JPH075355B2 - Magnesia / Chromium synthetic raw material - Google Patents

Magnesia / Chromium synthetic raw material

Info

Publication number
JPH075355B2
JPH075355B2 JP2152700A JP15270090A JPH075355B2 JP H075355 B2 JPH075355 B2 JP H075355B2 JP 2152700 A JP2152700 A JP 2152700A JP 15270090 A JP15270090 A JP 15270090A JP H075355 B2 JPH075355 B2 JP H075355B2
Authority
JP
Japan
Prior art keywords
raw material
magnesia
chromium
slag
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2152700A
Other languages
Japanese (ja)
Other versions
JPH0446057A (en
Inventor
邦夫 湊
一司 岩藤
武尚 久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2152700A priority Critical patent/JPH075355B2/en
Publication of JPH0446057A publication Critical patent/JPH0446057A/en
Publication of JPH075355B2 publication Critical patent/JPH075355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はマグネシア・クロム質耐火物の耐食性及びスラ
グ浸潤を改良するためのマグネシア・クロム系合成原料
に関し、更に詳しくは一定重量比のマグネシア原料とク
ロム鉱か、酸化クロムまたはそれら両者を混合し、成形
後焼成するか、電融して製造されるマグネシア・クロム
系合成原料に関する。
TECHNICAL FIELD The present invention relates to a magnesia / chromium-based synthetic raw material for improving the corrosion resistance and slag infiltration of a magnesia / chromic refractory, and more specifically, a constant weight ratio of the magnesia raw material. The present invention relates to a magnesia / chromium-based synthetic raw material produced by mixing chrome ore, chrome oxide, or both of them, and then firing after forming or electromelting.

[従来の技術] 製鋼炉、特に二次精錬炉などの特殊精錬炉に使用される
耐火物は高温下で、且つCaO/SiO2の低い低塩基度スラグ
や溶鋼摩耗など苛酷な使用条件下で使用され、著しい損
耗を受ける。通常、これらの使用部位には、マグネシア
・クロム質耐火物が使用されているが、より耐食性の向
上を図るために種々の改良がなされている。耐食性の向
上を図るために、フラックス成分の少ないマグネシア原
料やクロム鉱を使用すること、あるいはCr2O3を付加し
た原料を使用し、電融及び焼結することにより緻密で均
一な組織のマグネシア・クロム系原料を使用することで
対応してきた。
[Prior Art] Refractories used in steelmaking furnaces, especially in special refining furnaces such as secondary refining furnaces, are under high temperature and under severe operating conditions such as low basicity slag with low CaO / SiO 2 and molten steel wear. Used and subject to significant wear. Usually, magnesia / chromic refractory materials are used for these parts, but various improvements have been made to further improve the corrosion resistance. In order to improve the corrosion resistance, use magnesia raw material with low flux component or chrome ore, or use raw material to which Cr 2 O 3 is added, and by electromelting and sintering, magnesia with a dense and uniform structure・ We have responded by using chromium-based raw materials.

その例が特開昭59−54670号公報及び特開昭64−42362号
公報で既に発表されている。特開昭59−54670号公報は
重量割合でMgO13〜62%、Cr2O336〜84%且つ両者の合量
が85%以上の化学組成のピクロクロマイトを使用して耐
食性の向上を図ったものであり、特開昭64−42362号公
報はCr2O3/MgOの重量比が0.15〜0.45で、Cr2O3/合計フ
ラックス成分の重量比が1.8〜3.1の電融マグネシア・ク
ロム原料を使用し、耐食性の向上を図ったものである。
Examples thereof have been already disclosed in JP-A-59-54670 and JP-A-64-42362. JP-A-59-54670 aims to improve corrosion resistance by using picrochromite having a chemical composition of MgO 13 to 62%, Cr 2 O 3 36 to 84% by weight and the total amount of both is 85% or more. Japanese Unexamined Patent Publication No. 64-42362 discloses an electrofused magnesia-chromium alloy having a Cr 2 O 3 / MgO weight ratio of 0.15 to 0.45 and a Cr 2 O 3 / total flux component weight ratio of 1.8 to 3.1. The material is used to improve the corrosion resistance.

[発明が解決しようとする課題] 本発明は特にCaO/SiO2の低い低塩基度スラグに対して優
れた耐食性を有するマグネシア・クロム系合成原料を提
供することによって、より使用条件の苛酷な分野に使用
の拡大を図ると共に耐火物使用厚単位の低下を意図する
ものである。
By providing a magnesia-chromium-based synthetic material having excellent corrosion resistance against [invention will to challenge to solve] The present invention is particularly CaO / low SiO 2 low basicity slag, harsh field of more use conditions It is intended to expand the use and reduce the thickness unit of refractory used.

[課題を解決するための手段] 本発明はマグネシア・クロム系原料の耐スラグ性に影響
を及ぼす特性が電融あるいは焼結により得られたマグネ
シア・クロム系原料中に生成する二次スピネルの組成を
制御することにより耐食性が大幅に改善されるという知
見に基づいて完成したものである。
[Means for Solving the Problems] In the present invention, the composition of the secondary spinel generated in the magnesia-chromium-based raw material obtained by electro-melting or sintering has a characteristic that affects the slag resistance of the magnesia-chromium-based raw material. It was completed based on the finding that the corrosion resistance is significantly improved by controlling the.

即ち、本発明はMgO55〜70重量%、 Cr2O325〜35重量%の化学組成であり、 MgO/Cr2O3の重量比が1.6〜2.8の範囲内にあり、且つSiO
2、Al2O3、Fe2O3、CaOの合計フラックス成分量が10重量
%以下であることを特徴とするマグネシア・クロム系合
成原料に係る。
That is, the present invention MgO55~70 wt%, a chemical composition of Cr 2 O 3 25 to 35 wt%, the weight ratio of MgO / Cr 2 O 3 is within the range of 1.6 to 2.8, and SiO
The present invention relates to a magnesia / chromium-based synthetic raw material characterized in that the total amount of flux components of 2 , Al 2 O 3 , Fe 2 O 3 , and CaO is 10% by weight or less.

[作用] 本発明のマグネシア・クロム系合成原料は原料中の合計
フラックス成分を単に低下させたり、あるいはCr2O3
を高めてマグネシア・クロム系原料の緻密化や組織の均
一化を図ることよりも、原料中のペリクレース結晶や結
晶粒界に生成する二次スピネルの組成をより耐食性に優
れた組成にしようとするものである。そのためにはマグ
ネシア・クロム系合成原料の化学組成をMgO55〜70重量
%、Cr2O325〜35重量%、合計フラックス成分量を10重
量%以下にするとよい。
[Function] The magnesia / chromium-based synthetic raw material of the present invention simply reduces the total flux component in the raw material, or raises the Cr 2 O 3 value to densify the magnesia / chromium-based raw material and make the structure uniform. Rather, the composition of the secondary spinel formed in the periclase crystals and the crystal grain boundaries in the raw material should be made more excellent in corrosion resistance. For that purpose, the chemical composition of the magnesia / chromium-based synthetic raw material may be MgO 55 to 70% by weight, Cr 2 O 3 25 to 35% by weight, and the total flux component amount may be 10% by weight or less.

従来、マグネシア原料中のSiO2、CaOは少ない方が良い
とされてきた。その理由はSiO2、CaO成分は低融点の珪
酸塩質相を原料中に生成して原料の品質を低下すると共
にクロム鉱中の三・二酸化物を珪酸塩質相に溶解する。
その溶解度はFe2O3>Al2O3>Cr2O3の順にあり、Cr2O3
最も溶解しにくい。また、スピネルの融点及び分解点は
MgCr2O3が2180℃、MgAl2O4が2135℃、MgFe2O3が1770℃
である。SiO2やCaOが多い原料中には低融点組成のスピ
ネルが生成し易く、このためにもSiO2やCaO成分は少な
い方が良い。しかしながら、クロム鉱は天然品であり、
MgO、Cr2O3、Fe酸化物、Al2O3の他にSiO2やCaOを伴った
複雑な組成で産出する。従って、低塩基度スラグに対し
てはCr2O3成分が耐食性に優れているが、低フラックス
でCr2O3値の高い原料を製造するにはクロム鉱の使用量
が限られ、酸化クロムを使用せざるを得ない。しかし、
このようなCr2O3値の高いマグネシア・クロム系合成原
料は高価であり、且つれんがに使用した場合に焼結しに
くい欠点がある。酸化クロムを使用しないか、少量使用
してマグネシア・クロム系原料中に低塩基度スラグに対
して優れた耐スラグ性のMgCr2O4組成のスピネルを多く
生成させた原料が望ましい。
Conventionally, it has been considered that the less SiO 2 and CaO in the magnesia raw material, the better. The reason for this is that the SiO 2 and CaO components form a low-melting silicate phase in the raw material and deteriorate the quality of the raw material, and at the same time dissolve the sesquioxide in the chrome ore in the silicate phase.
The solubility is in the order of Fe 2 O 3 > Al 2 O 3 > Cr 2 O 3 , and Cr 2 O 3 is the least soluble. The melting point and decomposition point of spinel are
MgCr 2 O 3 is 2180 ℃, MgAl 2 O 4 is 2135 ℃, MgFe 2 O 3 is 1770 ° C.
Is. Spinel having a low melting point composition is likely to be generated in a raw material containing a large amount of SiO 2 and CaO. Therefore, it is preferable that the SiO 2 and CaO components are small. However, chrome ore is a natural product,
In addition to MgO, Cr 2 O 3 , Fe oxide and Al 2 O 3 , it is produced in a complex composition with SiO 2 and CaO. Therefore, the Cr 2 O 3 component is superior in corrosion resistance to low basicity slag, but the amount of chrome ore used is limited to produce a raw material with low flux and high Cr 2 O 3 value. I have no choice but to use. But,
Such a magnesia / chromium-based synthetic raw material having a high Cr 2 O 3 value is expensive and has a drawback that it is difficult to sinter when used for bricks. It is desirable to use a raw material that does not use chromium oxide or uses a small amount thereof to produce a large amount of spinel of MgCr 2 O 4 composition having excellent slag resistance against low basicity slag in a magnesia-chromium-based raw material.

各種電融マグネシア・クロム鉱中のペリクレース結晶粒
界に生成した二次スピネルを分析した結果、合計フラッ
クス成分量の多いものやCr2O3値の低い電融マグネシア
・クロム系原料中のスピネルはMgCr2O4組成のスピネル
は少なく、Mg(Al,Fe)2O4系スピネルが多い。一方、酸化
クロムを多量に添加して製造したマグネシア・クロム系
原料についてもMgCr2O4組成のスピネルは増加せず、酸
化クロムを添加した効果は少ない。
As a result of analyzing the secondary spinel formed at the periclase grain boundaries in various fused magnesia-chromium ores, spinel in the fused-flux magnesia-chromium raw material with a large amount of total flux components and low Cr 2 O 3 value was found. There are few MgCr 2 O 4 composition spinels, and many Mg (Al, Fe) 2 O 4 spinels. On the other hand, the spinel of MgCr 2 O 4 composition does not increase in the magnesia / chromium-based raw material produced by adding a large amount of chromium oxide, and the effect of adding chromium oxide is small.

従って、低塩基度スラグに対する耐スラグ性に効果があ
るMgCr2O4組成のスピネルを多く生成させるための適正
な化学組成はMgO55〜70重量%、Cr2O325〜30重量%、Mg
O/Cr2O3重量比が1.6〜2.8、MgO、Cr2O3以外の合計フラ
ックス成分量10重量%以下に限定される。
Therefore, the appropriate chemical composition for producing a large amount of spinel of MgCr 2 O 4 composition having an effect on slag resistance to low basicity slag is MgO 55-70 wt%, Cr 2 O 3 25-30 wt%, MgO
The O / Cr 2 O 3 weight ratio is 1.6 to 2.8, and the total amount of flux components other than MgO and Cr 2 O 3 is limited to 10% by weight or less.

本発明のマグネシア・クロム系合成原料の製造方法は一
定量比のマグネシア原料とクロム鉱及び酸化クロムの1
種か、2種を混合後炉例えば電気炉中で十分溶融し、自
然冷却することにより製造することができる。なお、原
料中の2次スピネルの組成を制御することができれば焼
結方法を特に限定するものではない。
The method for producing a magnesia / chromium-based synthetic raw material of the present invention is a method in which a fixed amount of magnesia raw material
It can be produced by mixing the seeds or the two species sufficiently after melting in a furnace, for example, an electric furnace, and naturally cooling. The sintering method is not particularly limited as long as the composition of the secondary spinel in the raw material can be controlled.

[実施例] 実施例 第1表に示す組成のマグネシア原料、クロム鉱及び酸化
クロム原料を所定重量比で混合し、電気炉で完全に原料
を電融することによりマグネシア・クロム系合成原料を
製造した。
[Example] Example A magnesia / chromium-based synthetic raw material was manufactured by mixing a magnesia raw material, a chrome ore and a chromium oxide raw material having the compositions shown in Table 1 at a predetermined weight ratio and completely electromelting the raw material in an electric furnace. did.

得られたマグネシア・クロム系合成原料の化学組成、粒
物性及び低塩基度スラグに対する耐スラグ性の評価を第
2表に示す。なお、鉱物組成はいずれもペリクレースと
Cr−スピネルであることをX線回折により確認した。
Table 2 shows the chemical composition of the obtained magnesia / chromium-based synthetic raw material, the physical properties of the granules, and the evaluation of slag resistance to low basicity slag. The mineral composition is the same as periclase.
It was confirmed to be Cr-spinel by X-ray diffraction.

耐スラグテスト用ブリケットの作製: 上述のようにして得られたマグネシア・クロム系合成原
料を粉砕、粒調した後粒度3〜1mm40%、1〜0.3mm20
%、−0.3mm40%にバインダー(サンサルX)4%(外
掛)を加えて混合した。得られた混合物を加圧成形(成
形圧力500kg/cm2)して80×60×40mmの寸法のブリケッ
トを得た。成形後のブリケットを100〜110℃の温度で恒
量になるまで乾燥した後スラグテストに供した。
Preparation of briquette for slag resistance test: The magnesia-chromium-based synthetic raw material obtained as described above is crushed and grained, and then the grain size is 3 to 1 mm 40%, 1 to 0.3 mm 20.
%, -0.3 mm 40%, 4% binder (Sansal X) (external coat) was added and mixed. The obtained mixture was subjected to pressure molding (molding pressure 500 kg / cm 2 ) to obtain a briquette having dimensions of 80 × 60 × 40 mm. The briquette after molding was dried at a temperature of 100 to 110 ° C. to a constant weight and then subjected to a slag test.

耐スラグテスト条件: 回転侵食テスト法 1500℃×1時間を1サイクルとして4サイクル 1サイ
クルのスラグ使用量200g スラグの組成CaO/SiO2=約1 侵食テストの評価方法 テスト後試料を回転炉から取り出し、それぞれの試料に
ついて溶損量を測定した。評価は比較例Aを100とした
時の溶損指数で示した。
Slag resistance test conditions: Rotational erosion test method 1500 ° C x 1 hour as one cycle 4 cycles 1 cycle of slag usage 200g Slag composition CaO / SiO 2 = approx. 1 erosion test evaluation method After test, remove sample from rotary furnace The amount of melting loss was measured for each sample. The evaluation was shown by the melt loss index when Comparative Example A was set to 100.

比較例Aは市販の代表的なマグネシア・クロム系合成原
料であり、これと比較して耐スラグ性を評価した。
Comparative Example A was a typical commercially available magnesia-chromium-based synthetic raw material, and the slag resistance was evaluated by comparison with this.

本発明のD〜GはCr2O325〜35重量%、MgO55〜70重量
%、合計フラックス成分は10重量%以下にあり、MgO/Cr
2O3重量比は1.6〜2.8の範囲内にある。原料中に生成し
た二次スピネルの組成(第3表)は試料間に殆ど差がな
く、Cr2O3が約70%のもので、MgCr2O4の理論組成に近
い。一方、耐スラグ性については比較例A、Bよりも極
めて優れていた。
In the present invention, D to G are 25 to 35% by weight of Cr 2 O 3 , 55 to 70% by weight of MgO, and the total flux component is 10% by weight or less.
The 2 O 3 weight ratio is in the range of 1.6 to 2.8. The composition of the secondary spinel formed in the raw material (Table 3) is almost the same among the samples, and Cr 2 O 3 is about 70%, which is close to the theoretical composition of MgCr 2 O 4 . On the other hand, the slag resistance was extremely superior to Comparative Examples A and B.

比較例BはCr2O3が25%以下と少なく、スピネルの組成
もCr2O3が少ない。耐食性についても劣るが、この原因
はCr2O3分が不足しているためと考えられる。
In Comparative Example B, Cr 2 O 3 is as small as 25% or less, and the composition of the spinel is also small in Cr 2 O 3 . Although it is also inferior in corrosion resistance, it is considered that this is due to lack of Cr 2 O 3 content.

一方、酸化クロムを本発明品より多く使用し、製造した
比較例Cはスピネル中のCr2O3が少ない。この点は測定
位置の違いやバラツキが考えられる。しかし、耐スラグ
性についても本発明品E〜Gよりも劣る。従って、高価
な酸化クロムを使用したわりにはその改善効果が少な
い。
On the other hand, Comparative Example C produced by using more chromium oxide than the product of the present invention has less Cr 2 O 3 in the spinel. At this point, differences in measurement positions and variations may be considered. However, the slag resistance is also inferior to the products E to G of the invention. Therefore, even if expensive chromium oxide is used, the improvement effect is small.

[発明の効果] 本発明のマグネシア・クロム系合成原料は低塩基度スラ
グに対して耐スラグ性に極めて優れたものである。従っ
て、定形、不定形耐火物とすることによって高耐食性が
要求される製銑、製鋼用耐火物や新製鋼法用耐火物に適
用可能な原料である。
[Effects of the Invention] The magnesia / chromium-based synthetic raw material of the present invention is extremely excellent in slag resistance with respect to low basicity slag. Therefore, it is a raw material that can be applied to a pig iron, a refractory for steel making, and a refractory for a new steelmaking method, which require high corrosion resistance by forming a regular or irregular refractory.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】MgO55〜70重量%、Cr2O325〜35重量%の化
学組成をもち、MgO/Cr2O3の重量比が1.6〜2.8の範囲内
にあり、且つSiO2、Al2O3、Fe2O3、CaOの合計フラック
ス成分量が10重量%以下であることを特徴とするマグネ
シア・クロム系合成原料。
1. A chemical composition of 55 to 70% by weight of MgO and 25 to 35% by weight of Cr 2 O 3 and a MgO / Cr 2 O 3 weight ratio of 1.6 to 2.8, and SiO 2 and Al. A magnesia-chromium-based synthetic raw material characterized in that the total amount of flux components of 2 O 3 , Fe 2 O 3 , and CaO is 10% by weight or less.
JP2152700A 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material Expired - Lifetime JPH075355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2152700A JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2152700A JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Publications (2)

Publication Number Publication Date
JPH0446057A JPH0446057A (en) 1992-02-17
JPH075355B2 true JPH075355B2 (en) 1995-01-25

Family

ID=15546237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2152700A Expired - Lifetime JPH075355B2 (en) 1990-06-13 1990-06-13 Magnesia / Chromium synthetic raw material

Country Status (1)

Country Link
JP (1) JPH075355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6237787B1 (en) * 1996-06-13 2001-05-29 Johnson & Johnson Consumer Products, Inc. Packaging system for storing and dispensing products

Also Published As

Publication number Publication date
JPH0446057A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
Ko Influence of the characteristics of spinels on the slag resistance of Al2O3–MgO and Al2O3–spinel castables
US4152166A (en) Zircon-containing compositions and ceramic bodies formed from such compositions
JPH0420871B2 (en)
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
US4999325A (en) Rebonded fused brick
JP2000335978A (en) Castable refractory material
JPH075355B2 (en) Magnesia / Chromium synthetic raw material
JP3609245B2 (en) Manufacturing method of refractory raw materials
JPH06321628A (en) Alumina-chromia-zircon-based sintered refractory brick
JP4373509B2 (en) Basic refractory
JPH11130548A (en) Basic monolithic refractory material
KR830001463B1 (en) Manufacturing method of fire brick
KR0150797B1 (en) Sintered magnesia clinker and its manufacturing method
SU903358A1 (en) Fused refractory material
SU1248996A1 (en) Method of manufacturing refractory articles
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JP2765458B2 (en) Magnesia-carbon refractories
KR100265004B1 (en) Refractory material of magnesia-spinel type
JP2527118B2 (en) Cement rotary kiln magnesia spinel brick
JPH03205368A (en) Castable alumina-spinel refractory
JP3400494B2 (en) Basic refractories for molten metal
JPH0748167A (en) Magnesia refractory raw material and refractory
JPH0421563A (en) Production of magnesia-chrome-based refractory
JPH07291716A (en) Basic refractory
KR20210023191A (en) Magnesia-based moniolithic refractory