JPH0446340B2 - - Google Patents
Info
- Publication number
- JPH0446340B2 JPH0446340B2 JP21335385A JP21335385A JPH0446340B2 JP H0446340 B2 JPH0446340 B2 JP H0446340B2 JP 21335385 A JP21335385 A JP 21335385A JP 21335385 A JP21335385 A JP 21335385A JP H0446340 B2 JPH0446340 B2 JP H0446340B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- low
- exhaust gas
- temperature regenerator
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003507 refrigerant Substances 0.000 claims description 47
- 238000002485 combustion reaction Methods 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 16
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 230000009977 dual effect Effects 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、直焚二重効用吸収冷温水機に係り、
特に冷房成績係数を向上させるに好適な冷温水機
に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a direct-fired dual-effect absorption chiller/heater,
In particular, the present invention relates to a water chiller/heater suitable for improving the cooling coefficient of performance.
第2図に、従来一般の直焚二重効用吸収冷温水
機の系統図を示す。第2図において、高温再生器
1では加熱源2により稀溶液を加熱し、中間濃度
溶液および高温、高圧の過熱蒸気を分離器3に送
る。分離器3は冷媒蒸気と中間濃溶液とを分離す
る。冷媒蒸気は蒸気管を介して低温再生器4に送
られ、中間濃度溶液は送液管を介して高温溶液熱
交換器11に送られる。高温溶液熱交換器11に
入つた中間濃度溶液は高温再生器1に送られる稀
溶液と熱交換して当該稀溶液を温めた後、出側配
管により低温再生器4に送られる。
FIG. 2 shows a system diagram of a conventional direct-fired dual-effect absorption chiller/heater. In FIG. 2, a high temperature regenerator 1 heats a dilute solution using a heating source 2, and sends an intermediate concentration solution and high temperature, high pressure superheated steam to a separator 3. Separator 3 separates refrigerant vapor and intermediate concentrated solution. The refrigerant vapor is sent to the low temperature regenerator 4 via the steam pipe, and the intermediate concentration solution is sent to the high temperature solution heat exchanger 11 via the liquid feed pipe. The intermediate concentration solution entering the high temperature solution heat exchanger 11 exchanges heat with the dilute solution sent to the high temperature regenerator 1 to warm the dilute solution, and then is sent to the low temperature regenerator 4 via the outlet pipe.
低温再生器4に入つた冷媒蒸気は高温熱交換器
11からの中間濃度溶液を加熱した後、出口配管
により凝縮器5に導かれる。また、低温再生器4
内の中間濃度溶液は、加熱により濃溶液と冷媒蒸
気になり、そのうち冷媒蒸気は蒸気管を介して凝
縮器5に導かれる。一方、濃溶液は低温溶液熱交
換器10に導かれる。 The refrigerant vapor that has entered the low-temperature regenerator 4 heats the intermediate concentration solution from the high-temperature heat exchanger 11, and then is led to the condenser 5 through an outlet pipe. In addition, low temperature regenerator 4
The intermediate concentration solution in the tank becomes a concentrated solution and refrigerant vapor by heating, and the refrigerant vapor is led to the condenser 5 through the vapor pipe. Meanwhile, the concentrated solution is led to the low temperature solution heat exchanger 10.
さて、低温再生器4に入つた冷媒蒸気は凝縮し
て凝縮液となり、出口配管を介して凝縮器5に導
びかれるが、凝縮器5内に入つた凝縮冷媒は、冷
却水熱交換器6により冷却され、散布管を介して
低圧の蒸発器7内に散布される。 Now, the refrigerant vapor that has entered the low-temperature regenerator 4 is condensed into a condensate liquid, and is led to the condenser 5 via the outlet pipe. The liquid is cooled by the evaporator 7 and distributed through the distribution pipe into the low-pressure evaporator 7.
蒸発器7内に散布された液体冷媒は、蒸発器7
内において、冷水熱交換器8内を流れる冷却用の
水を冷却しつつ蒸発し、吸収器9内に流入する。
他方、低温再生器4から低温溶液熱交換器10に
導かれた濃溶液は、循環ポンプ17により低温溶
液熱交換器10に圧送されてくる稀溶液と熱交換
をして冷却された後、吸収器9内に散布される。 The liquid refrigerant dispersed in the evaporator 7
Inside, the cooling water flowing through the cold water heat exchanger 8 is cooled and evaporated, and flows into the absorber 9.
On the other hand, the concentrated solution led from the low temperature regenerator 4 to the low temperature solution heat exchanger 10 is cooled by exchanging heat with the dilute solution pumped to the low temperature solution heat exchanger 10 by the circulation pump 17, and then absorbed. It is dispersed in the container 9.
吸収器9内に散布された濃溶液は、冷却水熱交
換器6によつて冷却されるとともに、蒸発器7か
ら流入してくる冷媒蒸気を吸収し、稀溶液とな
る。この稀溶液は戻り配管18を介して循環ポン
プ17により吸引され、低温溶液熱交換器10、
高温溶液熱交換器11を介して再び高温再生器1
に送られる。以下、上述同様の動作が繰り返され
る。 The concentrated solution spread in the absorber 9 is cooled by the cooling water heat exchanger 6 and absorbs the refrigerant vapor flowing from the evaporator 7 to become a dilute solution. This diluted solution is sucked by the circulation pump 17 via the return pipe 18, and the low temperature solution heat exchanger 10,
High temperature regenerator 1 again via high temperature solution heat exchanger 11
sent to. Thereafter, operations similar to those described above are repeated.
このようにして、従来の二重効用吸収冷温水機
においては、冷房運転時、高温再生器1で発生し
た高温高圧の過熱蒸気を低温再生器4の加熱源と
して使用することにより、冷房成績係数の向上を
図つている。 In this way, in the conventional dual-effect absorption chiller/heater, during cooling operation, the high-temperature, high-pressure superheated steam generated in the high-temperature regenerator 1 is used as a heating source for the low-temperature regenerator 4, thereby increasing the cooling performance coefficient. We are trying to improve the quality of our products.
上記従来の冷温水機において、高温再生器1で
発生した過熱蒸気は高温再生器1での圧力状態
(600〜700mmHg)で低温再生器4に入る。一方、
高温再生器1からの中間濃溶液は高温溶液熱交換
器にて温度が下げられ、低温再生器4において過
熱蒸気の潜熱を取り、濃縮するのに十分な圧力ま
で減圧される。かくして、低温再生器4の加熱源
となる冷媒蒸気は600〜700mmHgの圧力状態で凝
縮し、90〜100℃の高温凝縮冷媒となつて低温再
生器4から凝縮器5に入る。このような状態の冷
媒を凝縮器5における飽和温度40〜45℃まで冷却
するため、その保有する顕熱分だけ冷却水によつ
て無駄に外気に放出されることとなる。
In the above-mentioned conventional hot and cold water machine, the superheated steam generated in the high temperature regenerator 1 enters the low temperature regenerator 4 under the pressure state (600 to 700 mmHg) in the high temperature regenerator 1. on the other hand,
The temperature of the intermediate concentrated solution from the high-temperature regenerator 1 is lowered in a high-temperature solution heat exchanger, and the pressure is reduced in a low-temperature regenerator 4 to a pressure sufficient to remove the latent heat of superheated steam and condense it. Thus, the refrigerant vapor that serves as a heating source for the low-temperature regenerator 4 is condensed at a pressure of 600 to 700 mmHg, and enters the condenser 5 from the low-temperature regenerator 4 as a high-temperature condensed refrigerant of 90 to 100°C. In order to cool the refrigerant in such a state to the saturation temperature of 40 to 45° C. in the condenser 5, the sensible heat it possesses is wastefully discharged into the outside air by the cooling water.
そこで、本発明は熱回収を効率的に行うことに
より冷房成績係数の向上を図りうる二重効用冷温
水機を提供することを目的とする。 Therefore, an object of the present invention is to provide a dual-effect water chiller/heater that can improve the cooling coefficient of performance by efficiently recovering heat.
上記問題点を解決するために、本発明は、直焚
二重効用吸収冷温水機において、低温再生器から
の高温凝縮冷媒と外部から取込んだ燃焼空気との
熱交換により前記燃焼用空気の予熱を行うべく低
温再生器と凝縮器との間に設けられた空気予熱器
と、前記空気予熱器からの凝縮冷媒と加熱源から
の排ガスとの熱交換により前記低温再生器への凝
縮冷媒を加熱するべく排ガス路内に設けられた排
ガス熱交換器と、高温再生器からの高温冷媒蒸気
を駆動源として前記空気予熱器から冷媒蒸気を吸
引すべく低温再生器の前段に設けられた蒸気エゼ
クタと、を備えたことを特徴とするものである。
In order to solve the above-mentioned problems, the present invention provides a direct-fired dual-effect absorption chiller/heater that uses heat exchange between the high-temperature condensed refrigerant from the low-temperature regenerator and the combustion air taken in from the outside. An air preheater is provided between a low temperature regenerator and a condenser for preheating, and the condensed refrigerant is transferred to the low temperature regenerator by heat exchange between the condensed refrigerant from the air preheater and the exhaust gas from the heating source. an exhaust gas heat exchanger installed in the exhaust gas passage for heating; and a steam ejector installed upstream of the low-temperature regenerator to draw refrigerant vapor from the air preheater using the high-temperature refrigerant vapor from the high-temperature regenerator as a driving source. It is characterized by having the following.
上記構成を有する本発明によれば、低温再生器
において加熱源として使用された冷媒蒸気は高温
凝縮冷媒となつて空気予熱器に入る。空気予熱器
では、高温凝縮冷媒とブロワー等により取込んだ
燃焼用空気と熱交換を行い、高温凝縮冷媒の温度
を下げる。一方、燃焼用空気は高温となり、加熱
源において燃料と燃焼反応を起こす。低温となつ
た凝縮冷媒は減圧されて凝縮器に送られるが、そ
の一部は蒸気エゼクタの作用により空気予熱器の
出側より吸引され、排ガス熱交換器に送られる。
この排ガス熱交換器では吸引された低温低圧凝縮
冷媒と排ガス路内の高温排ガスとの熱交換が行わ
れる。このとき、上記凝縮冷媒は低圧、低温であ
るため高温排ガスを低温に下げることができ、排
ガス中の水蒸気の潜熱の一部までも取ることがで
きる。よつて、この熱量を再び低温再生器の加熱
源として使用することにより低温再生器での発生
冷媒量を増加することができる。このようにして
熱回収を図ることにより全体の効率を上昇しう
る。
According to the present invention having the above configuration, the refrigerant vapor used as a heating source in the low-temperature regenerator becomes a high-temperature condensed refrigerant and enters the air preheater. The air preheater exchanges heat with the high-temperature condensed refrigerant and the combustion air taken in by a blower or the like to lower the temperature of the high-temperature condensed refrigerant. On the other hand, the combustion air reaches a high temperature and causes a combustion reaction with the fuel at the heating source. The condensed refrigerant, now at a low temperature, is reduced in pressure and sent to the condenser, but a portion of it is sucked from the outlet side of the air preheater by the action of the steam ejector and sent to the exhaust gas heat exchanger.
In this exhaust gas heat exchanger, heat exchange is performed between the drawn-in low-temperature, low-pressure condensed refrigerant and the high-temperature exhaust gas in the exhaust gas path. At this time, since the condensed refrigerant has a low pressure and a low temperature, the high temperature exhaust gas can be lowered to a low temperature, and even a part of the latent heat of the water vapor in the exhaust gas can be taken. Therefore, by using this amount of heat again as a heating source for the low-temperature regenerator, the amount of refrigerant generated in the low-temperature regenerator can be increased. By recovering heat in this way, the overall efficiency can be increased.
次に、本発明の実施例を図面に基づいて説明す
る。
Next, embodiments of the present invention will be described based on the drawings.
第1図に本発明に係る直焚二重効用吸収冷温水
機の系統図を示す。この第1図において、第2図
と同一の部分には同一の符号を附し、第2図の説
明をもつてここでの説明は省略する。 FIG. 1 shows a system diagram of a direct-fired dual-effect absorption chiller/heater according to the present invention. In FIG. 1, the same parts as in FIG. 2 are designated by the same reference numerals, and the description of FIG. 2 will be omitted here.
第1図と第2図の間で異なる主な部分は次の通
りである。すなわち、低温再生器4と凝縮器5と
の間に空気予熱器13が設けられ、排ガス路12
内に排ガス熱交換器16が設けられ、分離器3と
低温再生器4との間に蒸気エゼクタ15が設けら
れていることである。 The main differences between FIG. 1 and FIG. 2 are as follows. That is, an air preheater 13 is provided between the low temperature regenerator 4 and the condenser 5, and the exhaust gas path 12
An exhaust gas heat exchanger 16 is provided therein, and a steam ejector 15 is provided between the separator 3 and the low-temperature regenerator 4.
空気予熱器13は低温再生器4からの高温凝縮
冷媒と外記からブロア等によつて取込まれた燃焼
用空気14との熱交換を行ない、高温凝縮冷媒を
加熱源として燃焼用空気14の予熱を行なうもの
である。予熱された燃焼用空気14は配管を通じ
て加熱源であるバーナ2に送られ、燃料との燃焼
反応に供される。一方、空気予熱器13の出側配
管は凝縮器5に向かう配管とは別方向に分岐さ
れ、配管19を介して排ガス熱交換器16の入側
に接続されている。 The air preheater 13 exchanges heat between the high-temperature condensed refrigerant from the low-temperature regenerator 4 and the combustion air 14 taken in from outside by a blower or the like, and uses the high-temperature condensed refrigerant as a heating source to generate the combustion air 14. This is for preheating. The preheated combustion air 14 is sent to the burner 2, which is a heating source, through piping, and subjected to a combustion reaction with fuel. On the other hand, the outlet pipe of the air preheater 13 is branched in a direction different from the pipe heading toward the condenser 5, and is connected to the inlet side of the exhaust gas heat exchanger 16 via a pipe 19.
排ガス熱交換器16は配管19を介して吸引さ
れた空気予熱器13からの凝縮冷媒と排ガスとの
熱交換を行うものである。その出側は蒸気エゼク
タ15に接続されている。 The exhaust gas heat exchanger 16 exchanges heat between the condensed refrigerant drawn from the air preheater 13 and the exhaust gas sucked through the pipe 19. Its outlet side is connected to a steam ejector 15.
蒸気エゼクタは分離器3からの高温冷媒蒸気を
駆動源として空気予熱器13から凝縮冷媒を吸引
するとともに、排ガス熱交換器16で発生した高
温冷媒蒸気を低温再生器4の加熱源として吸引す
るためのものである。 The steam ejector uses high-temperature refrigerant vapor from the separator 3 as a driving source to suck condensed refrigerant from the air preheater 13, and also sucks high-temperature refrigerant vapor generated in the exhaust gas heat exchanger 16 as a heating source for the low-temperature regenerator 4. belongs to.
次に、作用を説明する。なお、第2図と同一部
分に関する作用は前述したのでここでは省略し、
本発明に関る部分について説明する。 Next, the effect will be explained. Note that the effects related to the same parts as in Figure 2 have been described above, so they will be omitted here.
Parts related to the present invention will be explained.
低温再生器4において加熱源として使用された
冷媒蒸気は高温凝縮冷媒となつて空気予熱器13
に入る。空気予熱器13では、高温凝縮冷媒とブ
ロワー等により取込んだ燃焼用空気14と熱交換
を行い、高温凝縮冷媒の温度を下げる一方、燃焼
用空気14Aは高温となり、加熱源となるバーナ
2において燃料と燃焼反応を起こす。低温となつ
た凝縮冷媒は減圧されて凝縮器5に送られるが、
その一部は蒸気エゼクタ15の作用により空気予
熱器13の出側より吸引され、排ガス熱交換器1
6に送られる。この排ガス熱交換器16では吸引
された低温低圧凝縮冷媒と排ガス路12内の高温
排ガスとの熱交換が行われる。このとき、上記凝
縮冷媒は低圧、低温であるため高温排ガスを低温
に下げることができ、排ガス中の水蒸気の潜熱の
一部までも取ることができる。よつて、この熱量
を再び低温再生器4の加熱源として使用すること
により低温再生器4での発生冷媒量を増加するこ
とができる。このようにして熱回収を図ることに
より全体の効率を上昇しうる。 The refrigerant vapor used as a heating source in the low-temperature regenerator 4 becomes a high-temperature condensed refrigerant and passes through the air preheater 13.
to go into. In the air preheater 13, the high-temperature condensed refrigerant exchanges heat with the combustion air 14 taken in by a blower or the like to lower the temperature of the high-temperature condensed refrigerant, while the combustion air 14A becomes high temperature and is heated in the burner 2 serving as the heating source. Causes a combustion reaction with fuel. The condensed refrigerant, now at a low temperature, is depressurized and sent to the condenser 5,
A part of it is sucked from the outlet side of the air preheater 13 by the action of the steam ejector 15, and is transferred to the exhaust gas heat exchanger 1.
Sent to 6. In the exhaust gas heat exchanger 16, heat exchange is performed between the drawn-in low-temperature, low-pressure condensed refrigerant and the high-temperature exhaust gas in the exhaust gas path 12. At this time, since the condensed refrigerant has a low pressure and a low temperature, the high temperature exhaust gas can be lowered to a low temperature, and even a part of the latent heat of the water vapor in the exhaust gas can be taken. Therefore, by using this amount of heat again as a heating source for the low-temperature regenerator 4, the amount of refrigerant generated in the low-temperature regenerator 4 can be increased. By recovering heat in this way, the overall efficiency can be increased.
以上の作用を具体的に数値により説明すると次
に通りである。低温再生器4からの凝縮冷媒の温
度が100℃であるとすると、空気予熱器13での
熱交換作用により出側冷媒の温度は40℃となる。
この温度低下により、冷媒単位重量当り
60Kcal/Kgの熱量が燃焼用空気14Aに得られ
る。高温再生器1において1Rt当り2.5Kg/h・
Rtの冷媒が発生するものとすると、1Rt当り2.5
×60=150Kcal/h・Rtの熱量を得ることができ
る。また、排ガス熱交換器16において排ガスの
温度を200℃から50℃に下げたとき、使用する燃
料によつても異なるがプロパンガスの場合、1Rt
当り排ガスより顕熱量で185Kcal/h・Rt排ガス
中の水蒸気の14.4%の潜熱を取ることができる。
そのため、潜熱量で28Kcal/h・Rtの熱量が得
られる。これにより、排ガス熱交換器16におい
て排ガスより得られる熱量は1Rt当り185+28=
213Kcal/h・Rtとなる。前述の空気予熱器13
の分と合わせると、1Rt当り得られる熱量は、
150+213=363Kcal/h・Rtとなり、この値は約
10%の効率向上を意味する。 The above action will be specifically explained using numerical values as follows. Assuming that the temperature of the condensed refrigerant from the low-temperature regenerator 4 is 100°C, the temperature of the outlet refrigerant becomes 40°C due to the heat exchange action in the air preheater 13.
Due to this temperature drop, per unit weight of refrigerant
A calorific value of 60Kcal/Kg is obtained in 14A of combustion air. 2.5Kg/h per 1Rt in high temperature regenerator 1
Assuming that Rt refrigerant is generated, 2.5 per Rt
×60=150Kcal/h・Rt of heat can be obtained. Also, when the exhaust gas temperature is lowered from 200℃ to 50℃ in the exhaust gas heat exchanger 16, it varies depending on the fuel used, but in the case of propane gas, 1Rt
It is possible to obtain 14.4% of the latent heat of water vapor in the exhaust gas as a sensible heat amount of 185Kcal/h・Rt from the exhaust gas.
Therefore, a latent heat amount of 28 Kcal/h・Rt can be obtained. As a result, the amount of heat obtained from the exhaust gas in the exhaust gas heat exchanger 16 is 185 + 28 = 1 Rt.
It becomes 213Kcal/h・Rt. The aforementioned air preheater 13
When combined with , the amount of heat obtained per 1Rt is
150+213=363Kcal/h・Rt, this value is approximately
This means a 10% increase in efficiency.
以上述べたごとく、本発明の吸収冷温水機によ
れば、空気予熱器、排ガス熱交換器および蒸気エ
ゼクタを設けたことにより、従来無駄に大気中に
放出していた熱を効率的に回収することができ、
システムの効率の向上、冷房成績係数の向上を図
ることができる。
As described above, according to the absorption chiller/heater of the present invention, by providing an air preheater, an exhaust gas heat exchanger, and a steam ejector, heat that was conventionally wasted wasted into the atmosphere can be efficiently recovered. It is possible,
It is possible to improve the efficiency of the system and improve the cooling coefficient of performance.
第1図は本発明に係る二重効用吸収冷温水機の
系統図、第2図は従来の一般的な二重効用吸収冷
温水機の系統図である。
1……高温再生器、2……バーナ、3……分離
器、4……低温再生器、5……凝縮器、6……冷
却水熱交換器、7……蒸発器、8……冷温水熱交
換器、9……吸収器、10……低温溶液熱交換
器、11……高温溶液熱交換器、12……排ガス
路、13……空気予熱器、14……燃焼用空気、
10A……予熱された燃焼用空気、15……蒸気
エゼクタ、16……排ガス熱交換器、17……循
環ポンプ、18……戻り配管、19……配管。
FIG. 1 is a system diagram of a dual-effect absorption chiller/heater according to the present invention, and FIG. 2 is a system diagram of a conventional dual-effect absorption chiller/heater. 1... High temperature regenerator, 2... Burner, 3... Separator, 4... Low temperature regenerator, 5... Condenser, 6... Cooling water heat exchanger, 7... Evaporator, 8... Cold temperature Water heat exchanger, 9... Absorber, 10... Low temperature solution heat exchanger, 11... High temperature solution heat exchanger, 12... Exhaust gas path, 13... Air preheater, 14... Combustion air,
10A... Preheated combustion air, 15... Steam ejector, 16... Exhaust gas heat exchanger, 17... Circulation pump, 18... Return piping, 19... Piping.
Claims (1)
んだ燃焼用空気との熱交換により前記燃焼用空気
の予熱を行うべく低温再生器と凝縮器との間に設
けられた空気予熱器と、 前記空気予熱器からの凝縮冷媒と加熱源からの
排ガスとの熱交換により前記低温再生器への冷媒
蒸気を発生するべく排ガス路内に設けられた排ガ
ス熱交換器と、 高温再生器からの高温冷媒蒸気を駆動源として
前記空気予熱器から冷媒蒸気を吸引すべく低温再
生器の前段に設けられた蒸気エゼクタと、を備え
たことを特徴とする直焚二重効用吸収冷温水機。[Scope of Claims] 1. In a direct-fired dual-effect absorption chiller/heater, the combustion air is heated to a low temperature in order to preheat the combustion air by heat exchange between the high-temperature condensed refrigerant from the low-temperature regenerator and the combustion air taken in from the outside. an air preheater provided between the regenerator and the condenser; and an exhaust gas path for generating refrigerant vapor to the low temperature regenerator by heat exchange between the condensed refrigerant from the air preheater and the exhaust gas from the heating source. and a steam ejector provided at a stage upstream of the low-temperature regenerator to suck refrigerant vapor from the air preheater using high-temperature refrigerant vapor from the high-temperature regenerator as a driving source. A direct-fired dual-effect absorption chiller/heater characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21335385A JPS6273052A (en) | 1985-09-26 | 1985-09-26 | Direct-firing double-effect absorption water chiller and heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21335385A JPS6273052A (en) | 1985-09-26 | 1985-09-26 | Direct-firing double-effect absorption water chiller and heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6273052A JPS6273052A (en) | 1987-04-03 |
JPH0446340B2 true JPH0446340B2 (en) | 1992-07-29 |
Family
ID=16637758
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21335385A Granted JPS6273052A (en) | 1985-09-26 | 1985-09-26 | Direct-firing double-effect absorption water chiller and heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6273052A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2584275B2 (en) * | 1988-03-25 | 1997-02-26 | 三洋電機株式会社 | Absorption refrigerator |
-
1985
- 1985-09-26 JP JP21335385A patent/JPS6273052A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6273052A (en) | 1987-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105783023A (en) | Device and method for driving air heater through absorption type heat pump | |
US6993933B2 (en) | Absorption refrigerating machine | |
CN205640981U (en) | Utilize device of absorption heat pump drive fan heater | |
CN209378463U (en) | High efficient cryogenic energy saving evaporator | |
CN107388617A (en) | Fume hot-water compound type lithium bromide absorption type refrigeration unit | |
CN108507219A (en) | A kind of compound two-stage type lithium bromide absorption type heat pump and working method | |
JPH0446340B2 (en) | ||
US5216891A (en) | Solution flows in direct expansion lithium bromide air conditioner/heater | |
US6311513B1 (en) | Triple-effect absorption refrigeration system with condensate-to-solution sensible heat exchanger | |
JPH0429340Y2 (en) | ||
JPH0429339Y2 (en) | ||
JPH05280825A (en) | Absorption heat pump | |
CN107504710A (en) | Fume hot-water single-double effect compound type lithium bromide absorption type handpiece Water Chilling Units | |
JPS6122225B2 (en) | ||
JPS63116066A (en) | Double effect absorption water chiller and heater | |
RU2163705C1 (en) | Steam-jet ejector refrigerating machine | |
JPH06108804A (en) | Power generating system | |
JPH0354378Y2 (en) | ||
JP4322690B2 (en) | Absorption type water heater | |
JPS6117320Y2 (en) | ||
JPS5949463A (en) | Absorption type hot water machine | |
JPH0689965B2 (en) | Double-effect absorption chiller / heater | |
CN107477906A (en) | Fume hot-water single-double effect compound type lithium bromide absorption type refrigeration unit | |
RU2154780C1 (en) | Steam-ejector refrigerating machine | |
JPH0350373Y2 (en) |