JPH0445972B2 - - Google Patents

Info

Publication number
JPH0445972B2
JPH0445972B2 JP58079019A JP7901983A JPH0445972B2 JP H0445972 B2 JPH0445972 B2 JP H0445972B2 JP 58079019 A JP58079019 A JP 58079019A JP 7901983 A JP7901983 A JP 7901983A JP H0445972 B2 JPH0445972 B2 JP H0445972B2
Authority
JP
Japan
Prior art keywords
transparent electrode
electrode material
amorphous silicon
kinetic energy
photoconductive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58079019A
Other languages
Japanese (ja)
Other versions
JPS59204282A (en
Inventor
Yoshio Furuya
Hisao Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP58079019A priority Critical patent/JPS59204282A/en
Publication of JPS59204282A publication Critical patent/JPS59204282A/en
Publication of JPH0445972B2 publication Critical patent/JPH0445972B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光導電素子の製造方法に関し、特に
アモルフアスシリコン上にスパツタリング等の物
理蒸着法を用いて透明電極薄膜を形成する方法の
改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a photoconductive element, and in particular to an improvement in a method for forming a transparent electrode thin film on amorphous silicon using a physical vapor deposition method such as sputtering. Regarding.

[従来の技術] 従来、例えば第1図に示すような光導電素子U
が提案されている。すなわち、絶縁性基板1上に
金属膜2、光導電性半導体基体3および透明電極
薄膜4がこれらの順に積層されて構成されてい
る。半導体基体3は、例えば水素化アモルフアス
シリコンよりなり、この半導体基体3上に、例え
ば酸化インジウム錫よりなる透明電極薄膜4が、
スパツタリングのような物理蒸着法(PVD)に
よつて着膜形成されている。
[Prior Art] Conventionally, for example, a photoconductive element U as shown in FIG.
is proposed. That is, a metal film 2, a photoconductive semiconductor substrate 3, and a transparent electrode thin film 4 are laminated in this order on an insulating substrate 1. The semiconductor substrate 3 is made of, for example, hydrogenated amorphous silicon, and a transparent electrode thin film 4 made of, for example, indium tin oxide is disposed on the semiconductor substrate 3.
The film is formed by a physical vapor deposition method (PVD) such as sputtering.

第2図は、上述のような半導体基体3上に透明
電極薄膜4を形成する場合に適用されるスパツタ
リング装置を概略的に示す。すなわち、陰極5上
に、透明電極材料よりなるターゲツト6が固着さ
れ、このターゲツト6と対向して、陽極となる半
導体基体3が所定の距離を隔てて配置される。
FIG. 2 schematically shows a sputtering apparatus used for forming the transparent electrode thin film 4 on the semiconductor substrate 3 as described above. That is, a target 6 made of a transparent electrode material is fixed on the cathode 5, and a semiconductor substrate 3, which will become an anode, is placed opposite the target 6 at a predetermined distance.

このような構成において、アルゴンその他の不
活性ガスを主成分とする低圧ガス中において両極
間で直流高圧グロー放電を行うと、+イオンが発
生し、これがターゲツト6に衝突してターゲツト
6の表面の原子を叩き出す。そしてこれにより、
透明電極材料の粒子が基体3の表面3aに付着し
て透明電極薄膜4が形成される。なお、第2図に
おいて、7はグロー放電領域を示す。
In such a configuration, when a DC high-pressure glow discharge is performed between the two electrodes in a low-pressure gas mainly composed of argon or other inert gas, positive ions are generated, which collide with the target 6 and cause damage to the surface of the target 6. Knock out atoms. And with this,
Particles of the transparent electrode material adhere to the surface 3a of the base 3 to form a transparent electrode thin film 4. In addition, in FIG. 2, 7 indicates a glow discharge area.

[発明が解決しようとする課題] ところで上述のような従来の光導電素子の製造
方法において、基体3となるアモンフアスシリン
コン上に付着せしめられる際の透明電極材料の粒
子の運動エネルギは、一般に1〜50eV程度に設
定される。したがつて着膜工程の初期において
は、このような高い運動エネルグの粒子の衝突に
より、基体3の表面3aが損傷を受け易くなる。
[Problem to be Solved by the Invention] By the way, in the conventional method for manufacturing a photoconductive element as described above, the kinetic energy of the particles of the transparent electrode material when deposited on the Amonphas silicon serving as the base 3 is generally It is set to about 1 to 50 eV. Therefore, in the early stage of the film deposition process, the surface 3a of the substrate 3 is easily damaged by collisions of particles with such high kinetic energy.

また、こうした高い運動エネルギと粒子の衝突
は、同基体3の表面3aにダングリングボンドの
発生を招き、ひいては界面特性を低下せしめる。
In addition, such high kinetic energy and particle collisions lead to the generation of dangling bonds on the surface 3a of the base 3, which ultimately deteriorates the interfacial properties.

このため、第1図に示すような光動電素子Uの
場合、透明電極薄膜4から半導体基体3、すなわ
ちアモルフアスシリコン内へキヤリアが注入され
易くなり、暗電流が増加するといつた不都合が生
じる。
For this reason, in the case of the photodynamic element U shown in FIG. 1, carriers are likely to be injected from the transparent electrode thin film 4 into the semiconductor substrate 3, that is, into the amorphous silicon, causing problems such as an increase in dark current. .

本発明は、上述の点に鑑みなされたもので、上
記物理蒸着法によつて透明電極薄膜を着膜形成す
る際に、基体となるアモルフアスシリコンの表面
が損傷を受けるのを防止することができ、ひいて
は光電変換特性に優れた光電素子を得ることので
きる光電素子の製造方法を提供することを目的と
する。
The present invention has been made in view of the above-mentioned points, and it is possible to prevent the surface of amorphous silicon serving as a base from being damaged when forming a transparent electrode thin film by the above-mentioned physical vapor deposition method. It is an object of the present invention to provide a method for manufacturing a photoelectric element, which can produce a photoelectric element with excellent photoelectric conversion characteristics.

[課題を解決するための手段] このため本発明では、 (A) 前記透明電極を着膜形成する際の着膜工程初
期に、前記ターゲツトとする透明電極材料の近
傍に磁界を与えて、前記アモルフアスシリコン
上に付着される透明電極材料粒子の運動エネル
ギを抑制する。
[Means for Solving the Problems] Therefore, in the present invention, (A) At the beginning of the film deposition process when forming the transparent electrode, a magnetic field is applied near the target transparent electrode material to Suppresses the kinetic energy of transparent electrode material particles deposited on amorphous silicon.

(B) 同着工程の初期後、前記磁界を除去若しくは
低減して、前記透明電極材料粒子の運動エネル
ギの抑制を解除する。
(B) After the initial stage of the co-adhering process, the magnetic field is removed or reduced to release the suppression of the kinetic energy of the transparent electrode material particles.

といつた、大きくは2段階の操作を1回の着膜工
程に際して経時的に実行して、光導電素子の製造
を行うようにする。
A photoconductive element is manufactured by performing roughly two steps of operations over time during one film deposition process.

[作用] 上記磁界の与え方を通じて、上記透明電極材料
粒子の運動エネルギが好適にコントロールされる
こととなる。特に、上記(A)の工程を通じて、該透
明電極材料粒子の運動エネルギが、前記アモルフ
アスシリコンの表面を損傷しない程度に小さく抑
制され、その後上記(B)の工程を通じて、同透明電
極材料粒子の運動エネルギが増大されることで、
アモルフアスシリコンと透明電極との界面に特性
劣化の生じない優れた光導電素子が高能率に製造
されるようになる。
[Function] Through the application of the magnetic field, the kinetic energy of the transparent electrode material particles can be suitably controlled. In particular, through the step (A) above, the kinetic energy of the transparent electrode material particles is suppressed to a level that does not damage the surface of the amorphous silicon, and then through the step (B) above, the kinetic energy of the transparent electrode material particles is suppressed to a level that does not damage the surface of the amorphous silicon. By increasing the kinetic energy,
An excellent photoconductive element with no characteristic deterioration at the interface between amorphous silicon and a transparent electrode can be manufactured with high efficiency.

[実施例] 以下本発明の実施例について詳細を説明する。[Example] Examples of the present invention will be described in detail below.

本発明は、透明電極薄膜の着膜工程初期におい
て、透明電極材料粒子の、基体(アモルフアスシ
リコン)に衝突する際の運動エネルギを抑制する
ものであるが、その抑制手法としては、基本的に
第3図CおよびDとして示す方法が考えられる。
The present invention suppresses the kinetic energy of the transparent electrode material particles when they collide with the substrate (amorphous silicon) in the early stage of the process of forming a transparent electrode thin film. Methods shown as C and D in FIG. 3 are possible.

すなわち、従来は第3図Aに示すように、例え
ば100Wの電力で短時間に薄膜を形成していたも
のとすれば、これを第3図CおよびDに示すよう
に、着膜工程の初期においては例えば20Wの電力
をもつてスパツタリングを行い、これによつて厚
さ100#程度の薄膜が形成された時点から、段階
的または連続的に電力を高めるようにする。これ
によれば、実用的な時間で、基体3の表面が損傷
を受けない優れた特性の光導電素子を製造するこ
とができるようになる。
In other words, if a thin film was conventionally formed in a short time using a power of 100 W, as shown in Figure 3A, this was changed to the initial stage of the film deposition process, as shown in Figure 3C and D. For example, sputtering is performed with a power of 20 W, and after a thin film of about 100 # thickness is formed, the power is increased stepwise or continuously. According to this, it becomes possible to manufacture a photoconductive element with excellent characteristics in which the surface of the base 3 is not damaged in a practical amount of time.

本発明では、第4図に示すマグネトロン・スパ
ツタリング装置を通じて、こうした第3図Cある
いはDに対応する透明電極材料粒子の運動エネル
ギ抑制を実現する。
In the present invention, the kinetic energy of the transparent electrode material particles corresponding to FIG. 3 C or D is suppressed through the magnetron sputtering device shown in FIG. 4.

すなわち第4図に示すマグネトロン・スパツタ
リング装置にあつては、陰極5側に磁石9を配置
し、着膜工程の初期には、上記電力を抑える代わ
りに、この磁石9によつてターゲツト6の表面お
よび近傍に形成される磁場の磁束密度を大きくす
る。これによつて、当該スパツタリング装置とし
てのグロー放電領域7をターゲツト6と近傍に限
定することができ、基体3に衝突する透明電極材
料粒子の運動エネルギを抑制することができるよ
うになる。
That is, in the magnetron sputtering apparatus shown in FIG. 4, a magnet 9 is arranged on the cathode 5 side, and in the early stage of the film deposition process, instead of suppressing the above-mentioned electric power, the magnet 9 is used to spread the surface of the target 6. and increase the magnetic flux density of the magnetic field formed nearby. Thereby, the glow discharge region 7 as the sputtering device can be limited to the target 6 and the vicinity, and the kinetic energy of the transparent electrode material particles colliding with the base 3 can be suppressed.

なお参考までに、こうして発生される磁界の大
きさを、通常の200〜300ガウス600ガウスに高め
ることで、基体3としてのアモルフアスシリコン
の表面にダングリングボンドの発生を招くことな
く透明電極導膜4の着膜を行うことができ、これ
らアモルフアスシリコンと透明電極薄膜4との良
好なシヨツトキ接合が実現される光導電素子を得
ることができた。厚さ100#程度の透明電極薄膜
が形成された時点でこうして高めた磁界を除去若
しくは低減する条件は、上述した第3図Cあるい
はDでの手法と変わらない。
For reference, by increasing the magnitude of the magnetic field generated in this way to the usual 200-300 Gauss to 600 Gauss, transparent electrode conduction can be achieved without causing dangling bonds on the surface of the amorphous silicon as the base 3. The film 4 could be deposited, and a photoconductive element could be obtained in which a good shot bonding between the amorphous silicon and the transparent electrode thin film 4 was realized. The conditions for removing or reducing the increased magnetic field once a transparent electrode thin film with a thickness of about 100# is formed are the same as the method shown in FIG. 3C or D described above.

[発明の効果] 以上説明したように、本発明によれば、スパツ
タリングによる透明電極薄膜形成工程の初期にお
いて、アモルフアスシリコン上に付着せしめられ
る際の透明電極材料粒子の運動エネルギを抑制
し、その後、同運動エネルギの抑制を解除するよ
うにしたことから、アモルフアスシリコン表面へ
のダングリングボンドの発生を良好に抑制して、
透明電極薄膜から光導体基体3内へのキヤリアの
注入量の少ない、したがつて暗電流の少ない優れ
た特性の光導電素子を高能率に得ることができる
ようになる。
[Effects of the Invention] As explained above, according to the present invention, the kinetic energy of transparent electrode material particles when deposited on amorphous silicon is suppressed in the initial stage of the process of forming a transparent electrode thin film by sputtering, and then Since the suppression of the kinetic energy is released, the generation of dangling bonds on the amorphous silicon surface can be suppressed well.
It becomes possible to efficiently obtain a photoconductive element with excellent characteristics in which a small amount of carrier is injected from the transparent electrode thin film into the photoconductive substrate 3, and therefore with a small dark current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の適用される光導電素子の断
面図、第2図は第1図の光導電素子を製造する際
に用いられるスパツタリング装置の概略図、第3
図は本発明による方法を従来の方法と比較して説
明する線図、第4図は本発明の実施に適用される
スパツタリング装置の概略図である。 1……絶縁性基板、2……金属膜、3……半導
体基体であるアモルフアスシリコン、4……透明
電極薄膜、5……陰極、6……ターゲツト、7…
…グロー放電領域、9……磁石。
FIG. 1 is a sectional view of a photoconductive element to which the present invention is applied, FIG. 2 is a schematic diagram of a sputtering apparatus used in manufacturing the photoconductive element of FIG. 1, and FIG.
The figure is a diagram illustrating a method according to the present invention in comparison with a conventional method, and FIG. 4 is a schematic diagram of a sputtering apparatus applied to implement the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Metal film, 3... Amorphous silicon as a semiconductor substrate, 4... Transparent electrode thin film, 5... Cathode, 6... Target, 7...
...Glow discharge area, 9...Magnet.

Claims (1)

【特許請求の範囲】 1 透明電極材料をターゲツトとする物理蒸着法
により、アモルフアスシリコン上に透明電極を着
膜形成して光導電素子を形成する光導電素子の製
造方法において、 前記透明電極を着膜形成する際の着膜工程初期
に、前記ターゲツトとする透明電極材料の近傍に
磁界を与えて、前記アモルフアスシリコン上に付
着される透明電極材料粒子の運動エネルギを抑制
する工程と、 同着膜工程の初期後、前記磁界を除去若くしく
は低減して、前記透明電極材料粒子の運動エネル
ギの抑制を解除する工程と、 を具える光導電素子の製造方法。
[Scope of Claims] 1. A method for manufacturing a photoconductive element in which a photoconductive element is formed by depositing a transparent electrode on amorphous silicon by a physical vapor deposition method targeting a transparent electrode material, comprising: A step of suppressing the kinetic energy of the transparent electrode material particles deposited on the amorphous silicon by applying a magnetic field near the target transparent electrode material at the initial stage of the film deposition process when forming the deposited film; A method for manufacturing a photoconductive element, comprising the step of removing or reducing the magnetic field after the initial stage of the film deposition process to release suppression of the kinetic energy of the transparent electrode material particles.
JP58079019A 1983-05-06 1983-05-06 Formation of thin film Granted JPS59204282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079019A JPS59204282A (en) 1983-05-06 1983-05-06 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079019A JPS59204282A (en) 1983-05-06 1983-05-06 Formation of thin film

Publications (2)

Publication Number Publication Date
JPS59204282A JPS59204282A (en) 1984-11-19
JPH0445972B2 true JPH0445972B2 (en) 1992-07-28

Family

ID=13678226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079019A Granted JPS59204282A (en) 1983-05-06 1983-05-06 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS59204282A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745356B2 (en) * 1989-12-28 1995-05-17 株式会社島津製作所 Thin film manufacturing method
JP5942476B2 (en) * 2012-02-29 2016-06-29 沖電気工業株式会社 Method for producing transparent electrode in light emitting device
JP2014110300A (en) * 2012-11-30 2014-06-12 Nichia Chem Ind Ltd Method of manufacturing semiconductor light emitting element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100075A (en) * 1972-03-29 1973-12-18
JPS57208180A (en) * 1981-06-17 1982-12-21 Hitachi Ltd Manufacture of photoconductive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100075A (en) * 1972-03-29 1973-12-18
JPS57208180A (en) * 1981-06-17 1982-12-21 Hitachi Ltd Manufacture of photoconductive film

Also Published As

Publication number Publication date
JPS59204282A (en) 1984-11-19

Similar Documents

Publication Publication Date Title
JPH0227433B2 (en)
JPS61100979A (en) Thin film solar cell
JP2012517700A (en) Negatively charged passivation layer in photovoltaic cells
JPH0445972B2 (en)
US6258219B1 (en) Two-step deposition process for preventing arcs
US3968019A (en) Method of manufacturing low power loss semiconductor device
JP3259850B2 (en) Negative electrode for lithium secondary battery
JP2002313326A (en) Manufacturing method of lithium secondary battery
US11222785B2 (en) Method for depositing a metal layer on a wafer
US5342793A (en) Process for obtaining multi-layer metallization of the back of a semiconductor substrate
JPH0617242A (en) Thin film forming method and thin film forming device
KR101421533B1 (en) The manufacturing method of back contact metal layer and contact metal layer
TW200937661A (en) Solar cell manufacturing method
JPH0211011B2 (en)
JP2841213B2 (en) Method for manufacturing solar cell substrate
JPH0867981A (en) Sputtering device
EP0443296B1 (en) Process for obtaining multilayer metallization of the back of a semiconductor substrate
CN210826335U (en) Target with structure convenient to assemble and disassemble
JPS6017070A (en) Method and device for forming thin film
KR20080008213A (en) Manufacturing method of back contacts for ci(g)s solar cell
JP2019062027A (en) Elongated silicon solar cell and method of manufacturing the same
JPH027393B2 (en)
KR0125868Y1 (en) Separable out-target structure of metal evaporator
JPS63270464A (en) Formation of thin film on substrate
CA1040259A (en) Method of preparing a battery plate by coating an aluminum core with lead