JP4322690B2 - Absorption type water heater - Google Patents

Absorption type water heater Download PDF

Info

Publication number
JP4322690B2
JP4322690B2 JP2004012238A JP2004012238A JP4322690B2 JP 4322690 B2 JP4322690 B2 JP 4322690B2 JP 2004012238 A JP2004012238 A JP 2004012238A JP 2004012238 A JP2004012238 A JP 2004012238A JP 4322690 B2 JP4322690 B2 JP 4322690B2
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
regenerator
absorbent
rare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012238A
Other languages
Japanese (ja)
Other versions
JP2005207624A (en
Inventor
陽一 藤田
祐二 堀
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004012238A priority Critical patent/JP4322690B2/en
Publication of JP2005207624A publication Critical patent/JP2005207624A/en
Application granted granted Critical
Publication of JP4322690B2 publication Critical patent/JP4322690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

本発明は、コージェネレーション装置の排ガスを利用したパラレルフロー方式の二重効用吸収式冷温水機に関するものである。ここで、吸収式冷温水機には、吸収式冷凍機を含むものとする。   The present invention relates to a parallel flow double-effect absorption chiller / heater using exhaust gas from a cogeneration system. Here, the absorption chiller / heater includes an absorption chiller.

従来、空調等の熱源機器として使用される吸収式冷温水機のひとつに、コージェネレーション装置の排ガスを利用したパラレルフロー方式の二重効用吸収式冷温水機がある(例えば特許文献1参照)。以下、図4及び図5を参照して従来の吸収式冷温水機について説明する。   Conventionally, as one of absorption chiller / heaters used as heat source devices such as air conditioners, there is a parallel flow double-effect absorption chiller / heater using exhaust gas from a cogeneration device (see, for example, Patent Document 1). Hereinafter, a conventional absorption chiller / heater will be described with reference to FIGS. 4 and 5.

図4において、1は排ガス再生器で、発電用発動機等のコージェネレーション装置2の排気管3を内部に通してあり、コージェネレーション装置2から排出される数百℃程度(例えば500℃)の排ガスを熱源として稀吸収液(臭化リチウム水溶液)を加熱し、稀吸収液から冷媒(水)を蒸発分離して稀吸収液の濃縮を行なう。4は低温再生器で、排ガス再生器1にて稀吸収液から蒸発分離した冷媒蒸気を熱源として排ガス再生器1よりも低温の状態で稀吸収液の濃縮を行なう。5は凝縮器で、内部に通した第1の伝熱管6aに冷却水を流し、この冷却水によって排ガス再生器1及び低温再生器4にて蒸発分離した冷媒蒸気を凝縮液化させる。7は蒸発器で、内部に通した第2の伝熱管6bに凝縮器5にて凝縮液化した冷媒液を散布して真空下で蒸発させると共にその気化熱を第2の伝熱管6b内を流れる冷水から回収して当該冷水を冷却する。8は吸収器で、蒸発器7にて蒸発した冷媒蒸気を凝縮させ、これを排ガス再生器1及び低温再生器4にて濃縮した濃吸収液に吸収させて稀吸収液を生成する。9は低温熱交換器で、排ガス再生器1及び低温再生器4にて濃縮され排ガス再生器1及び低温再生器4から吸収器8へ供給する途中で合流させた濃吸収液と、吸収器8にて稀釈され排ガス再生器1及び低温再生器4へ並列に供給される稀吸収液との熱交換を行なう。10は高温熱交換器で、排ガス再生器1にて濃縮され低温熱交換器9へ供給される濃吸収液と、吸収器8にて稀釈され低温熱交換器9を経て排ガス再生器1へ供給される稀吸収液との熱交換を行なう。なお、添付図面では、吸収液用の配管を矢印付きの実線で、冷媒蒸気用の配管を矢印付きの一点鎖線で、冷媒液用の配管を矢印付きの二点鎖線で、冷水用及び冷却水用の配管を矢印付きの破線で示している。   In FIG. 4, reference numeral 1 denotes an exhaust gas regenerator, which passes through an exhaust pipe 3 of a cogeneration device 2 such as a generator for power generation. The rare absorbent (lithium bromide aqueous solution) is heated using exhaust gas as a heat source, and the refrigerant (water) is evaporated and separated from the rare absorbent to concentrate the rare absorbent. Reference numeral 4 denotes a low temperature regenerator, which concentrates the rare absorbent at a lower temperature than the exhaust gas regenerator 1 using the refrigerant vapor evaporated and separated from the rare absorbent in the exhaust gas regenerator 1 as a heat source. A condenser 5 flows cooling water through the first heat transfer pipe 6a that is passed through the inside, and the refrigerant vapor evaporated and separated in the exhaust gas regenerator 1 and the low temperature regenerator 4 is condensed and liquefied by the cooling water. Reference numeral 7 denotes an evaporator. The refrigerant liquid condensed in the condenser 5 is sprayed on the second heat transfer pipe 6b passed through the evaporator, and evaporated under vacuum, and the heat of vaporization flows in the second heat transfer pipe 6b. Recover from cold water and cool the cold water. 8 is an absorber which condenses the refrigerant vapor evaporated in the evaporator 7 and absorbs it in the concentrated absorbent concentrated in the exhaust gas regenerator 1 and the low temperature regenerator 4 to generate a rare absorbent. 9 is a low-temperature heat exchanger, which is concentrated in the exhaust gas regenerator 1 and the low temperature regenerator 4 and combined with the concentrated absorption liquid while being supplied from the exhaust gas regenerator 1 and the low temperature regenerator 4 to the absorber 8; The heat exchange with the diluted absorbent that is diluted in step 1 and supplied in parallel to the exhaust gas regenerator 1 and the low temperature regenerator 4 is performed. Reference numeral 10 denotes a high-temperature heat exchanger, which is concentrated in the exhaust gas regenerator 1 and supplied to the low-temperature heat exchanger 9, and diluted in the absorber 8 and supplied to the exhaust gas regenerator 1 through the low-temperature heat exchanger 9. Heat exchange with the diluted absorbent. In the accompanying drawings, the absorption liquid piping is indicated by a solid line with an arrow, the refrigerant vapor piping is indicated by a one-dot chain line with an arrow, and the refrigerant liquid piping is indicated by a two-dot chain line with an arrow. The piping for use is indicated by a broken line with an arrow.

従来の吸収式冷温水機は、吸収器8で冷媒を吸収して濃度が下がった稀吸収液の濃縮を、排ガス再生器1及び低温再生器4の二つの再生器で行なう二重効用形で、かつ、吸収器8から稀吸収液を排ガス再生器1及び低温再生器4へ並列に供給すると共にこれら二つの再生器1,4で濃縮された濃吸収液を合流させて吸収器8へ戻すパラレルフロー方式のものであって、排ガス再生器1で稀吸収液を濃縮するための熱源として、コージェネレーション装置2の排ガスを有効利用したものである。   The conventional absorption chiller / heater is a double-effect type in which the concentration of a rare absorbent whose concentration has been reduced by absorbing the refrigerant by the absorber 8 is reduced by the two regenerators of the exhaust gas regenerator 1 and the low temperature regenerator 4. In addition, the rare absorbent is supplied from the absorber 8 to the exhaust gas regenerator 1 and the low temperature regenerator 4 in parallel, and the concentrated absorbent concentrated in the two regenerators 1 and 4 is merged and returned to the absorber 8. The parallel flow system uses the exhaust gas from the cogeneration system 2 effectively as a heat source for concentrating the rare absorbent in the exhaust gas regenerator 1.

コージェネレーション装置2の排ガスを排ガス再生器1の熱源として有効利用するに際しては、吸収式冷温水機から排出するときの排ガス温度に留意する必要がある。従来の吸収式冷温水機は、図5の如く、吸収式冷温水機の上方から供給したコージェネレーション装置2の排ガスを吸収式冷温水機から上方へ排出している。このような構成では、従来の吸収式冷温水機から排出されたコージェネレーション装置2の排ガスが排気管3内で結露すると、排ガスの凝縮液が排気管3内を逆流し、吸収式冷温水機の内部に通した排気管3が腐食するおそれがある。排ガスの凝縮液の逆流を防止して吸収式冷温水機の耐久性を向上させるため、従来は、コージェネレーション装置2の排ガスを排ガス再生器1から露点温度(例えば70〜80℃程度)よりも十分に高い温度、即ち排ガス再生器1内の吸収液とほぼ同じ温度(例えば150〜160℃程度)で排出して、排気管3内で排ガスが結露しないようにしている。しかし、コージェネレーション装置2の排ガスは、吸収式冷温水機の内部で露点温度を下回らなければよいから、露点温度より若干高い温度(例えば90〜120℃程度)まで熱を回収して、吸収式冷温水機の経済性・省エネ性を向上させることが要望されている。   When the exhaust gas from the cogeneration apparatus 2 is effectively used as a heat source for the exhaust gas regenerator 1, it is necessary to pay attention to the exhaust gas temperature when it is discharged from the absorption chiller / heater. As shown in FIG. 5, the conventional absorption chiller / heater discharges the exhaust gas of the cogeneration apparatus 2 supplied from above the absorption chiller / heater upward from the absorption chiller / heater. In such a configuration, when the exhaust gas of the cogeneration apparatus 2 discharged from the conventional absorption chiller / heater is condensed in the exhaust pipe 3, the condensed liquid of the exhaust gas flows back in the exhaust pipe 3, and the absorption chiller / heater There is a possibility that the exhaust pipe 3 passing through the inside of the pipe is corroded. In order to prevent the backflow of the exhaust gas condensate and improve the durability of the absorption chiller / heater, conventionally, the exhaust gas of the cogeneration system 2 is discharged from the exhaust gas regenerator 1 to a dew point temperature (for example, about 70 to 80 ° C.). The exhaust gas is discharged at a sufficiently high temperature, that is, approximately the same temperature as the absorbing liquid in the exhaust gas regenerator 1 (for example, about 150 to 160 ° C.) so that the exhaust gas does not condense in the exhaust pipe 3. However, since the exhaust gas of the cogeneration apparatus 2 does not have to fall below the dew point temperature inside the absorption chiller / heater, heat is recovered to a temperature slightly higher than the dew point temperature (for example, about 90 to 120 ° C.). There is a demand for improving the economic efficiency and energy saving of chilled water heaters.

特開平11−257781号公報(図7参照)Japanese Patent Laid-Open No. 11-257781 (see FIG. 7)

本発明は、斯かる実情に鑑み創案されたものであって、その目的は、コージェネレーション装置の排ガスの熱回収効率を高めて、吸収式冷温水機の経済性・省エネ性を向上させることにある。   The present invention was devised in view of such circumstances, and its purpose is to increase the heat recovery efficiency of the exhaust gas of the cogeneration system and improve the economic efficiency and energy saving of the absorption chiller / heater. is there.

本発明の請求項1に係る吸収式冷温水機は、コージェネレーション装置の排ガスを熱源として稀吸収液の濃縮を行なう排ガス再生器と、前記排ガス再生器で稀吸収液から蒸発分離した冷媒蒸気を熱源として稀吸収液の濃縮を行なう低温再生器と、前記低温再生器の熱源として使用した冷媒蒸気及び前記低温再生器で稀吸収液から蒸発分離した冷媒蒸気を凝縮液化させる凝縮器と、前記凝縮器で凝縮液化した冷媒液を真空下で蒸発させる蒸発器と、前記蒸発器で蒸発した冷媒蒸気を前記排ガス再生器及び低温再生器で濃縮された濃吸収液に吸収させて稀吸収液を生成する吸収器とを備え、前記吸収器から稀吸収液を排ガス再生器及び低温再生器へ並列に供給すると共に、前記排ガス再生器及び低温再生器で濃縮された濃吸収液を合流させて吸収器へ戻すようにしたパラレルフロー方式の二重効用吸収式冷温水機において、前記排ガス再生器で使用したコージェネレーション装置の排ガスを熱源として吸収器で稀釈された稀吸収液の予備加熱を行なう第1及び第2の排ガス熱交換器を、前記コージェネレーション装置から排ガスを排出する排気管に関して排ガス再生器と直列に第1及び第2の排ガス熱交換器の順に配設し、前記第1の排ガス熱交換器で予備加熱した稀吸収液を排ガス再生器へ供給すると共に、前記第2の排ガス熱交換器で予備加熱した稀吸収液を低温再生器へ供給するようにし、前記コージェネレーション装置の冷却水と前記吸収器で稀釈された稀吸収液との熱交換を行なう排熱回収熱交換器を有し、前記吸収器で稀釈された稀吸収液を、前記排熱回収熱交換器及び第2の排ガス熱交換器へ並列に供給し、前記排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液を合流させて低温再生器へ供給するようにしたことを特徴としている。 An absorption chiller / heater according to claim 1 of the present invention includes an exhaust gas regenerator for concentrating a rare absorbent using exhaust gas from a cogeneration system as a heat source, and refrigerant vapor evaporated and separated from the rare absorbent by the exhaust gas regenerator. A low-temperature regenerator for concentrating a rare absorbent as a heat source, a refrigerant vapor used as a heat source for the low-temperature regenerator, a condenser for condensing and liquefying the refrigerant vapor evaporated and separated from the rare absorbent in the low-temperature regenerator, and the condensation An evaporator that evaporates the refrigerant liquid condensed in the evaporator under vacuum, and the refrigerant vapor evaporated in the evaporator is absorbed into the concentrated absorbent concentrated in the exhaust gas regenerator and the low-temperature regenerator to generate a rare absorbent. And supplying a rare absorbent from the absorber to the exhaust gas regenerator and the low temperature regenerator in parallel, and concentrating and absorbing the concentrated absorbent concentrated in the exhaust gas regenerator and the low temperature regenerator. In the parallel flow type dual-effect absorption chiller / heater configured to return to the first, preheating of the diluted absorbent diluted with the absorber using the exhaust gas of the cogeneration apparatus used in the exhaust gas regenerator as a heat source is performed first. And the second exhaust gas heat exchanger are arranged in the order of the first and second exhaust gas heat exchangers in series with the exhaust gas regenerator with respect to the exhaust pipe for discharging the exhaust gas from the cogeneration system, and the first exhaust gas heat exchanger the diluted absorbent solution preheated at exchanger is supplied to the exhaust gas regenerator, the diluted absorption solution was pre-heated in the second exhaust gas heat exchanger so as to supply to the low-temperature regenerator, the cooling water of the cogeneration system And an exhaust heat recovery heat exchanger for exchanging heat with the diluted absorbent diluted with the absorber, and the diluted absorbent diluted with the absorber is used as the exhaust heat recovery heat exchanger and Characterized in that to the exhaust gas heat exchanger is supplied in parallel to said diluted absorption liquid is combined with the preheated by the exhaust heat recovery heat exchanger and a second exhaust gas heat exchanger so as to supply to the low temperature generator It is said.

コージェネレーション装置の排ガスは、コージェネレーション装置から数百℃程度で排出され、排ガス再生器にてその内部の吸収液の温度(例えば百数十℃程度)と同程度まで下がって排ガス再生器から排出される。第1の排ガス熱交換器では、排ガス再生器へ供給する稀吸収液を排ガス再生器内の吸収液よりも若干低い温度まで予備加熱するので、コージェネレーション装置の排ガスは、排ガス再生器内の吸収液よりも低い温度まで下がって排出される。第1の排ガス熱交換器から排出されたコージェネレーション装置の排ガスは、第2の排ガス熱交換器にて低温再生器へ供給する稀吸収液の予備加熱に使用され、排ガスの露点温度(例えば70〜80℃程度)よりも若干高い温度(例えば90〜120℃程度)まで下がって排出される。このように、排ガス再生器から排出されたコージェネレーション装置の排ガスを第1及び第2の排ガス熱交換器にて稀吸収液の予備加熱に使用することにより、コージェネレーション装置の排ガスから排ガスの露点温度よりも若干高い温度まで熱を回収できる。そして、稀吸収液の濃縮を高温で行なう排ガス再生器には、第1の排ガス熱交換器で予備加熱した稀吸収液を供給する一方、稀吸収液の濃縮を低温で行なう低温再生器には、第2の排ガス熱交換器で予備加熱した稀吸収液を供給しているので、コージェネレーション装置の排ガスから回収した熱を無駄なく利用でき、経済性・省エネ性が向上する。さらに、排熱回収熱交換器及び第2の排ガス熱交換器は、吸収器から低温再生器へ供給する稀吸収液を予備加熱するものである。この稀吸収液の予備加熱を排熱回収熱交換器及び第2の排ガス熱交換器の二つの熱交換器で行なうと、第2の排ガス熱交換器のみで予備加熱する場合と比較して加熱効率が高くなり、所定量の稀吸収液を所望の温度、即ち低温再生器内の吸収液の温度よりも若干低い温度まで容易に予備加熱できる。また、上記の各熱交換器にて熱源から回収する熱量が抑制されるから、第2の排ガス熱交換器に排ガスの露点温度と同程度又はそれより低温の稀吸収液が供給されても、コージェネレーション装置の排ガスから過剰に熱を回収することなく稀吸収液を所望の温度まで予備加熱でき、コージェネレーション装置の排ガスを露点温度よりも若干高い温度で第2の排ガス熱交換器から排ガスを排出できる。さらに、上記の吸収式冷温水機は、コージェネレーション装置の排ガスのみならず、コージェネレーション装置の冷却水からも熱を回収しているので、経済性・省エネ性がさらに向上する。 The exhaust gas from the cogeneration system is discharged from the cogeneration system at about several hundred degrees Celsius, and is lowered from the exhaust gas regenerator to the same level as the temperature of the absorption liquid (for example, about several hundred degrees Celsius). Is done. In the first exhaust gas heat exchanger, the rare absorption liquid supplied to the exhaust gas regenerator is preheated to a temperature slightly lower than the absorption liquid in the exhaust gas regenerator, so that the exhaust gas from the cogeneration apparatus is absorbed in the exhaust gas regenerator. The liquid is discharged to a temperature lower than that of the liquid. The exhaust gas of the cogeneration apparatus discharged from the first exhaust gas heat exchanger is used for preheating the rare absorbent supplied to the low temperature regenerator in the second exhaust gas heat exchanger, and the dew point temperature of the exhaust gas (for example, 70 The temperature is lowered to a slightly higher temperature (for example, about 90 to 120 ° C.) and discharged. Thus, by using the exhaust gas of the cogeneration apparatus discharged from the exhaust gas regenerator for preheating the rare absorbent in the first and second exhaust gas heat exchangers, the dew point of the exhaust gas from the exhaust gas of the cogeneration apparatus is obtained. Heat can be recovered to a temperature slightly higher than the temperature. The exhaust gas regenerator that concentrates the rare absorbent at a high temperature is supplied with the rare absorbent preheated by the first exhaust gas heat exchanger, while the low temperature regenerator that concentrates the rare absorbent at a low temperature. Since the rare absorption liquid preheated by the second exhaust gas heat exchanger is supplied, the heat recovered from the exhaust gas of the cogeneration apparatus can be used without waste, and the economical efficiency and energy saving performance are improved. Furthermore, the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger preheat the rare absorbent supplied from the absorber to the low temperature regenerator. When the preheating of the rare absorbent is performed by the two heat exchangers of the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger, the heating is performed in comparison with the case of preheating only by the second exhaust gas heat exchanger. The efficiency is increased, and a predetermined amount of the rare absorbent can be easily preheated to a desired temperature, that is, slightly lower than the temperature of the absorbent in the low temperature regenerator. Further, since the amount of heat recovered from the heat source in each of the heat exchangers is suppressed, even if a rare absorption liquid having the same or lower temperature than the dew point temperature of the exhaust gas is supplied to the second exhaust gas heat exchanger, The rare absorption liquid can be preheated to a desired temperature without excessively recovering heat from the exhaust gas of the cogeneration system, and the exhaust gas of the cogeneration system can be exhausted from the second exhaust gas heat exchanger at a temperature slightly higher than the dew point temperature. Can be discharged. Furthermore, since the above absorption chiller / heater recovers heat not only from the exhaust gas of the cogeneration apparatus but also from the cooling water of the cogeneration apparatus, the economic efficiency and energy saving performance are further improved.

本発明の請求項2に係る吸収式冷温水機は、請求項1に係る吸収式冷温水機において、前記吸収器で稀釈され排ガス再生器へ供給される稀吸収液と排ガス再生器で濃縮され吸収器へ供給される濃吸収液との熱交換を行なう高温熱交換器を有し、前記吸収器で稀釈された稀吸収液を、前記高温熱交換器及び第1の排ガス熱交換器へ並列に供給し、前記高温熱交換器及び第1の排ガス熱交換器で予備加熱された稀吸収液を合流させて排ガス再生器へ供給するようにしたことを特徴としている。   The absorption chiller / heater according to claim 2 of the present invention is the absorption chiller / heater according to claim 1, wherein the absorption chiller / heater is diluted by the absorber and supplied to the exhaust gas regenerator and concentrated by the exhaust gas regenerator. A high-temperature heat exchanger that performs heat exchange with the concentrated absorbent supplied to the absorber, and the diluted absorbent diluted in the absorber is parallel to the high-temperature heat exchanger and the first exhaust gas heat exchanger And the rare absorption liquid preheated by the high-temperature heat exchanger and the first exhaust gas heat exchanger is combined and supplied to the exhaust gas regenerator.

高温熱交換器及び第1の排ガス熱交換器はともに、吸収器から排ガス再生器へ供給する稀吸収液を排ガス再生器内の吸収液よりも若干低い温度まで予備加熱するものである。この稀吸収液の予備加熱を高温熱交換器及び第1の排ガス熱交換器の二つの熱交換器で行なうと、第1の排ガス熱交換器のみで予備加熱する場合と比較して加熱効率が高くなり、所定量の稀吸収液を所望の温度、即ち排ガス再生器内の吸収液の温度よりも若干低い温度まで容易に予備加熱できる。また、上記の各熱交換器にて熱源から回収する熱量が抑制されるから、第1の排ガス熱交換器から排出されたコージェネレーション装置の排ガスに、第2の排ガス熱交換器で回収する熱を十分に残すことができる。これにより第2の排ガス熱交換器における稀吸収液の予備加熱機能が担保される。   Both the high-temperature heat exchanger and the first exhaust gas heat exchanger preheat the rare absorbent supplied from the absorber to the exhaust gas regenerator to a temperature slightly lower than the absorbent in the exhaust gas regenerator. When the preheating of the rare absorbent is performed with the two heat exchangers of the high-temperature heat exchanger and the first exhaust gas heat exchanger, the heating efficiency is higher than when the preheating is performed only with the first exhaust gas heat exchanger. The predetermined amount of the rare absorbent can be easily preheated to a desired temperature, that is, slightly lower than the temperature of the absorbent in the exhaust gas regenerator. In addition, since the amount of heat recovered from the heat source in each of the above heat exchangers is suppressed, the heat recovered by the second exhaust gas heat exchanger into the exhaust gas of the cogeneration apparatus discharged from the first exhaust gas heat exchanger. Can leave enough. Thereby, the preheating function of the rare absorption liquid in the second exhaust gas heat exchanger is secured.

本発明の請求項に係る吸収式冷温水機は、請求項に係る吸収式冷温水機において、前記排熱回収熱交換器で予備加熱された稀吸収液を排ガス再生器及び低温再生器へ並列に供給すると共に、前記排熱回収熱交換器から低温再生器へ供給される稀吸収液に第2の排ガス熱交換器で予備加熱された稀吸収液を合流させるようにしたことを特徴としている。 An absorption chiller / heater according to claim 3 of the present invention is the absorption chiller / heater according to claim 1 , wherein the diluted absorbent preliminarily heated by the exhaust heat recovery heat exchanger is used as an exhaust gas regenerator and a low temperature regenerator. And the rare absorbent pre-heated in the second exhaust gas heat exchanger is merged with the rare absorbent supplied from the exhaust heat recovery heat exchanger to the low-temperature regenerator. It is said.

第2の排ガス熱交換器に供給されるコージェネレーション装置の排ガスの温度は、第1の排ガス熱交換器における熱回収効率に応じて適宜設定可能であり、その範囲は露点温度よりも若干高い温度から排ガス再生器内の吸収液の温度よりも若干低い温度までである。他方、排熱回収熱交換器に供給されるコージェネレーション装置の冷却水の温度は、第2の排ガス熱交換器に供給されるコージェネレーション装置の排ガスの温度よりも低い。このように、排熱回収熱交換器及び第2の排ガス熱交換器の各々の入口側におけるコージェネレーション装置の冷却水及び排ガスの温度が相違していると、排熱回収熱交換器よりも第2の排ガス熱交換器で予備加熱された稀吸収液の方が高温になる。排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液の温度差が小さい場合、排熱回収熱交換器で予備加熱された稀吸収液を排ガス再生器側及び低温再生器側へ分流させ、排熱回収熱交換器から排ガス再生器側へ分流した稀吸収液に、第2の排ガス熱交換器で予備加熱された稀吸収液を合流させてもさせなくても排ガス再生器内の吸収液の温度よりも十分に低い温度にしかならない。他方、排熱回収熱交換器から低温再生器へ供給する稀吸収液に、第2の排ガス熱交換器で予備加熱された稀吸収液を合流させると、排熱回収熱交換器で予備加熱された稀吸収液が分流により少量になっている分だけ、第2の排ガス熱交換器で予備加熱された稀吸収液の温度に近付く。このように、排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液の温度差が小さい場合は、排熱回収熱交換器から低温再生器側へ分流した稀吸収液に、第2の排ガス熱交換器で予備加熱された稀吸収液を合流させた方が、低温再生器に供給する稀吸収液を効率良く予備加熱できる。   The temperature of the exhaust gas of the cogeneration apparatus supplied to the second exhaust gas heat exchanger can be appropriately set according to the heat recovery efficiency in the first exhaust gas heat exchanger, and the range is a temperature slightly higher than the dew point temperature. To a temperature slightly lower than the temperature of the absorbent in the exhaust gas regenerator. On the other hand, the temperature of the cooling water of the cogeneration apparatus supplied to the exhaust heat recovery heat exchanger is lower than the temperature of the exhaust gas of the cogeneration apparatus supplied to the second exhaust gas heat exchanger. As described above, if the temperatures of the cooling water and the exhaust gas of the cogeneration apparatus on the inlet side of each of the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger are different from each other, the exhaust heat recovery heat exchanger is more than the exhaust heat recovery heat exchanger. The rare absorption liquid preheated by the exhaust gas heat exchanger 2 has a higher temperature. When the temperature difference between the rare absorbent preheated by the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger is small, the rare absorbent preheated by the exhaust heat recovery heat exchanger is reduced to the exhaust gas regenerator side and the low temperature. Whether or not the rare absorbent preheated in the second exhaust gas heat exchanger is merged with the rare absorbent separated from the exhaust heat recovery heat exchanger and separated into the exhaust gas regenerator. The temperature is only sufficiently lower than the temperature of the absorbent in the exhaust gas regenerator. On the other hand, when the rare absorption liquid preheated in the second exhaust gas heat exchanger is joined to the rare absorption liquid supplied from the exhaust heat recovery heat exchanger to the low temperature regenerator, it is preheated in the exhaust heat recovery heat exchanger. The temperature of the diluted absorbent preliminarily heated by the second exhaust gas heat exchanger is approached by the amount of the diluted absorbent that is reduced by the diversion. Thus, when the temperature difference between the rare absorbents preheated by the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger is small, the rare absorption separated from the exhaust heat recovery heat exchanger to the low temperature regenerator side. When the rare absorbing liquid preheated by the second exhaust gas heat exchanger is joined to the liquid, the rare absorbing liquid supplied to the low temperature regenerator can be efficiently preheated.

本発明の請求項に係る吸収式冷温水機は、請求項に係る吸収式冷温水機において、前記排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液を合流させて、排ガス再生器及び低温再生器へ並列に供給するようにしたことを特徴としている。 An absorption chiller / heater according to claim 4 of the present invention is the absorption chiller / heater according to claim 1 , wherein the absorption chiller / heater is preheated by the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger. Are combined and supplied in parallel to the exhaust gas regenerator and the low temperature regenerator.

前述の如く排熱回収熱交換器及び第2の排ガス熱交換器の各々で予備加熱された稀吸収液に温度差が生じる場合であって、当該温度差が大きい場合は、第2の排ガス熱交換器で予備加熱された稀吸収液が余分な熱を持つことになる。かかる場合は、第2の排ガス熱交換器で予備加熱された稀吸収液を、排熱回収熱交換器から排ガス再生器側及び低温再生器側へ分流させる前の稀吸収液と合流させ、上記の余分な熱を排ガス再生器へ供給する稀吸収液の予備加熱に使用する。これにより排ガス再生器及び低温再生器へ供給する稀吸収液を効率良く予備加熱できる。   As described above, when the temperature difference occurs in the rare absorbent preheated in each of the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger, and the temperature difference is large, the second exhaust gas heat The dilute absorbent preheated in the exchanger will have excess heat. In such a case, the rare absorption liquid preheated in the second exhaust gas heat exchanger is joined with the rare absorption liquid before being diverted from the exhaust heat recovery heat exchanger to the exhaust gas regenerator side and the low temperature regenerator side, This is used for preheating the rare absorbent that supplies the excess heat to the exhaust gas regenerator. Thereby, the rare absorption liquid supplied to the exhaust gas regenerator and the low temperature regenerator can be efficiently preheated.

本発明の請求項5に係る吸収式冷温水機は、請求項1に係る吸収式冷温水機において、前記コージェネレーション装置の排気管を排ガス再生器及び第1及び第2の排ガス熱交換器にL字状に組み込み、前記コージェネレーション装置の排ガスを排ガス再生器の上方から供給すると共に前記第1及び第2の排ガス熱交換器から水平方向へ排出するようにしたことを特徴としている。 An absorption chiller / heater according to claim 5 of the present invention is the absorption chiller / heater according to claim 1, wherein the exhaust pipe of the cogeneration apparatus is used as an exhaust gas regenerator and first and second exhaust gas heat exchangers. It is characterized by being incorporated in an L shape and supplying exhaust gas from the cogeneration system from above the exhaust gas regenerator and discharging it from the first and second exhaust gas heat exchangers in the horizontal direction.

請求項に係る吸収式冷温水機は、上記の如く構成され、コージェネレーション装置の排ガスを上方から供給すると共に水平方向へ排出するようにしたので、吸収式冷温水機の外部で排ガスが結露しても、その凝縮液が排気管内を排ガス熱交換器側へ逆流せず、吸収式冷温水機の内部で排気管が腐食しない。したがって、コージェネレーション装置の排ガスから露点温度よりも若干高い温度(例えば90〜120℃程度)まで熱を回収して排ガス熱交換器から排出することが可能になる The absorption chiller / heater according to claim 5 is configured as described above, and the exhaust gas of the cogeneration system is supplied from above and discharged in the horizontal direction, so that the exhaust gas is condensed outside the absorption chiller / heater. Even so, the condensate does not flow backward in the exhaust pipe toward the exhaust gas heat exchanger, and the exhaust pipe does not corrode inside the absorption chiller / heater. Therefore, heat can be recovered from the exhaust gas of the cogeneration apparatus to a temperature slightly higher than the dew point temperature (for example, about 90 to 120 ° C.) and discharged from the exhaust gas heat exchanger .

本発明の請求項に係る吸収式冷温水機は、請求項に係る吸収式冷温水機において、前記コージェネレーション装置の排気管の第2の排ガス熱交換器から水平方向に延び出た出口部に排ガスの凝縮液を排出するドレン弁を設けたことを特徴としている。 An absorption chiller-heater according to claim 6 of the present invention is the absorption chiller-heater according to claim 5 , wherein the outlet extends horizontally from the second exhaust gas heat exchanger of the exhaust pipe of the cogeneration system. A drain valve for discharging the condensed liquid of the exhaust gas is provided in the section.

請求項に係る吸収式冷温水機によれば、第2の排ガス熱交換器から水平方向に延び出た排気管の出口部にドレン弁を設けたので、コージェネレーション装置の排ガスが吸収式冷温水機から排出されたのち排気管内で結露して、その凝縮液が吸収式冷温水機の出口部近傍に溜まっても、当該凝縮液をドレン弁から排出することができ、排気管の腐食を抑制できる。 According to the absorption chiller-heater according to claim 6, is provided with the drain valve from the second exhaust gas heat exchanger to the outlet portion of the exhaust pipe extending out horizontally, the exhaust gas of the cogeneration system is absorption type cold Even if the condensate is condensed in the exhaust pipe after being discharged from the water machine and the condensate accumulates in the vicinity of the outlet of the absorption chiller / heater, the condensate can be discharged from the drain valve. Can be suppressed.

本発明によれば、コージェネレーション装置の排ガスから極限まで熱を回収して、吸収式冷温水機の経済性・省エネ性を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, heat | fever can be collect | recovered from the waste gas of a cogeneration apparatus to the limit, and the economical efficiency and energy-saving property of an absorption-type cold water heater can be improved.

以下、添付図面を参照しつつ本発明の吸収式冷温水機を実施するための最良の形態について説明する。なお、本実施形態では、図4に示す従来例と同一部位には同一符号を付して詳しい説明を省略する。   The best mode for carrying out the absorption chiller / heater of the present invention will be described below with reference to the accompanying drawings. In the present embodiment, the same parts as those in the conventional example shown in FIG.

図1は、本発明の吸収式冷温水機を示すフロー図である。本発明の吸収式冷温水機は、図4に示す従来例と同じパラレルフロー方式の二重効用吸収式冷温水機であって、吸収器8から排ガス再生器1及び低温再生器4へ供給する稀吸収液を第1及び第2の排ガス熱交換器11,12により予備加熱するようにしたものである。なお、図1において、14は高温再生器、15は排熱回収熱交換器、16は補助蒸発器で、従来例の図4で示した構成要素と同一のものには、同一符号を付して詳しい説明を省略する。   FIG. 1 is a flowchart showing an absorption chiller / heater of the present invention. The absorption chiller / heater of the present invention is a double-effect absorption chiller / heater of the same parallel flow type as that of the conventional example shown in FIG. The rare absorption liquid is preheated by the first and second exhaust gas heat exchangers 11 and 12. In FIG. 1, 14 is a high-temperature regenerator, 15 is an exhaust heat recovery heat exchanger, 16 is an auxiliary evaporator, and the same components as those shown in FIG. Detailed description is omitted.

第1の排ガス熱交換器11は、発電用発動機等のコージェネレーション装置2の排気管3に関して排ガス再生器1の下流側に配設され、排ガス再生器1で使用されたコージェネレーション装置2の排ガスを熱源として、吸収器8で稀釈され低温熱交換器9及び排熱回収熱交換器15を経て供給された稀吸収液の予備加熱を行なうと共に、当該稀吸収液を排ガス再生器1へ供給するものである。   The first exhaust gas heat exchanger 11 is arranged on the downstream side of the exhaust gas regenerator 1 with respect to the exhaust pipe 3 of the cogeneration device 2 such as a generator for power generation, and the first exhaust gas heat exchanger 11 of the cogeneration device 2 used in the exhaust gas regenerator 1. Exhaust gas is used as a heat source to preheat the diluted absorbent diluted in the absorber 8 and supplied via the low-temperature heat exchanger 9 and the exhaust heat recovery heat exchanger 15, and the diluted absorbent is supplied to the exhaust gas regenerator 1. To do.

第2の排ガス熱交換器12は、コージェネレーション装置2の排気管3に関して第1の排ガス熱交換器11の下流側に配設され、排ガス再生器1及び第1の排ガス熱交換器11で使用されたコージェネレーション装置2の排ガスを熱源として、吸収器8で稀釈され低温熱交換器9を経て供給された稀吸収液の予備加熱を行なうと共に、当該稀吸収液を低温再生器4へ供給するものである。   The second exhaust gas heat exchanger 12 is disposed on the downstream side of the first exhaust gas heat exchanger 11 with respect to the exhaust pipe 3 of the cogeneration apparatus 2 and is used in the exhaust gas regenerator 1 and the first exhaust gas heat exchanger 11. The exhaust gas from the cogeneration apparatus 2 is used as a heat source to pre-heat the diluted absorbent diluted with the absorber 8 and supplied through the low-temperature heat exchanger 9 and supply the diluted absorbent to the low-temperature regenerator 4. Is.

なお、排ガス再生器1、第1及び第2の排ガス熱交換器11,12には、図2の如く、コージェネレーション装置2の排気管3をL字状に組み込んである。コージェネレーション装置2の排気管3には、第2の排ガス熱交換器12から水平方向に延び出た出口部にドレン弁3aを設けてある。   In addition, in the exhaust gas regenerator 1, the first and second exhaust gas heat exchangers 11 and 12, the exhaust pipe 3 of the cogeneration apparatus 2 is incorporated in an L shape as shown in FIG. In the exhaust pipe 3 of the cogeneration apparatus 2, a drain valve 3 a is provided at an outlet extending in the horizontal direction from the second exhaust gas heat exchanger 12.

高温再生器14は、図1の如く、追い炊き用のガスバーナ17を有し、排ガス再生器1で濃縮された濃吸収液をガスバーナ17で加熱してさらに濃縮するものである。   As shown in FIG. 1, the high temperature regenerator 14 has a gas burner 17 for additional cooking, and the concentrated absorbent concentrated in the exhaust gas regenerator 1 is heated by the gas burner 17 to be further concentrated.

排熱回収熱交換器15は、コージェネレーション装置2のジャケット冷却水と吸収器8から排ガス再生器1及び低温再生器4へ供給する稀吸収液との熱交換を行ない、当該稀吸収液を予備加熱するものである。   The exhaust heat recovery heat exchanger 15 exchanges heat between the jacket cooling water of the cogeneration system 2 and the rare absorbent supplied from the absorber 8 to the exhaust gas regenerator 1 and the low temperature regenerator 4 and reserves the rare absorbent. It is for heating.

補助蒸発器16は、排ガス再生器1及び高温再生器14で濃縮された濃吸収液から冷媒を蒸発分離し、当該濃吸収液をさらに濃縮するものである。   The auxiliary evaporator 16 evaporates and separates the refrigerant from the concentrated absorbent concentrated in the exhaust gas regenerator 1 and the high temperature regenerator 14, and further concentrates the concentrated absorbent.

以下、本発明の吸収式冷温水機の作用を、コージェネレーション装置2の排ガスのフローと、吸収液及び冷媒のフローとに分けて説明する。なお、冷媒については、図4の従来例と重複する部分、即ち低温再生器4から凝縮器5及び蒸発器7を経て吸収器8へ戻る部分の説明を省略する。   Hereinafter, the operation of the absorption chiller / heater of the present invention will be described separately for the exhaust gas flow of the cogeneration apparatus 2 and the absorption liquid and refrigerant flows. In addition, about a refrigerant | coolant, the description which overlaps with the prior art example of FIG. 4, ie, the part which returns to the absorber 8 via the condenser 5 and the evaporator 7 from the low temperature regenerator 4 is abbreviate | omitted.

コージェネレーション装置2の排ガスは、図1の白抜き矢印で示すように、コージェネレーション装置2から排ガス再生器1、第1の排ガス熱交換器11及び第2の排ガス熱交換器12の内部に通した排気管3内を通って排出される。コージェネレーション装置2から500℃程度で排出された排ガスは、図2の如く、本吸収式冷温水機の上方から導入され、排ガス再生器1にて稀吸収液の濃縮用熱源として使用され、第1の排ガス熱交換器11へ供給される。このとき、排ガスは、排ガス再生器1内の稀吸収液の温度(例えば150〜160℃)と同程度まで熱を回収される。第1の排ガス熱交換器11に供給された排ガスは、吸収器8から排ガス再生器1へ供給する稀吸収液を予備加熱するための熱源として使用され、第2の排ガス熱交換器12へ供給される。このとき、排ガスは、排ガス再生器1内の稀吸収液の温度よりも低い温度(例えば110数℃)まで熱を回収される。第2の排ガス熱交換器12に供給された排ガスは、吸収器8から低温再生器4へ供給する稀吸収液を予備加熱するための熱源として使用され、排ガスの露点温度(例えば70〜80℃)よりも若干高い温度(例えば90〜120℃程度)まで熱を回収されて、第2の排ガス熱交換器12から水平方向に排出される。なお、コージェネレーション装置2の排ガスは、定格運転で第2の排ガス熱交換器12から110℃程度で排出するものとし、最大で90℃程度まで熱を回収される。   The exhaust gas from the cogeneration device 2 is passed from the cogeneration device 2 to the inside of the exhaust gas regenerator 1, the first exhaust gas heat exchanger 11, and the second exhaust gas heat exchanger 12 as indicated by the white arrows in FIG. 1. Is exhausted through the exhaust pipe 3. As shown in FIG. 2, the exhaust gas discharged from the cogeneration apparatus 2 at about 500 ° C. is introduced from above the absorption chiller / heater and used in the exhaust gas regenerator 1 as a heat source for concentrating the rare absorbent. 1 to the exhaust gas heat exchanger 11. At this time, the heat of the exhaust gas is recovered to the same extent as the temperature of the rare absorbent in the exhaust gas regenerator 1 (for example, 150 to 160 ° C.). The exhaust gas supplied to the first exhaust gas heat exchanger 11 is used as a heat source for preheating the rare absorbent supplied from the absorber 8 to the exhaust gas regenerator 1 and supplied to the second exhaust gas heat exchanger 12. Is done. At this time, heat is recovered from the exhaust gas to a temperature (for example, 110 ° C.) lower than the temperature of the rare absorbent in the exhaust gas regenerator 1. The exhaust gas supplied to the second exhaust gas heat exchanger 12 is used as a heat source for preheating the rare absorbent supplied from the absorber 8 to the low temperature regenerator 4, and the dew point temperature of the exhaust gas (for example, 70 to 80 ° C.). ) Is recovered to a slightly higher temperature (for example, about 90 to 120 ° C.) and is discharged from the second exhaust gas heat exchanger 12 in the horizontal direction. In addition, the exhaust gas of the cogeneration apparatus 2 shall be discharged | emitted at about 110 degreeC from the 2nd exhaust gas heat exchanger 12 by rated operation, and heat | fever is collect | recovered to about 90 degreeC at maximum.

また、第2の排ガス熱交換器12から排出されたコージェネレーション装置2の排ガスは、露点温度よりも若干高い温度であるから、排気管3内で結露する場合がある。かかる場合は、図2の如く、コージェネレーション装置2の排気管3が第2の排ガス熱交換器12から水平方向に延び出ているので、コージェネレーション装置2の排ガスが排気管3の内部で結露しても、その凝縮液は、第2の排ガス熱交換器12側へ逆流しない。第2の排ガス熱交換器12の出口部付近に溜まった排ガスの凝縮液は、排気管3に設けたドレン弁3aから抜き取られる。したがって、本吸収式冷温水機は、コージェネレーション装置2の排ガスを露点温度よりも若干高い温度で排出しても、内部に通した排気管3が腐食せず、耐久性が低下しない。すなわち、本吸収式冷温水機は、耐久性を低下させることなく、コージェネレーション装置2の排ガスから露点温度よりも若干高い温度まで熱を回収できる。   Further, since the exhaust gas of the cogeneration apparatus 2 discharged from the second exhaust gas heat exchanger 12 is slightly higher than the dew point temperature, dew condensation may occur in the exhaust pipe 3. In such a case, as shown in FIG. 2, the exhaust pipe 3 of the cogeneration apparatus 2 extends horizontally from the second exhaust gas heat exchanger 12, so that the exhaust gas of the cogeneration apparatus 2 is condensed inside the exhaust pipe 3. Even so, the condensate does not flow backward to the second exhaust gas heat exchanger 12 side. The exhaust gas condensate collected near the outlet of the second exhaust gas heat exchanger 12 is extracted from the drain valve 3 a provided in the exhaust pipe 3. Therefore, even if this absorption chiller / heater discharges the exhaust gas of the cogeneration apparatus 2 at a temperature slightly higher than the dew point temperature, the exhaust pipe 3 passed through the inside does not corrode and the durability does not deteriorate. That is, the present absorption chiller / heater can recover heat from the exhaust gas of the cogeneration apparatus 2 to a temperature slightly higher than the dew point temperature without reducing durability.

吸収液は、吸収器8で冷媒蒸気を吸収して稀吸収液となり、吸収器8から排ガス再生器1及び低温再生器4へ並列に供給されると共に、排ガス再生器1及び低温再生器4で濃縮されてから合流して吸収器8へ戻される。より詳しくは、吸収器8から低温熱交換器9を経て排熱回収熱交換器15及び第2の排ガス熱交換器12へ並列に供給され、排熱回収熱交換器15から排ガス再生器1及び低温再生器4へ並列に供給される。排熱回収熱交換器15から排ガス再生器1側へ分流した稀吸収液は、さらに分流して高温熱交換器10及び第1の排ガス熱交換器11へ並列に供給され、これらの熱交換器10,11で予備加熱されてから合流して排ガス再生器1へ供給される。一方、排熱回収熱交換器15から低温再生器4側へ分流した稀吸収液は、第2の排ガス熱交換器12で予備加熱された稀吸収液と合流して低温再生器4へ供給される。また、排ガス再生器1で濃縮された濃吸収液は、高温再生器14、高温熱交換器10及び補助蒸発器16を経て低温再生器4で濃縮された濃吸収液と合流し、低温熱交換器9を経て吸収器8へ戻される。   The absorption liquid absorbs the refrigerant vapor by the absorber 8 to become a rare absorption liquid, and is supplied from the absorber 8 to the exhaust gas regenerator 1 and the low temperature regenerator 4 in parallel, and at the exhaust gas regenerator 1 and the low temperature regenerator 4. After being concentrated, they are merged and returned to the absorber 8. More specifically, the heat is supplied from the absorber 8 through the low-temperature heat exchanger 9 to the exhaust heat recovery heat exchanger 15 and the second exhaust gas heat exchanger 12 in parallel, and from the exhaust heat recovery heat exchanger 15 to the exhaust gas regenerator 1 and It is supplied to the low temperature regenerator 4 in parallel. The dilute absorption liquid that is divided from the exhaust heat recovery heat exchanger 15 to the exhaust gas regenerator 1 is further divided and supplied in parallel to the high-temperature heat exchanger 10 and the first exhaust gas heat exchanger 11, and these heat exchangers. After being preheated at 10 and 11, they are merged and supplied to the exhaust gas regenerator 1. On the other hand, the rare absorbent separated from the exhaust heat recovery heat exchanger 15 to the low temperature regenerator 4 side joins with the rare absorbent preliminarily heated by the second exhaust gas heat exchanger 12 and is supplied to the low temperature regenerator 4. The Further, the concentrated absorbent concentrated in the exhaust gas regenerator 1 is merged with the concentrated absorbent concentrated in the low temperature regenerator 4 via the high temperature regenerator 14, the high temperature heat exchanger 10 and the auxiliary evaporator 16, and is subjected to low temperature heat exchange. It returns to the absorber 8 via the vessel 9.

吸収器8から低温熱交換器9へ供給された稀吸収液は、低温熱交換器9にて排ガス再生器1及び低温再生器4から吸収器8へ戻される濃吸収液と熱交換して低温熱再生器4内の濃吸収液の温度(例えば90℃)よりも若干低い温度(例えば70℃)まで予備加熱される。   The rare absorbent supplied from the absorber 8 to the low-temperature heat exchanger 9 is subjected to heat exchange with the concentrated absorbent returned to the absorber 8 from the exhaust gas regenerator 1 and the low-temperature regenerator 4 in the low-temperature heat exchanger 9 to lower the temperature. Preheating is performed to a temperature (for example, 70 ° C.) slightly lower than the temperature (for example, 90 ° C.) of the concentrated absorbent in the heat regenerator 4.

低温熱交換器9から排熱回収熱交換器15へ供給された稀吸収液は、コージェネレーション装置2のジャケット冷却水との熱交換により予備加熱され、低温熱再生器4内の濃吸収液の温度に近付く。排熱回収熱交換器15で予備加熱された稀吸収液は、排ガス再生器1内の吸収液の温度(例えば150〜160℃)よりも十分に低いので、排熱回収熱交換器15から高温熱交換器10及び第1の排ガス熱交換器11へ並列に供給され、それぞれ高温再生器14から排出される濃吸収液及び排ガス再生器1から排出されるコージェネレーション装置2の排ガスとの熱交換により、排ガス再生器1内の吸収液よりも若干低い温度(例えば130℃程度)まで予備加熱される。高温熱交換器10及び第1の排ガス熱交換器11から合流して排ガス再生器1へ供給された稀吸収液は、コージェネレーション装置2の排ガスによって加熱され、冷媒を蒸発分離して濃吸収液となる。そして、排ガス再生器1から高温再生器14へ供給された濃吸収液は、高温再生器14のガスバーナ17によって再加熱され、さらに冷媒を蒸発分離して濃縮される。   The rare absorption liquid supplied from the low-temperature heat exchanger 9 to the exhaust heat recovery heat exchanger 15 is preheated by heat exchange with the jacket cooling water of the cogeneration apparatus 2, and the concentrated absorption liquid in the low-temperature heat regenerator 4 is preliminarily heated. Approaching temperature. The rare absorption liquid preheated by the exhaust heat recovery heat exchanger 15 is sufficiently lower than the temperature of the absorption liquid in the exhaust gas regenerator 1 (for example, 150 to 160 ° C.). Heat exchange with the concentrated absorbent that is supplied in parallel to the hot heat exchanger 10 and the first exhaust gas heat exchanger 11 and discharged from the high temperature regenerator 14 and the exhaust gas of the cogeneration apparatus 2 that is discharged from the exhaust gas regenerator 1. Thus, preheating is performed to a temperature slightly lower than the absorbing liquid in the exhaust gas regenerator 1 (for example, about 130 ° C.). The rare absorbent that has joined from the high-temperature heat exchanger 10 and the first exhaust gas heat exchanger 11 and supplied to the exhaust gas regenerator 1 is heated by the exhaust gas of the cogeneration device 2, evaporates and separates the refrigerant, and the concentrated absorbent. It becomes. The concentrated absorbent supplied from the exhaust gas regenerator 1 to the high temperature regenerator 14 is reheated by the gas burner 17 of the high temperature regenerator 14, and further concentrated by evaporating and separating the refrigerant.

一方、低温熱交換器9から第2の排ガス熱交換器12へ供給された稀吸収液は、コージェネレーション装置2の排ガスとの熱交換によって予備加熱され、低温熱再生器4内の濃吸収液の温度に近付く。第2の排ガス熱交換器12に供給されるコージェネレーション装置2の排ガスは、排熱回収熱交換器15へ供給されるコージェネレーション装置2のジャケット冷却水の温度(例えば90℃)よりも高温である。このため、第2の排ガス熱交換器12で予備加熱された稀吸収液は、排熱回収熱交換器15で予備加熱された稀吸収液よりも数℃程度高温になる。このように第2の排ガス熱交換器12及び排熱回収熱交換器15で予備加熱された稀吸収液の温度差が小さい場合、第2の排ガス熱交換器12で予備加熱された稀吸収液を、排熱回収熱交換器15から排ガス再生器1側へ分流した稀吸収液に合流させても、排ガス再生器1内の吸収液よりも十分に低い温度にしかならないが、排熱回収熱交換器15から低温再生器4側へ分流した稀吸収液に合流させると、第2の排ガス熱交換器12で予備加熱された稀吸収液の温度を少し下回るだけで、低温再生器4内の吸収液よりも若干低い温度(例えば80℃程度)になる。したがって、低温再生器4へ供給する稀吸収液の予備加熱を効率的に行なえる。排熱回収熱交換器15及び第2の排ガス熱交換器12から低温再生器4へ供給された稀吸収液は、排ガス再生器1及び高温再生器14にて蒸発した冷媒蒸気を熱源として加熱され、冷媒を蒸発分離して濃縮される。   On the other hand, the rare absorbent supplied from the low-temperature heat exchanger 9 to the second exhaust gas heat exchanger 12 is preheated by heat exchange with the exhaust gas of the cogeneration apparatus 2, and the concentrated absorbent in the low-temperature heat regenerator 4. Approaches the temperature. The exhaust gas of the cogeneration apparatus 2 supplied to the second exhaust gas heat exchanger 12 is higher than the temperature (for example, 90 ° C.) of the jacket cooling water of the cogeneration apparatus 2 supplied to the exhaust heat recovery heat exchanger 15. is there. For this reason, the rare absorption liquid pre-heated by the second exhaust gas heat exchanger 12 is about several degrees Celsius higher than the rare absorption liquid pre-heated by the exhaust heat recovery heat exchanger 15. In this way, when the temperature difference between the rare absorbents preheated by the second exhaust gas heat exchanger 12 and the exhaust heat recovery heat exchanger 15 is small, the rare absorbent liquid preheated by the second exhaust gas heat exchanger 12 is used. Is combined with a rare absorbent separated from the exhaust heat recovery heat exchanger 15 to the exhaust gas regenerator 1, the temperature is only sufficiently lower than the absorption liquid in the exhaust gas regenerator 1. When the rare absorbent that has been split from the exchanger 15 to the low temperature regenerator 4 side is joined, the temperature in the low temperature regenerator 4 can be reduced slightly below the temperature of the rare absorbent preheated by the second exhaust gas heat exchanger 12. The temperature is slightly lower than the absorbing liquid (for example, about 80 ° C.). Therefore, the preheating of the rare absorbent supplied to the low temperature regenerator 4 can be performed efficiently. The rare absorbing liquid supplied from the exhaust heat recovery heat exchanger 15 and the second exhaust gas heat exchanger 12 to the low temperature regenerator 4 is heated using the refrigerant vapor evaporated in the exhaust gas regenerator 1 and the high temperature regenerator 14 as a heat source. The refrigerant is concentrated by evaporation.

また、排ガス再生器1及び高温再生器14で濃縮された濃吸収液は、高温再生器14から高温熱交換器10及び補助蒸発器16を経て、低温再生器4内の吸収液と同程度の温度まで下がり、低温再生器4で濃縮された濃吸収液と合流する。当該合流後の濃吸収液は、低温熱交換器9を経て熱を回収され、吸収器8へ戻される。吸収器8へ戻された濃吸収液は、蒸発器7にて冷水の冷却に使用された冷媒蒸気を吸収して稀吸収液となる。   Further, the concentrated absorbent concentrated in the exhaust gas regenerator 1 and the high temperature regenerator 14 passes through the high temperature regenerator 14 through the high temperature heat exchanger 10 and the auxiliary evaporator 16 and is about the same as the absorbent in the low temperature regenerator 4. The temperature drops to a temperature and merges with the concentrated absorbent concentrated in the low temperature regenerator 4. The concentrated absorbent after the merge is recovered through the low-temperature heat exchanger 9 and returned to the absorber 8. The concentrated absorbent returned to the absorber 8 absorbs the refrigerant vapor used for cooling the cold water in the evaporator 7 and becomes a rare absorbent.

冷媒は、吸収器8にて吸収液に吸収される一方、排ガス再生器1、高温再生器14、補助蒸発器16及び低温再生器4にて吸収液から蒸発分離する。排ガス再生器1にて蒸発分離した冷媒蒸気は、高温再生器14へ供給され、高温再生器14で蒸発分離した冷媒蒸気と共に、高温再生器14から低温再生器4の内部を経て凝縮器5に接続した配管を通って凝縮器5に供給されて凝縮する。補助蒸発器16で蒸発分離した冷媒蒸気は、低温再生器4へ供給され、低温再生器4で蒸発分離した冷媒蒸気と共に、凝縮器5へ供給されて凝縮する。   The refrigerant is absorbed by the absorption liquid in the absorber 8, and is evaporated and separated from the absorption liquid in the exhaust gas regenerator 1, the high temperature regenerator 14, the auxiliary evaporator 16, and the low temperature regenerator 4. The refrigerant vapor evaporated and separated in the exhaust gas regenerator 1 is supplied to the high temperature regenerator 14, and together with the refrigerant vapor evaporated and separated in the high temperature regenerator 14, the high temperature regenerator 14 passes through the inside of the low temperature regenerator 4 to the condenser 5. It is supplied to the condenser 5 through the connected pipe and condensed. The refrigerant vapor evaporated and separated by the auxiliary evaporator 16 is supplied to the low temperature regenerator 4 and is supplied to the condenser 5 together with the refrigerant vapor evaporated and separated by the low temperature regenerator 4 to condense.

本発明の吸収式冷温水機は、上記の如く、コージェネレーション装置2の排ガスを、排ガス再生器1から第1及び第2の排ガス熱交換器11,12の順に供給し、第1の排ガス熱交換器11で吸収器8から排ガス再生器1へ供給する稀吸収液の予備加熱に使用すると共に、第2の排ガス熱交換器12で吸収器8から低温再生器4へ供給する稀吸収液の予備加熱に使用するようになっている。排ガス再生器1は、高温で稀吸収液の濃縮を行なうので、第1の排ガス熱交換器11にて排ガス再生器1内の吸収液よりも若干低い温度まで予備加熱した稀吸収液が供給される。他方、低温再生器4は、低温で稀吸収液の濃縮を行なうので、第2の排ガス熱交換器12にて低温再生器4内の吸収液よりも若干低い温度まで予備加熱した稀吸収液が供給される。これにより、コージェネレーション装置2の排ガスから露点温度よりも若干高い温度(90〜120℃程度)まで熱を回収できると共に、当該熱を効率的に利用できる。   As described above, the absorption chiller / heater of the present invention supplies the exhaust gas of the cogeneration system 2 from the exhaust gas regenerator 1 in the order of the first and second exhaust gas heat exchangers 11 and 12, and the first exhaust gas heat. The pre-heating of the rare absorbent supplied from the absorber 8 to the exhaust gas regenerator 1 by the exchanger 11 and the rare absorbent supplied from the absorber 8 to the low temperature regenerator 4 by the second exhaust gas heat exchanger 12 are performed. It is designed to be used for preheating. Since the exhaust gas regenerator 1 concentrates the rare absorbent at a high temperature, the rare absorbent pre-heated to a temperature slightly lower than the absorbent in the exhaust gas regenerator 1 is supplied by the first exhaust gas heat exchanger 11. The On the other hand, since the low temperature regenerator 4 concentrates the rare absorption liquid at a low temperature, the rare absorption liquid preheated to a temperature slightly lower than the absorption liquid in the low temperature regenerator 4 by the second exhaust gas heat exchanger 12 is obtained. Supplied. Thereby, heat can be recovered from the exhaust gas of the cogeneration apparatus 2 to a temperature slightly higher than the dew point temperature (about 90 to 120 ° C.), and the heat can be used efficiently.

次に、図3を参照して本発明の変形例について説明する。図3の吸収式冷温水機は、排熱回収熱交換器15及び第2の排ガス熱交換器12で予備加熱された稀吸収液を、排熱回収熱交換器15の出口部で合流させてから排ガス再生器1側及び低温再生器4側へ分流するようにした点で、図1の吸収式冷温水機と相違している。他の点ついては、図1の吸収式冷温水機と同一の構成であるから、詳しい説明を省略する。   Next, a modification of the present invention will be described with reference to FIG. The absorption chiller / heater of FIG. 3 joins the rare absorption liquid preheated in the exhaust heat recovery heat exchanger 15 and the second exhaust gas heat exchanger 12 at the outlet of the exhaust heat recovery heat exchanger 15. 1 is different from the absorption chiller / heater in FIG. 1 in that it is divided into the exhaust gas regenerator 1 side and the low temperature regenerator 4 side. About another point, since it is the same structure as the absorption-type cold / hot water machine of FIG. 1, detailed description is abbreviate | omitted.

この吸収式冷温水機は、第2の排ガス熱交換器12で予備加熱された稀吸収液と、排熱回収熱交換器15で予備加熱された稀吸収液との温度差(例えば10〜20℃程度)が大きい場合に適したものである。かかる場合、図1の吸収式冷温水機の如く、排熱回収熱交換器15から低温再生器4側へ分流させた稀吸収液に第2の排ガス熱交換器12で予備加熱された稀吸収液を合流させると、排熱回収熱交換器15から排ガス再生器1側へ分流させた稀吸収液との温度差が大きくなる。このため、図3の吸収式冷温水機では、第2の排ガス熱交換器12及び排熱回収熱交換器15で予備加熱された稀吸収液を排熱回収熱交換器15の出口部で合流させて、排ガス再生器1側及び低温再生器4側へ同じ温度の稀吸収液を分流することにより、低温再生器4へ供給する稀吸収液の過加熱を抑制する一方、排熱回収熱交換器15から排ガス再生器1側へ分流した稀吸収液の温度も高めることができ、コージェネレーション装置2の排ガスを効率的に利用できる。   This absorption chiller / heater has a temperature difference (for example, 10 to 20) between the rare absorbent preheated by the second exhaust gas heat exchanger 12 and the rare absorbent preheated by the exhaust heat recovery heat exchanger 15. (Approx. Degree C) is suitable. In such a case, as in the absorption chiller / heater of FIG. 1, the rare absorption liquid preliminarily heated by the second exhaust gas heat exchanger 12 is diluted into the rare absorption liquid divided from the exhaust heat recovery heat exchanger 15 to the low temperature regenerator 4 side. When the liquids are merged, the temperature difference from the rare absorbent that has been diverted from the exhaust heat recovery heat exchanger 15 to the exhaust gas regenerator 1 increases. Therefore, in the absorption chiller / heater of FIG. 3, the rare absorption liquid preheated by the second exhaust gas heat exchanger 12 and the exhaust heat recovery heat exchanger 15 is merged at the outlet of the exhaust heat recovery heat exchanger 15. The dilute absorbent at the same temperature is distributed to the exhaust gas regenerator 1 side and the low temperature regenerator 4 side to suppress overheating of the rare absorbent supplied to the low temperature regenerator 4 while exhaust heat recovery heat exchange. The temperature of the rare absorbing liquid that is diverted from the gas generator 15 to the exhaust gas regenerator 1 can also be increased, and the exhaust gas of the cogeneration apparatus 2 can be used efficiently.

また、図3の吸収式冷温水機では、高温熱交換器10及び第1の排ガス熱交換器11に対して、図1の吸収式冷水温機よりも高温の稀吸収液が供給されるので、高温熱交換器10及び第1の排ガス熱交換器11における稀吸収液の予備加熱に要する熱量が抑制される。これにより高温熱交換器10及び第1の排ガス熱交換器11からは、図1の吸収式冷温水機よりも高温の濃吸収液及びコージェネレーション装置2の排ガスが排出される。高温熱交換器10から排出される濃吸収液の温度が高くなると、補助蒸発器16における濃吸収液の濃縮作用を促進でき、また、第1の排ガス熱交換器11から排出されるコージェネレーション装置2の排ガスの温度が高くなると、第2の排ガス熱交換器12にて稀吸収液をより高い温度まで予備加熱できる。   Further, in the absorption chiller / heater of FIG. 3, the rare absorption liquid having a temperature higher than that of the absorption chiller heater of FIG. 1 is supplied to the high-temperature heat exchanger 10 and the first exhaust gas heat exchanger 11. The amount of heat required for preheating the rare absorbent in the high-temperature heat exchanger 10 and the first exhaust gas heat exchanger 11 is suppressed. Thereby, the high-temperature concentrated absorbent and the exhaust gas of the cogeneration apparatus 2 are discharged from the high-temperature heat exchanger 10 and the first exhaust gas heat exchanger 11 than the absorption chiller / heater of FIG. When the temperature of the concentrated absorbent discharged from the high-temperature heat exchanger 10 increases, the concentration of the concentrated absorbent in the auxiliary evaporator 16 can be promoted, and the cogeneration apparatus discharged from the first exhaust gas heat exchanger 11 When the temperature of the exhaust gas 2 becomes high, the rare absorbent can be preheated to a higher temperature in the second exhaust gas heat exchanger 12.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態に示した低温熱交換器9、高温熱交換器10、高温再生器14、排熱回収熱交換器15、補助蒸発器16のいずれかを欠くものであってもよい。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications are possible. For example, the low-temperature heat exchanger 9 and the high-temperature heat exchange shown in the above-described embodiments Any one of the unit 10, the high temperature regenerator 14, the exhaust heat recovery heat exchanger 15, and the auxiliary evaporator 16 may be omitted.

本発明の吸収式冷温水機を例示するフロー図である。It is a flowchart which illustrates the absorption-type cold / hot water machine of this invention. 本発明の吸収式冷温水機を例示する要部拡大側面図である。It is a principal part enlarged side view which illustrates the absorption cold / hot water machine of this invention. 本発明の変形例を示すフロー図である。It is a flowchart which shows the modification of this invention. 従来のパラレルフロー方式の二重効用吸収式冷温水気を例示するフロー図である。It is a flowchart which illustrates the dual effect absorption type cold / hot water of the conventional parallel flow system. (A)図は従来の吸収式冷温水機を例示する平面図で、(B)図は同側面図である。(A) is a plan view illustrating a conventional absorption chiller / heater, and (B) is a side view of the same.

符号の説明Explanation of symbols

1 排ガス再生器
2 コージェネレーション装置
3 排気管
4 低温再生器
5 凝縮器
6a 第1の伝熱管
6b 第2の伝熱管
7 蒸発器
8 吸収器
11 第1の排ガス熱交換器
12 第2の排ガス熱交換器
15 排熱回収熱交換器

DESCRIPTION OF SYMBOLS 1 Exhaust gas regenerator 2 Cogeneration apparatus 3 Exhaust pipe 4 Low temperature regenerator 5 Condenser 6a 1st heat exchanger tube 6b 2nd heat exchanger tube 7 Evaporator 8 Absorber 11 1st exhaust gas heat exchanger 12 2nd exhaust gas heat Exchanger 15 Waste heat recovery heat exchanger

Claims (6)

コージェネレーション装置の排ガスを熱源として稀吸収液の濃縮を行なう排ガス再生器と、前記排ガス再生器で稀吸収液から蒸発分離した冷媒蒸気を熱源として稀吸収液の濃縮を行なう低温再生器と、前記低温再生器の熱源として使用した冷媒蒸気及び前記低温再生器で稀吸収液から蒸発分離した冷媒蒸気を凝縮液化させる凝縮器と、前記凝縮器で凝縮液化した冷媒液を真空下で蒸発させる蒸発器と、前記蒸発器で蒸発した冷媒蒸気を前記排ガス再生器及び低温再生器で濃縮された濃吸収液に吸収させて稀吸収液を生成する吸収器とを備え、前記吸収器から稀吸収液を排ガス再生器及び低温再生器へ並列に供給すると共に、前記排ガス再生器及び低温再生器で濃縮された濃吸収液を合流させて吸収器へ戻すようにしたパラレルフロー方式の二重効用吸収式冷温水機において、
前記排ガス再生器で使用したコージェネレーション装置の排ガスを熱源として吸収器で稀釈された稀吸収液の予備加熱を行なう第1及び第2の排ガス熱交換器を、前記コージェネレーション装置から排ガスを排出する排気管に関して排ガス再生器と直列に第1及び第2の排ガス熱交換器の順に配設し、前記第1の排ガス熱交換器で予備加熱した稀吸収液を排ガス再生器へ供給すると共に、前記第2の排ガス熱交換器で予備加熱した稀吸収液を低温再生器へ供給するようにし
前記コージェネレーション装置の冷却水と前記吸収器で稀釈された稀吸収液との熱交換を行なう排熱回収熱交換器を有し、前記吸収器で稀釈された稀吸収液を、前記排熱回収熱交換器及び第2の排ガス熱交換器へ並列に供給し、前記排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液を合流させて低温再生器へ供給するようにした吸収式冷温水機。
An exhaust gas regenerator that concentrates the rare absorbent using the exhaust gas of the cogeneration apparatus as a heat source, a low temperature regenerator that concentrates the rare absorbent using the refrigerant vapor evaporated and separated from the rare absorbent in the exhaust gas regenerator as a heat source, and A condenser for condensing and liquefying refrigerant vapor used as a heat source for a low-temperature regenerator and refrigerant vapor evaporated and separated from a rare absorbent in the low-temperature regenerator, and an evaporator for evaporating the refrigerant liquid condensed and liquefied in the condenser under vacuum And an absorber that absorbs the refrigerant vapor evaporated in the evaporator into the concentrated absorbent concentrated in the exhaust gas regenerator and the low-temperature regenerator to generate a rare absorbent, and removes the rare absorbent from the absorber. A parallel flow type system that supplies the exhaust gas regenerator and the low temperature regenerator in parallel, and combines the concentrated absorbents concentrated in the exhaust gas regenerator and the low temperature regenerator to return them to the absorber. In effect absorption chiller,
The first and second exhaust gas heat exchangers that preheat the diluted absorbent diluted with the absorber using the exhaust gas of the cogeneration device used in the exhaust gas regenerator as a heat source are discharged from the cogeneration device. The exhaust pipe is arranged in order of the first and second exhaust gas heat exchangers in series with the exhaust gas regenerator, and the rare absorption liquid preheated by the first exhaust gas heat exchanger is supplied to the exhaust gas regenerator, and Supplying the rare absorbent preheated in the second exhaust gas heat exchanger to the low temperature regenerator ,
A waste heat recovery heat exchanger for exchanging heat between the cooling water of the cogeneration apparatus and the diluted absorbent diluted in the absorber; and the diluted absorbent diluted in the absorber is recovered in the exhaust heat recovery Supplyed in parallel to the heat exchanger and the second exhaust gas heat exchanger, and combined with the rare absorbent preheated in the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger and supplied to the low temperature regenerator absorption chiller-heater was so.
前記吸収器で稀釈され排ガス再生器へ供給される稀吸収液と排ガス再生器で濃縮され吸収器へ供給される濃吸収液との熱交換を行なう高温熱交換器を有し、前記吸収器で稀釈された稀吸収液を、前記高温熱交換器及び第1の排ガス熱交換器へ並列に供給し、前記高温熱交換器及び第1の排ガス熱交換器で予備加熱された稀吸収液を合流させて排ガス再生器へ供給するようにした請求項1に記載の吸収式冷温水機。   A high-temperature heat exchanger for exchanging heat between the diluted absorbent diluted in the absorber and supplied to the exhaust gas regenerator and the concentrated absorbent supplied in the exhaust gas regenerator and supplied to the absorber; The diluted rare absorption liquid is supplied in parallel to the high temperature heat exchanger and the first exhaust gas heat exchanger, and the rare absorption liquid preheated by the high temperature heat exchanger and the first exhaust gas heat exchanger is joined. The absorption chiller / heater according to claim 1, wherein the absorption chiller is supplied to an exhaust gas regenerator. 前記排熱回収熱交換器で予備加熱された稀吸収液を排ガス再生器及び低温再生器へ並列に供給すると共に、前記排熱回収熱交換器から低温再生器へ供給される稀吸収液に第2の排ガス熱交換器で予備加熱された稀吸収液を合流させるようにした請求項に記載の吸収式冷温水機。 The rare absorption liquid preheated in the exhaust heat recovery heat exchanger is supplied in parallel to the exhaust gas regenerator and the low temperature regenerator, and the rare absorption liquid supplied from the exhaust heat recovery heat exchanger to the low temperature regenerator is added to the rare absorption liquid. The absorption chiller-heater according to claim 1 , wherein the rare absorbent preheated by the exhaust gas heat exchanger of No. 2 is merged. 前記排熱回収熱交換器及び第2の排ガス熱交換器で予備加熱された稀吸収液を合流させて、排ガス再生器及び低温再生器へ並列に供給するようにした請求項に記載の吸収式冷温水機。 The absorption according to claim 1 , wherein the rare absorbent preheated by the exhaust heat recovery heat exchanger and the second exhaust gas heat exchanger is joined and supplied in parallel to the exhaust gas regenerator and the low temperature regenerator. Type hot and cold water machine. 記コージェネレーション装置の排気管を排ガス再生器及び第1及び第2の排ガス熱交換器にL字状に組み込み、前記コージェネレーション装置の排ガスを排ガス再生器の上方から供給すると共に前記第1及び第2の排ガス熱交換器から水平方向へ排出するようにした請求項1に記載の吸収式冷温水機。 Wherein the first and with the exhaust pipe before Symbol cogeneration system built in an L-shape in the exhaust gas regenerator and the first and second exhaust gas heat exchanger, the exhaust gas of the cogeneration system is supplied from above the exhaust regenerator The absorption chiller / heater according to claim 1, wherein the chilled water heater is discharged from the second exhaust gas heat exchanger in a horizontal direction. 前記コージェネレーション装置の排気管の第2の排ガス熱交換器から水平方向に延び出た出口部に排ガスの凝縮液を排出するドレン弁を設けた請求項に記載の吸収式冷温水機。 The absorption chiller-heater according to claim 5 , wherein a drain valve for discharging the condensate of the exhaust gas is provided at an outlet portion extending in a horizontal direction from the second exhaust gas heat exchanger of the exhaust pipe of the cogeneration apparatus.
JP2004012238A 2004-01-20 2004-01-20 Absorption type water heater Expired - Fee Related JP4322690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012238A JP4322690B2 (en) 2004-01-20 2004-01-20 Absorption type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004012238A JP4322690B2 (en) 2004-01-20 2004-01-20 Absorption type water heater

Publications (2)

Publication Number Publication Date
JP2005207624A JP2005207624A (en) 2005-08-04
JP4322690B2 true JP4322690B2 (en) 2009-09-02

Family

ID=34898678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012238A Expired - Fee Related JP4322690B2 (en) 2004-01-20 2004-01-20 Absorption type water heater

Country Status (1)

Country Link
JP (1) JP4322690B2 (en)

Also Published As

Publication number Publication date
JP2005207624A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP5339193B2 (en) Exhaust gas heat recovery device
US6993933B2 (en) Absorption refrigerating machine
JP5384072B2 (en) Absorption type water heater
JP4322690B2 (en) Absorption type water heater
JP4148830B2 (en) Single double effect absorption refrigerator
JP2000205691A (en) Absorption refrigerating machine
JP3883894B2 (en) Absorption refrigerator
JP4315854B2 (en) Absorption refrigerator
KR100821072B1 (en) Absorption chiller
US20150311542A1 (en) Electrical installation having a cooled fuel cell comprising an absorption heat engine
JP3297720B2 (en) Absorption refrigerator
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
JP4288799B2 (en) Waste heat input type absorption refrigeration system
JP2000055496A (en) Absorption type water chiller/heater
JP3723373B2 (en) Waste heat input type absorption chiller / heater
JP3593052B2 (en) Absorption refrigerator
JP4322997B2 (en) Absorption refrigerator
JP3723372B2 (en) Waste heat input type absorption chiller / heater
JP2007120811A (en) Absorption heat pump
JP4557468B2 (en) Absorption refrigerator
JP3851136B2 (en) Absorption refrigerator
JP2000249422A (en) Absorption refrigerating machine
JPH0429339Y2 (en)
KR0113790Y1 (en) Absorption refrigerating machine
JPH08159591A (en) Absorption type refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees