JPH0446057A - Magnesia-chrominum-based synthetic raw material - Google Patents

Magnesia-chrominum-based synthetic raw material

Info

Publication number
JPH0446057A
JPH0446057A JP2152700A JP15270090A JPH0446057A JP H0446057 A JPH0446057 A JP H0446057A JP 2152700 A JP2152700 A JP 2152700A JP 15270090 A JP15270090 A JP 15270090A JP H0446057 A JPH0446057 A JP H0446057A
Authority
JP
Japan
Prior art keywords
magnesia
raw material
chromium
mgo
based synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2152700A
Other languages
Japanese (ja)
Other versions
JPH075355B2 (en
Inventor
Kunio Minato
湊 邦夫
Ichiji Iwato
岩藤 一司
Takenao Hisamoto
久本 武尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2152700A priority Critical patent/JPH075355B2/en
Publication of JPH0446057A publication Critical patent/JPH0446057A/en
Publication of JPH075355B2 publication Critical patent/JPH075355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To offer a magnesia.chrominum-based synthetic raw material having excellent resistance against a low basic slag by using the material consisting essentially of MgO and Cr2O3 having a specified weight ratio and keepings the total flux components of SiO2, Al2O3, Fe2O3 and CaO to a specified amount or below. CONSTITUTION:This magnesia.chromium-based synthetic raw material consists of chemical composition of 55-70wt.% MgO, and 1.6-2.8 weight ratio of MgO/Cr2 O3 and <=10wt.% total amount of the flux components SiO2, Al2O3, Fe2O3, CaO. As for the manufacturing method of this magnesia.chromium-based raw materials, the definite ratio of the magnesia raw material and one or two kinds of chromite ore or chromium oxide are mixed and the mixture is melted by the electric furnace and then cooled naturally. This magnesia.chromium-based synthetic raw material is used for the refractories in steel industry where high corrosion resistance is required.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はマグネシア・クロム質耐火物の耐食性及びスラ
グ浸潤を改良−するためのマグネシア・クロム系合成原
料に関し、更に詳しくは一定重量比のマグネシア原料と
クロム鉱か、酸化クロムまたはそれら両者を混合し、成
形後焼成するか、電融して製造されるマグネシア・クロ
ム系合成原料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnesia-chromium synthetic raw material for improving the corrosion resistance and slag infiltration of magnesia-chromium refractories. This invention relates to a magnesia-chromium synthetic raw material produced by mixing raw materials with chromium ore, chromium oxide, or both, and then firing or melting the mixture after molding.

[従来の技術] 製鋼炉、特に二次精錬炉などの特殊精錬炉に使用される
耐火物は高温下で、且つCao / S i O2の低
い低塩基度スラグや溶鋼摩耗など苛酷な使用条件下で使
用され、著しい損耗を受ける0通常、これらの使用部位
には、マグネシア・クロム質耐火物が使用されているが
、より耐食性の向上を図るために種々の改良がなされて
いる。耐食性の向上を図るために、フラックス成分の少
ないマグネシア原料やクロム鉱を使用すること、あるい
はCrzOsを付加した原料を使用し、tM及び焼結す
ることにより緻密で均一な組織のマグネシア・クロム系
原料を使用することで対応してきた。
[Prior Art] Refractories used in steelmaking furnaces, especially special refining furnaces such as secondary refining furnaces, are used under severe usage conditions such as high temperatures and low basicity slag with low Cao/SiO2 and molten steel wear. Normally, magnesia-chromium refractories are used in these parts, but various improvements have been made to improve their corrosion resistance. In order to improve corrosion resistance, magnesia raw materials and chromite with low flux components are used, or raw materials with added CrzOs are used, and magnesia/chromium-based raw materials with a dense and uniform structure are created by tM and sintering. I have dealt with this by using .

その例が特開昭59−54670号公報及び特開昭64
−42362号公報で既に発表されている。特開昭59
−54670号公報は重量割合でMgO13〜62%、
CrzOs36〜84%且つ両者の合量が85%以上の
化学組成のピクロクロマイトを使用して耐食性の向上を
図ったものであり、特開昭64−42362号公報はC
rzo s/ MgOの重量比が0.15〜0.45で
、CrzO3/合計フラックス成分の重量比が1.8〜
3.1の電融マグネシア・クロム原料を使用し、耐食性
の向上を図ったものである。
Examples are JP-A-59-54670 and JP-A-64.
It has already been announced in Publication No. -42362. Japanese Unexamined Patent Publication 1983
-54670 publication has MgO of 13 to 62% by weight,
The corrosion resistance is improved by using picrochromite with a chemical composition of 36 to 84% CrzOs and a total content of 85% or more, and JP-A-64-42362 discloses C
The weight ratio of rzos/MgO is 0.15 to 0.45, and the weight ratio of CrzO3/total flux component is 1.8 to 0.45.
3.1 electrofused magnesia/chromium raw material is used to improve corrosion resistance.

[発明が解決しようとする課題] 本発明は特にCaO/5iOzの低い低塩基度スラグに
対して優れた耐食性を有するマグネシア・クロム系合成
原料を提供することによって、より使用条件の苛酷な分
野に使用の拡大を区ると共に耐火物使用原単位の低下を
意図するものである。
[Problems to be Solved by the Invention] The present invention provides a magnesia-chromium-based synthetic raw material that has excellent corrosion resistance, especially against low basicity slag with low CaO/5iOz, and is suitable for use in fields with more severe usage conditions. The aim is to expand the use of refractories and reduce the unit consumption of refractories.

[課題を解決するための手段] 本発明はマグネシア・クロム系原料の耐スラグ性に影響
を及ぼす特性が電融あるいは焼結により得られたマグネ
シア・クロム系原料中に生成する二次スピネルの組成を
制御することにより耐食性が大幅に改善されるという知
見に基づいて完成したものである。
[Means for Solving the Problems] The present invention aims at improving the composition of secondary spinel produced in magnesia-chromium-based raw materials obtained by electrofusion or sintering, which has characteristics that affect the slag resistance of magnesia-chromium-based raw materials. This was completed based on the knowledge that corrosion resistance can be significantly improved by controlling

即ち、本発明はMgO55〜70重量%、Cr2032
5〜35重量%の化学組成であり、M gO/ Cr 
20 sの重量比が1.6〜2.8の範囲内にあり、且
つSin、、Al2O5、Fe20s、CaOの合計フ
ラックス成分量が10重量%以下であることを特徴とす
るマグネシア・クロム系合成原石に係る。
That is, the present invention uses 55 to 70% by weight of MgO, Cr2032
The chemical composition is 5-35% by weight, MgO/Cr
Magnesia-chromium based synthesis characterized in that the weight ratio of 20s is within the range of 1.6 to 2.8, and the total flux component amount of Sin, Al2O5, Fe20s, and CaO is 10% by weight or less. Concerning rough stones.

[作  用] 本発明のマグネシア・クロム系合成原料は原料中の合計
フラックス成分を単に低下させたり、あるいはCI”2
03値を高めてマグネシア・クロム系原料の緻密化や組
織の均一化を図ることよりも、原料中のペリクレース結
晶や結晶粒界に生成する二次スピネルの組成をより耐食
性に優れた組成にしようとするものである。そのために
はマグネシア・クロム系合成原料の化学組成をMgO5
5〜70重量%、Cr20325〜35重量%、合計フ
ラックス成分量を10重量%以下にするとよい。
[Function] The magnesia-chromium based synthetic raw material of the present invention simply reduces the total flux component in the raw material, or
Rather than increasing the 03 value to make the magnesia/chromium-based raw material more dense and homogeneous, it is better to make the composition of the secondary spinel that forms at the periclase crystals and grain boundaries in the raw material more corrosion resistant. That is. For this purpose, the chemical composition of magnesia/chromium-based synthetic raw materials must be changed to MgO5.
5 to 70% by weight, Cr20, 325 to 35% by weight, and the total amount of flux components is preferably 10% by weight or less.

従来、マグネシア原料中の8102、CaOは少ない方
が良いとされてきた。その理由は5iOz、CaO成分
は低融点の珪酸塩質相を原料中に生成して原料の品質を
低下すると共にクロム鉱中の三・二酸化物を珪酸塩質相
に溶解する。その溶解度はFezOx>AbO3>Cr
zOsの順にあり、Cr2O5は最も溶解しにくい、ま
た、スピネルの融点及び分解点はMgCr20゜が21
80℃、Mg、120.が2135℃、MgFe20z
が1770℃である。
Conventionally, it has been thought that it is better to have less 8102 and CaO in the magnesia raw material. The reason for this is that the 5 iOz CaO component produces a silicate phase with a low melting point in the raw material, lowering the quality of the raw material, and also dissolves tri-dioxide in the chromite into the silicate phase. Its solubility is FezOx>AbO3>Cr
zOs, and Cr2O5 is the least soluble, and the melting point and decomposition point of spinel are MgCr20° and 21
80°C, Mg, 120. is 2135℃, MgFe20z
is 1770°C.

SiC2やCaOが多い原料中には低融点組成のスゆ とネルが生成し易く、このなめも5iOzやCaO成分
は少ない方が良い、しかしながら、クローム鉱は天然品
であり、MgO1Cr20i、Fe酸化物、Al2O,
の他にSin、やCaOを伴った複雑な組成で産出する
。従って、低塩基度スラグに対してはCr2O5成分が
耐食性に優れているが、低フラックスでCrzOs値の
高い原料を製造するにはクロム鉱の使用量が限られ、酸
化クロムを使用せざるを得ない、しかし、このようなC
rzO*値の高いマグネシア・クロム系合成原料は高価
であり、且つれんかに使用した場涜に焼結しにくい欠点
がある。酸化クロムを使用しないか、少量使用してマグ
ネシア・クロム系原料中に低塩基度スラグに対して優れ
た耐スラグ性のMgCrzO<組成のスピネルを多く生
成させた原料が望ましい。
Syutonel with a low melting point composition is likely to be formed in raw materials containing a lot of SiC2 and CaO, and it is better to have less 5iOz and CaO components.However, chromite is a natural product, and MgO1Cr20i, Fe oxide , Al2O,
It is produced with a complex composition that also includes Sin and CaO. Therefore, the Cr2O5 component has excellent corrosion resistance against low basicity slag, but in order to produce raw materials with low flux and high CrzOs value, the amount of chromite used is limited, and chromium oxide must be used. No, but C like this
Magnesia-chromium based synthetic raw materials with high rzO* values are expensive and have the disadvantage that they are difficult to sinter when used in lentils. It is desirable to use a raw material that does not use chromium oxide or uses a small amount of chromium oxide to produce a large amount of spinel with a composition of MgCrzO<, which has excellent slag resistance against low basicity slag, in the magnesia-chromium-based raw material.

各種電融マグネシア・クロム鉱中のペリクレース結晶粒
界に生成した二次スピネルを分析した結果、合計フラッ
クス成分量の多いものやCr203値の低い電融マグネ
シア・クロム系原料中のスピネルはM gCr20 、
組成のスピネルは少なく、M g(A 1. F e)
20.系スピネルが多い。一方、酸化クロムを多量に添
加して製造したマグネシア・クロム系原料つにいてもM
 gc r、○1組成のスピネルは増加せず、酸化クロ
ムを添加した効果は少ない。
As a result of analyzing the secondary spinel formed at the periclase grain boundaries in various types of fused magnesia/chromite, spinel in fused magnesia/chromium-based raw materials with a high total flux content or a low Cr203 value has M gCr20 ,
There is less spinel in the composition, M g (A 1. Fe)
20. There are many types of spinel. On the other hand, even when magnesia/chromium-based raw materials manufactured by adding a large amount of chromium oxide
The spinel with gcr, ○1 composition did not increase, and the effect of adding chromium oxide was small.

従って、低塩基度スラグに対する耐スラグ性に効果があ
るMgCrzCL組成のスピネルを多く生成させるため
の適正な化学組成はMgO55〜70重量%、Cr20
325〜30重量%、MgO/Cr2O3重量比が1.
6〜2.8、MgO、Cr20)+以外の合計フラック
ス成分量10重量%以下に限定される。
Therefore, the appropriate chemical composition for producing a large amount of spinel with the MgCrzCL composition, which is effective in slag resistance against low basicity slag, is 55 to 70% by weight of MgO and Cr20.
325-30% by weight, MgO/Cr2O3 weight ratio is 1.
The total amount of flux components other than 6 to 2.8, MgO, and Cr20)+ is limited to 10% by weight or less.

本発明のマグネシア・クロム系合成原料の製造方法は一
定量比のマグネシア原料とクロム鉱及び酸化クロムの1
種か、2種を混合後炉例えば電気炉中で十分溶融し、自
然冷却することにより製造することができる。なお、原
料中の2次スピネルの組成を制御することができれば焼
結方法を特に限定するものではない。
The method for producing a magnesia/chromium-based synthetic raw material of the present invention includes a magnesia raw material, chromium ore, and chromium oxide in a certain ratio.
It can be produced by mixing one or two species, sufficiently melting the mixture in a furnace, for example, an electric furnace, and cooling naturally. Note that the sintering method is not particularly limited as long as the composition of the secondary spinel in the raw material can be controlled.

[実  施  例コ 実施例 第1表に示す組成のマグネシア原料、クロム鉱及び酸化
クロム原料を所定重量比で混合し、電気炉で完全に原料
を電融することによりマグネシアクロム系合成原料を製
造した。
[Example Example] Magnesia raw materials, chromium ore, and chromium oxide raw materials having the composition shown in Table 1 are mixed in a predetermined weight ratio, and the raw materials are completely electromelted in an electric furnace to produce a magnesia chromium-based synthetic raw material. did.

得られたマグネシア・クロム系合成原料の化学組成、粒
物性及び低塩基度スラグに対する耐スラグ性の評価を第
2表に示す、なお、鉱物組成はいずれもペリクレースと
Cr−スピネルであることをX線回折により確認した。
The chemical composition, grain properties, and evaluation of slag resistance against low basicity slag of the obtained magnesia-chromium-based synthetic raw material are shown in Table 2. Confirmed by line diffraction.

耐スラグテスト用ブリゲットの作製; 上述のようにして得られたマグネシア・クロム系合成原
料を粉砕、粒調した後粒度3〜1mm40%、 1〜0
.3−輪20 %、 −〇 、3−一40%にバインダ
ー(サンサルX>4%(外掛)を加えて混合した。
Preparation of brigette for slag resistance test; After crushing and granulating the magnesia-chromium synthetic raw material obtained as described above, the particle size was 3 to 1 mm, 40%, 1 to 0.
.. A binder (Sansal

得られた混合物を加圧成形(成形圧力500 kg/a
m2)して80X60X4C)+mの寸法のブリゲット
を得た。成形後のブリケットを100〜110℃の温度
で恒量になるまで乾燥した後スラグテストに供した。
The obtained mixture was pressure molded (molding pressure 500 kg/a
m2) to obtain a brigette with dimensions of 80x60x4C)+m. The molded briquettes were dried at a temperature of 100 to 110° C. until a constant weight was obtained, and then subjected to a slag test.

耐久ラグテスト条件: 回転侵食テスト法 1500℃×1時闇を1サイクルとして4サイクル 1
サイクルのスラグ使用量200sスラグの組成Cao 
/ S io 2=約1侵食テストの評価方法 テスト後試料を回転炉から取り出し、それぞれの試料に
ついて溶損量を測定した。評価は比較例Aを100とし
た時の溶損指数で示した。
Durability lag test conditions: Rotary erosion test method 1500℃ x 1 hour darkness for 4 cycles 1
Cycle slag consumption 200s Slag composition Cao
/S io 2=approximately 1 Evaluation method of erosion test After the test, the samples were taken out of the rotary furnace, and the amount of erosion was measured for each sample. The evaluation was shown by the erosion index when Comparative Example A was set as 100.

比較例Aは市販の代表的なマグネシア・クロム系合成原
料であり、これと比較して耐スラグ性を評価した。
Comparative Example A is a typical commercially available magnesia-chromium synthetic raw material, and the slag resistance was evaluated in comparison with this.

本発明のD〜GはCr20−25〜35重量%、MgO
55〜70重量%、合計フラックス成分は10重量?J
以下にあり、M g O/ Cr 203重量−比は1
6〜2,8の範囲内にある1w、料中に生成した二次ス
ピネルの組成(第3表)は試料間に殆ど差がなく、Cr
+○ユが約70%のもので、M [I Cr 204の
理論組成に近い、一方、耐スラグ性については比較例A
、Bよりも極めて優れていた。
D to G of the present invention are 20-25 to 35% by weight of Cr, MgO
55-70% by weight, total flux component is 10% by weight? J
and the M g O/Cr 203 weight-ratio is 1
The composition of the secondary spinel produced in the 1W material (Table 3), which is within the range of Cr.
It has about 70% +○Y, which is close to the theoretical composition of M [I Cr 204, while the slag resistance is similar to that of Comparative Example A
, was extremely superior to B.

比較例BはCr20=が25%以下と少なく、スピネル
の組成もCr20zが少ない、耐食性についても劣るが
、この原因はCr20−分が不足しているためと考えら
れる、 一方、酸化クロムを本発明品より多く使用し、製造した
比較例Cはスピネル中のCr2O*が少ない、この点は
測定位置の違いやバラツキが考えられる。しかし、耐ス
ラグ性についても本発明品E〜Gよりも劣る。従って、
高価な酸化クロムを使用したわりにはその改善効果が少
ない。
Comparative example B has a low Cr20 = 25% or less, the spinel composition has a low Cr20z, and its corrosion resistance is poor, but this is thought to be due to the lack of Cr20-.On the other hand, the chromium oxide of the present invention Comparative Example C, which was manufactured using a larger amount than the product, had less Cr2O* in the spinel, which may be due to differences in measurement positions and variations. However, the slag resistance is also inferior to the products E to G of the present invention. Therefore,
Although expensive chromium oxide is used, the improvement effect is small.

第 表 (重量%) [発明の効果] 本発明のマグネシア・クロム系合成原料は低塩基度スラ
グに対して耐スラグ性に極めて優れたものである。従っ
て、定形、不定形耐火物とすることによって高耐食性が
要求される製鉄、製鋼用耐火物や新製調法用耐火物に適
用可能な原料である。
Table 1 (wt%) [Effects of the Invention] The magnesia-chromium synthetic raw material of the present invention has extremely excellent slag resistance against low basicity slag. Therefore, it is a raw material that can be applied to refractories for iron and steel manufacturing, and refractories for new manufacturing methods, which require high corrosion resistance by forming shaped or unshaped refractories.

Claims (1)

【特許請求の範囲】[Claims]  MgO55〜70重量%、Cr_2O_325〜35
重量%の化学組成をもち、MgO/Cr_2O_3の重
量比が1.6〜2.8の範囲内にあり、且つSiO_2
、Al_2O_3、Fe_2O_3、CaOの合計フラ
ックス成分量が10重量%以下であることを特徴とする
マグネシア・クロム系合成原料。
MgO55-70% by weight, Cr_2O_325-35
% by weight, the weight ratio of MgO/Cr_2O_3 is within the range of 1.6 to 2.8, and SiO_2
, Al_2O_3, Fe_2O_3, and CaO in a total flux component amount of 10% by weight or less.
JP2152700A 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material Expired - Lifetime JPH075355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152700A JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152700A JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Publications (2)

Publication Number Publication Date
JPH0446057A true JPH0446057A (en) 1992-02-17
JPH075355B2 JPH075355B2 (en) 1995-01-25

Family

ID=15546237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152700A Expired - Lifetime JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Country Status (1)

Country Link
JP (1) JPH075355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237787B1 (en) * 1996-06-13 2001-05-29 Johnson & Johnson Consumer Products, Inc. Packaging system for storing and dispensing products

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237787B1 (en) * 1996-06-13 2001-05-29 Johnson & Johnson Consumer Products, Inc. Packaging system for storing and dispensing products

Also Published As

Publication number Publication date
JPH075355B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
Dal Maschio et al. Industrial applications of refractories containing magnesium aluminate spinel
US8030236B2 (en) Fire-resistant ordinary ceramic batch, and fire-resistant product therefrom
Ko Influence of the characteristics of spinels on the slag resistance of Al2O3–MgO and Al2O3–spinel castables
CN105777151B (en) A kind of fireproof magnesia alumina spinel material and preparation method thereof containing manganese
JPS5827229B2 (en) high alumina refractory brick
CN109020574A (en) A kind of environment-friendly type magnesite-olivine castable refractory
JPH0446057A (en) Magnesia-chrominum-based synthetic raw material
JP2000335978A (en) Castable refractory material
KR100481882B1 (en) MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
US4999325A (en) Rebonded fused brick
JP3609245B2 (en) Manufacturing method of refractory raw materials
US3930874A (en) Bonded fused grain basic refractory and batch therefor
US2744021A (en) Process of making refractory brick and brick
KR100481883B1 (en) PHOSPHATE COMBINED MONOLITHIC REFRACTORIES UTILIZED SPENT Mg-Cr BRICK
CA1221987A (en) Chrome-magnesite refractories
US3391011A (en) Basic fused refractory material
US3181960A (en) Refractory practices
US2336360A (en) Certificate op correction
KR20210023191A (en) Magnesia-based moniolithic refractory
JPS5927731B2 (en) Method for producing calcia clinker
SU903358A1 (en) Fused refractory material
US3297457A (en) Basic refractory bricks
KR20040049586A (en) A burned magnesia-chrome firebrick using broken Mg-Cr brick
US3262797A (en) Refractory shapes
JP2527118B2 (en) Cement rotary kiln magnesia spinel brick