corrosion resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPS61270398A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718039B2 (en) * 1986-03-26 1995-03-01 株式会社豊田自動織機製作所 Manufacturing method of powder-added galvanized steel sheet
JPS63157900A (en) * 1986-12-19 1988-06-30 Kawasaki Steel Corp Production of zinc-chromium composite plated steel sheet
JPS63199899A (en) * 1987-02-12 1988-08-18 Nkk Corp Production of dispersion-galvanized steel sheet having high corrosion resistance
JP2707085B2 (en) * 1987-08-06 1998-01-28 新日本製鐵株式会社 Zinc-chromium composite electroplated steel sheet
JP2562607B2 (en) * 1987-08-06 1996-12-11 新日本製鐵株式会社 Method for producing zinc-chromium composite electroplated steel sheet
US5343073A (en) * 1992-01-17 1994-08-30 Olin Corporation Lead frames having a chromium and zinc alloy coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626758A (en) * 1985-07-03 1987-01-13 Honda Motor Co Ltd Member made of carbon fiber reinforced magnesium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626758A (en) * 1985-07-03 1987-01-13 Honda Motor Co Ltd Member made of carbon fiber reinforced magnesium alloy

Also Published As

Publication number Publication date
JPS61270398A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
KR900002162B1 (en) High corrosion resistance composite plated steel strip and method for making
JPWO2006098359A1 (en) Surface-treated metal material
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
KR910002956B1 (en) Composite zinc-silica electro-galvanized steel sheet excellent in corrosion resistance
JPS626758B2 (en)
JPH0142356B2 (en)
JPH0210236B2 (en)
JPS6314071B2 (en)
JPH025839B2 (en)
JPH0461080B2 (en)
JPH0718040B2 (en) Composite plated steel sheet excellent in spot weldability and corrosion resistance and method for producing the same
EP0342585B1 (en) Coated steel sheets and process for producing the same
JPS6213590A (en) Surface-treated steel sheet having excellent coating property, adhesion after coating and corrosion resistance and its production
JPH055914B2 (en)
KR100590406B1 (en) surface treated steel sheet having excellent corrosion resistance and welding property and its manufacturing of the same
JPH0536518B2 (en)
JPH0772360B2 (en) Zn-based composite electric steel sheet
JPH0273980A (en) Double-plated steel sheet having high corrosion resistance
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JPH04337098A (en) Zn-ni-mo multi-ply electrogalvanized steel sheet excellent in corrosion resistance and plating adhesion
JPS6154880B2 (en)
KR920010778B1 (en) Excellant coating adhesive phosphate coating and water proof adhesive plating steel sheets and process for making
JPH0322479B2 (en)
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
JPH0673592A (en) Zn-fe alloy plated al alloy sheet excellent in resistance weldability