JPH0445773B2 - - Google Patents

Info

Publication number
JPH0445773B2
JPH0445773B2 JP57096882A JP9688282A JPH0445773B2 JP H0445773 B2 JPH0445773 B2 JP H0445773B2 JP 57096882 A JP57096882 A JP 57096882A JP 9688282 A JP9688282 A JP 9688282A JP H0445773 B2 JPH0445773 B2 JP H0445773B2
Authority
JP
Japan
Prior art keywords
light
receiving
emitting
optical fiber
optical fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57096882A
Other languages
Japanese (ja)
Other versions
JPS58214842A (en
Inventor
Hajime Munekuni
Hiroshi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP9688282A priority Critical patent/JPS58214842A/en
Publication of JPS58214842A publication Critical patent/JPS58214842A/en
Publication of JPH0445773B2 publication Critical patent/JPH0445773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【発明の詳細な説明】 本発明は走行中のフイルム,シートなどの膜状
物の曇り価の測定を、投光及び受光に光フアイバ
ーを使用して速い走査速度で且つ能率良く拡散透
過光量の変化を検出することにより行う膜状物の
曇り価測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention measures the haze value of moving films, sheets, and other film-like materials by using optical fibers for emitting and receiving light at a high scanning speed and efficiently measuring the amount of diffused transmitted light. The present invention relates to an apparatus for measuring haze value of a film-like material by detecting changes.

従来、膜状物の曇り価の測定は、裸眼による目
視方法または切り取つたサンプルを従来の曇り価
計で測定する方法などにより行われることが多
い。しかしながら前者のの方法では個人差による
バラツキを避けられないばかりか、目視結果を定
量的に記録することができないから経時変化をと
らえることは難かしい。また、後者の方法ではサ
ンプル採取のため製品を切断して傷付ける上、工
程を中断しなければならないから甚だ非能率的で
あり、連続工程に適さない。そこで膜状物の走行
を停止せしめないで曇り価を測定するため、タン
グステンランプを光源にし光電管または光電素子
を受光部にした曇り価測定装置が考案され試用さ
れたが、このような装置を走行中の膜状物の表裏
両側で例えば幅方向に往復せしめて走査させるこ
とは、光源や受光部の重量が比較的大きいことに
より、慣性力に対する機械的強度が不充分であつ
たり、或は走査速度を遅くせざる得なかつたりす
るなどの問題があつた。
Conventionally, the haze value of a film-like material is often measured by visual observation with the naked eye or by measuring a cut sample with a conventional haze value meter. However, the former method not only cannot avoid variations due to individual differences, but also cannot quantitatively record visual results, making it difficult to capture changes over time. In addition, the latter method is extremely inefficient because the product is cut and damaged in order to collect samples, and the process must be interrupted, so it is not suitable for continuous processes. Therefore, in order to measure the haze value without stopping the running of the film-like material, a haze value measuring device was devised and put to trial using a tungsten lamp as the light source and a phototube or photoelectric element as the light receiving part. For example, scanning back and forth in the width direction on both the front and back sides of the film-like object inside the film may result in insufficient mechanical strength against inertial force due to the relatively large weight of the light source and light receiving section, or the scanning There were problems such as slowing down the speed and slipping.

一方、近年においてフイルムなどの膜状物の製
造技術が向上するに従い、視覚的にも透明度の高
い高品位な製品が要求されるようになつて来た。
しかして膜状物における曇り価の変化を生ぜしめ
る原因として、外的な汚れの付着以外に、冷却条
件などの製造条件の変化に基づく内部結晶化度の
変化などの工程管理に由来する原因が重視される
ようになつて来た。従つて透明度が高く高品位な
膜状物製品の要求に応えるために工程管理におい
て速い速度で走行している膜状物の全面にわたつ
て曇り価の管理を連続的に行うことの必要性が最
近とみに強くなり、能率良く且つ高速で走査する
ことのできる膜状物の曇り価測定装置の出現が望
まれていた。
On the other hand, in recent years, as the manufacturing technology of membrane-like materials such as films has improved, there has been a demand for high-quality products with high visual transparency.
However, the causes of changes in haze value in film-like materials include, in addition to external dirt adhesion, factors originating from process control, such as changes in internal crystallinity due to changes in manufacturing conditions such as cooling conditions. It has become more important. Therefore, in order to meet the demand for highly transparent and high-quality film products, it is necessary to continuously control the haze value over the entire surface of the film that is moving at high speed during process control. Recently, there has been a desire for a haze value measuring device for film-like materials that has recently become more robust and capable of scanning efficiently and at high speed.

本発明者等はこのような要望に応えることを目
的に研究した結果、多数の光フアイバーを使用し
て膜状物に対して投光端、受光端を位置固定し、
そこから離れた別の場所で光源からの光を各光フ
アイバーに高速で移動分配すること及び受光端に
投光端からの光をその放光角よりも広い角度で受
光せしめることにより上記目的を達成できること
を究明して本発明を完成した。
As a result of research aimed at meeting such demands, the present inventors used a large number of optical fibers to fix the position of the light emitting end and the light receiving end relative to the film-like object.
The above purpose is achieved by moving and distributing the light from the light source to each optical fiber at a high speed at a separate location, and by having the light receiving end receive the light from the light emitting end at a wider angle than its emission angle. The present invention was completed by investigating what can be achieved.

すなわち本発明は、次の(イ),(ロ)及び(ハ)の各部か
ら成ることを特徴とする膜状物の曇り価測定装
置、 (イ) 光源と、膜状物の片面から一定距離の位置に
投光端としての一端を該片面に向けてほぼ幅方
向に沿つて一列状にほぼ隣接して並べられてお
りその並び順に従つて分配光受入端としての他
端が一定ピツチで並べられている多数の投光用
光フアイバーと、光源光受入端としての一端が
該光源から受けた光を光分配移動端としての他
端が移動しながら該投光用光フアイバーの分配
光受入端に順次接続して送光する所定本数の投
光分配用光フアイバーとから成る投光部、 (ロ) 前記膜状物の他面側で前記投光用光フアイバ
ーの投光端と対向する位置に並べられている光
フアイバーから成る受光眼を有し、該受光眼と
該投光端との間において受光眼の受光し得る最
大開き角が投光端の放光角より大きい関係を有
し、前記投光用光フアイバーの投光端からの光
を受けて受光状態となつた各受光眼からの光を
各別に送光する光フアイバーから成る複数個の
送光路を備えた受光部、 (ハ) 該受光部の各送光路の光送出端にそれぞれ接
続される受光素子と該受光素子が検出した光量
に対応した電気信号を演算して前記膜状物の曇
り価を測定する演算回路とを備えた信号処理
部、 に関するものである。
That is, the present invention provides a haze value measuring device for a film-like object characterized by comprising the following parts (a), (b), and (c): (a) a light source and a certain distance from one side of the film-like object; They are arranged in a line almost adjacent to each other along the width direction with one end as a light emitting end facing the one side, and the other end as a distributed light receiving end is arranged at a constant pitch according to the arrangement order. One end serving as a light source light receiving end receives the light from the light source, and the other end serving as a light distributing moving end moves while the distributing light receiving end of the light projecting optical fiber moves. (b) a position facing the light emitting end of the light emitting optical fiber on the other surface of the film-like object; has a light-receiving eye made of optical fibers arranged in a row, and there is a relationship between the light-receiving eye and the light-emitting end such that the maximum opening angle at which the light-receiving eye can receive light is larger than the emission angle of the light-emitting end. , a light-receiving section comprising a plurality of light-transmitting paths made of optical fibers that separately transmit light from each light-receiving eye that receives light from the light-emitting end of the light-emitting optical fiber and enters a light-receiving state; c) a light receiving element connected to the light sending end of each light sending path of the light receiving section and an arithmetic circuit that calculates an electric signal corresponding to the amount of light detected by the light receiving element to measure the haze value of the film-like object; The present invention relates to a signal processing unit comprising:

以下に本発明を本発明装置の実施例を示す図面
により詳細に説明する。
The present invention will be explained in detail below with reference to the drawings showing embodiments of the apparatus of the present invention.

第1図は本発明装置の1実施例を一部斜視的に
示す模式的概略説明図、第2図は第1図とは異な
る態様の投光分配用光フアイバーが配置された状
態を示す説明図、第3図は投光端の1例を拡大し
て示す(イ)正面図と(ロ)側断面図、第4図は受光部の
1態様一部を省略して示す説明図、第5図は受光
部の他の態様を一部斜視的に示す模式的説明図、
第6図は投光分配用光フアイバーの光分配移動端
を回転移動せしめた場合の走行中の膜状物面にお
ける走査状態を示す図、第7図は投光端からの光
が膜状物を透過して受光眼に到達する状態を模式
的に示す説明図、第8図は本発明装置における受
光された光パワーの分布状態の例を示す図、第9
図は本発明装置の使用例を示す図である。図面
中、1は光源であり、発光ダイオードLED,
LD、白色光源などを使用することができる。2
は投光用光フアイバーであり、多数の投光用光フ
アイバー2のそれぞれの一端が投光端2bとして
後記する膜状物9の片面から一定距離の位置すな
わち膜状物9と平行な面上に該片面に向けてほぼ
幅方向に沿つて一列状にほぼ隣接して並べられて
いる。そして他端は分配光受入端2aとして投光
端2bの並び順に従つて一定ピツチで例えば隣接
して並べられている。第1図の場合は分配光受入
端2aの並び形状は真円形であるが、直線状であ
つても良い。投光用光フアイバー2を含めて本発
明で使用する光フアイバーの材質はガラス系でも
プラスチツク系でも良く、また屈折率分布がステ
ツプインデツクス型でもグレーデツドインデツク
ス型でも良い。投光端2bの詳細は後記する受光
眼4と共に説明する。
FIG. 1 is a partially perspective schematic explanatory diagram of an embodiment of the device of the present invention, and FIG. 2 is an explanatory diagram showing a state in which a light projection distribution optical fiber is arranged in a manner different from that in FIG. 1. Figures 3 and 3 are (a) front view and (b) side sectional view showing one example of the light emitting end in an enlarged manner, and Figure 4 is an explanatory view showing one aspect of the light receiving part with some parts omitted. FIG. 5 is a schematic explanatory diagram partially perspectively showing another aspect of the light receiving section;
Fig. 6 is a diagram showing the scanning state on the surface of a film-like object during traveling when the light distribution moving end of the light-emitting and distributing optical fiber is rotated; FIG. 8 is an explanatory diagram schematically showing the state in which the light passes through and reaches the receiving eye. FIG. 8 is a diagram showing an example of the distribution state of the received light power in the device of the present invention.
The figure shows an example of how the device of the present invention is used. In the drawing, 1 is a light source, which is a light emitting diode LED,
LD, white light source, etc. can be used. 2
is an optical fiber for light projection, and one end of each of the many optical fibers 2 for light projection is positioned at a certain distance from one side of the film-like material 9, which will be described later as the light-emitting end 2b, that is, on a surface parallel to the film-like material 9. They are arranged substantially adjacent to each other in a line along the width direction toward the one surface. The other end serves as a distributed light receiving end 2a and is arranged, for example, adjacently at a constant pitch in accordance with the arrangement order of the light emitting ends 2b. In the case of FIG. 1, the arrangement of the distributed light receiving ends 2a is a perfect circle, but they may be linear. The material of the optical fibers used in the present invention, including the light emitting optical fiber 2, may be glass-based or plastic-based, and the refractive index distribution may be of a step index type or graded index type. Details of the light emitting end 2b will be explained together with the light receiving eye 4, which will be described later.

3は投光分配用光フアイバーであり、その一端
は光源光受入端3aとして光源1の近くに位置せ
しめられていて光源1からの光を受け入れ、他端
は光分配移動端3bとして通常は一定速度で間歇
的に移動しながら一定ピツチで並んでいる分配光
受入端2aに順次接続して光源光受入端3aから
投光分配用光フアイバー3を通つて送られて来た
光を分配光受入端2に順次送光して行く。光分配
移動端3bの移動軌跡は投光用光フアイバー2の
分配光受入端2aの並び形状に適合せしめて選定
される。例えば第1図では投光分配用光フアイバ
ー3の光分配移動端3bは真円形状に並べられた
投光用光フアイバー2の分配光受入端2aに接し
た状態で光源1を通る回転軸の回りを例えば矢印
Xの方向に間歇回転せしめられるのであり、この
ような一方向への回転により極めて速い回転が可
能である。そして第1図の如く1本の投光分配用
光フアイバー3が使用されている場合は、その1
回転により投光用光フアイバー2の投光端2bの
並びの全部に亘つて1回送光され従つて後記する
ように膜状物9に対する1回の走査が行われる
が、膜状物9の走行速度が速い場合などには、複
数本例えば第2図に示す如く2本の投光分配用光
フアイバー3を等角間隔で一体化したものが使用
されて回転せしめられることにより、時間当りの
走査回数を多くすることができる。また投光用光
フアイバー2の分配光受入端2aの並び形状が直
線状の場合には光分配移動端3bはそれに接した
状態で往復移動が行われることになり、この場合
は投光分配用光フアイバーは1本だけ使用される
ことになる。上記の如く光源1と投光用光フアイ
バー2と投光分配用光フアイバー3とで投光部が
構成され、かくして光源1の光は投光分配用光フ
アイバー3により各投光用光フアイバー2に迅速
に順次分配されてその投光端2bから膜状物9に
投光されるのである。
Reference numeral 3 denotes a light projection/distribution optical fiber, one end of which is positioned near the light source 1 as a light source light receiving end 3a and receives light from the light source 1, and the other end is normally fixed as a light distribution moving end 3b. While moving intermittently at high speed, it sequentially connects to the distributed light receiving ends 2a that are lined up at a constant pitch, and receives the light sent from the light source light receiving end 3a through the light projection and distribution optical fiber 3. Light is sequentially transmitted to end 2. The movement locus of the light distribution moving end 3b is selected to match the arrangement shape of the distribution light receiving end 2a of the light emitting optical fiber 2. For example, in FIG. 1, the light distributing moving ends 3b of the light emitting and distributing optical fibers 3 are in contact with the distributed light receiving ends 2a of the light emitting optical fibers 2 arranged in a perfect circle, and the rotation axis passing through the light source 1 is The rotation is made to rotate intermittently in the direction of arrow X, for example, and extremely fast rotation is possible by such rotation in one direction. When one optical fiber 3 for light projection and distribution is used as shown in Fig. 1, that one
Due to the rotation, light is transmitted once over the entire row of light emitting ends 2b of the light emitting optical fiber 2, and therefore, one scan of the film-like object 9 is performed as described later. When the speed is high, for example, as shown in FIG. 2, a plurality of light emitting and distributing optical fibers 3 integrated at equal angular intervals are used and rotated, thereby reducing the number of scans per time. You can increase the number of times. Furthermore, if the distributed light receiving ends 2a of the light emitting optical fiber 2 are lined up in a straight line, the light distributing moving end 3b will reciprocate while being in contact with it. Only one optical fiber will be used. As described above, a light projecting unit is constituted by the light source 1, the light projecting optical fiber 2, and the light projecting and distributing optical fiber 3, and thus the light from the light source 1 is transmitted through the light projecting and distributing optical fiber 3 to each light projecting optical fiber 2. The light is rapidly distributed one after another and projected onto the film-like material 9 from the light projecting end 2b.

4は光フアイバーから成る受光眼であり、多数
の受光眼4が膜状物9の前記片面とは反対側でそ
の端面4aが投光用光フアイバー2の投光端2b
と対向する位置に並べられていて投光端2bから
放光され膜状物9を透過して来た光を受光する。
ところで投光用光フアイバー2の投光端2bの放
光角(投光される光の最大開き角度)と受光眼4
が受光し得る光の最大開き角度(受光角と言う)
との関係をどのようにするかは本発明における重
要な点である。本発明者等はこの放光角と受光角
とが同じである投光端2bと受光眼4の端面とで
は膜状物9の拡散透過光成分は殆んど検出されな
いが、受光眼4の受光角が少なくとも投光端2b
の放光角を超える場合にはじめて上記検出が可能
であることを見出したのである。そして膜状物9
の拡散程度にもよるが、前者は10〜30度、後者は
50〜70度の範囲にあることが好ましい。このよう
な要件を満たすためには次の態様を採ることが有
効である。
Reference numeral 4 denotes light-receiving eyes made of optical fibers, and a large number of light-receiving eyes 4 are on the side opposite to the one side of the film-like material 9, and the end surface 4a thereof is the light-emitting end 2b of the light-emitting optical fiber 2.
They are arranged in positions facing each other and receive light emitted from the light emitting end 2b and transmitted through the film-like material 9.
By the way, the emission angle of the light emitting end 2b of the light emitting optical fiber 2 (maximum opening angle of the emitted light) and the light receiving eye 4
The maximum opening angle of light that can be received by (referred to as acceptance angle)
An important point in the present invention is how to establish a relationship with The present inventors have found that the diffuse transmitted light component of the film-like substance 9 is hardly detected between the light emitting end 2b and the end face of the light receiving eye 4, where the light emission angle and the light receiving angle are the same, but the light component of the diffused transmitted light of the light receiving eye 4 is The receiving angle is at least at the light emitting end 2b
They discovered that the above detection is possible only when the emission angle exceeds . and membranous material 9
Depending on the degree of diffusion, the former is 10 to 30 degrees, the latter
Preferably, the angle is in the range of 50 to 70 degrees. In order to satisfy such requirements, it is effective to adopt the following aspect.

(i) 投光用光フアイバー2の投光端2bに使用光
線の吸収性のよい材質のスポツトを取り付け、
放光角を絞つておく。
(i) Attach a spot made of a material that has good absorption of the light beam to be used to the light emitting end 2b of the light emitting optical fiber 2,
Narrow down the emission angle.

(ii) 投光端2bの先端に凸レンズ系を設けて放光
角を小さくしておく。
(ii) A convex lens system is provided at the tip of the light emitting end 2b to reduce the light emission angle.

(iii) 投光用光フアイバー2の屈折率分布を変える
ことにより放光角を小さくしておく。例えばス
テツプインデツクス型光フアイバーの場合、コ
アの屈折率をn1、クラツドの屈折率をn2とする
と放光角はsin-12 12 2で表わされるのでn2 1
−n2 2を正の範囲で小さくすれば良い。
(iii) The emission angle is made small by changing the refractive index distribution of the light emission optical fiber 2. For example, in the case of a step index type optical fiber, if the refractive index of the core is n 1 and the refractive index of the cladding is n 2 , the emission angle is expressed as sin -12 12 2 , so n 2 1
-n 2 2 can be made small within a positive range.

(iv) 受光眼4の先端に凹レンズ系を設けて受光角
を大きくしておく。
(iv) A concave lens system is provided at the tip of the light-receiving eye 4 to increase the light-receiving angle.

(v) 受光眼4に使用される光フアイバーの屈折率
分布を変えることにより受光角を大きくしてお
く。例えばステツプインデツクス型光フアイバ
ーの場合前記(iii)とは逆にn2 1−n2 2を大きくすれば
良い。
(v) The light-receiving angle is increased by changing the refractive index distribution of the optical fiber used in the light-receiving eye 4. For example, in the case of a step index type optical fiber, n 2 1 −n 2 2 may be increased, contrary to the above (iii).

以上の各態様の単独または二つ以上を採れば容
易に放光角を大きく或は受光角を小さくせしめて
前記条件を充足せしめることができる。第3図は
上記態様(i)による投光端2bの実施例を示したも
ので、直径1mmの投光用光フアイバー2の先端を
黒色ポリエチレンの固定具2b′で0.2mmの間隔で
固定すると固定具2b′を投光用光フアイバー2の
先端よりも更に6mm長く突出せしめて放光角を20
度に絞つたものである。そして同じ光フアイバー
を固定具2b′の突出部なしで受光眼4に使用した
場合の受光角は60度であつた。
By adopting one or more of the above aspects, the above conditions can be easily satisfied by increasing the light emission angle or decreasing the light reception angle. FIG. 3 shows an embodiment of the light emitting end 2b according to the above embodiment (i), in which the tip of the light emitting optical fiber 2 with a diameter of 1 mm is fixed with black polyethylene fixtures 2b' at intervals of 0.2 mm. The fixture 2b' is made to protrude 6 mm longer than the tip of the light emitting optical fiber 2 to increase the light emission angle by 20 mm.
It is narrowed down to a certain degree. When the same optical fiber was used for the light-receiving eye 4 without the protrusion of the fixture 2b', the light-receiving angle was 60 degrees.

5は光フアイバーから成る複数個の送光路であ
り、複数個の各受光眼4が受光状態(投光用光フ
アイバー2の投光端2bから投光されて膜状物9
を透過した光を受光する状態)となつて受光した
光を各別に後記する受光素子7まで送光する。複
数個を具体的にいくつとするかは個々の場合にお
いて膜状物9の透過光が拡散する範囲にいくつの
受光眼4が含まれるかにより定めれば良いが、若
干の余裕を持つのが好ましい。送光路5の態様の
2つの代表例を第4図と第5図とに示した。第4
図ではほぼ隣接して並べられている受光眼4と同
様の送光路用の光フアイバー5′が各受光眼4に
別々に接続されており(この場合受光眼4と光フ
アイバー5′とは各受光眼4を一端とする光フア
イバー5′であつても良い)、任意の受光眼4より
その並び順に従つて順次数えて複数個の受光眼4
にそれぞれ接続されている光フアイバー5′が当
該複数個の受光眼4が受光状態となつたときに各
受光眼4からの光を各別に送光する送光路5とな
る。そして次の瞬間に受光状態となる複数個の受
光眼4が1つ隣りにずれるに従い、受光した光を
送光する光フアイバー5′も自動的にずれて新た
な送光路5となり、かくしてすべての各受光眼4
にそれぞれ接続された光フアイバー5′が設けら
れていることが送光路5を備えたことになるので
ある。しかして後記するように送光路5の末端は
各送光路5毎に別々に受光素子7に接続されてい
るから、送光路5の末端では第4図の如く次のよ
うに束にまとめられる。すなわち、例えば受光状
態となる受光眼4の数、従つてそれに対応する複
数の送光路5の数が例えば7個の場合、受光眼4
の並びの最端より順次にから付された番号を以
てそれに接続された光フアイバー5′の番号とす
れば、7つ置きの番号を集めた各群、すなわち
(,,,……),(,,,……),,
,,……),(,,,……),(,,
,……),(,,……),及び(,,
,……)の各群のそれぞれ一つの束(第4図で
順次に○
Reference numeral 5 denotes a plurality of light transmission paths made of optical fibers, in which each of the plurality of light receiving eyes 4 is in a light receiving state (light is emitted from the light emitting end 2b of the light emitting optical fiber 2 and the film-like object 9
(a state in which the light transmitted through the light receiving element 7 is received) and the received light is transmitted to a light receiving element 7, which will be described separately later. The specific number of plurality may be determined in each case depending on how many light-receiving eyes 4 are included in the range in which the transmitted light of the film-like substance 9 is diffused, but it is preferable to have some margin. preferable. Two representative examples of the configuration of the light transmission path 5 are shown in FIGS. 4 and 5. Fourth
In the figure, optical fibers 5' for the light transmission path similar to the light-receiving eyes 4 arranged almost adjacent to each other are separately connected to each light-receiving eye 4 (in this case, the light-receiving eyes 4 and the optical fibers 5' are each (It may be an optical fiber 5' with the light receiving eye 4 as one end), and a plurality of light receiving eyes 4 are counted sequentially from any light receiving eye 4 according to the order in which they are arranged.
The optical fibers 5' respectively connected to the light-receiving eyes 4 become light transmission paths 5 that individually transmit the light from each light-receiving eye 4 when the plurality of light-receiving eyes 4 enter the light-receiving state. Then, as the plurality of light-receiving eyes 4, which will be in the light-receiving state at the next moment, are shifted one by one, the optical fiber 5' that transmits the received light is also automatically shifted and becomes a new light-transmitting path 5, and thus all Each light receiving eye 4
The provision of the optical fibers 5' connected to the optical fibers 5' means that the optical transmission path 5 is provided. As will be described later, since the ends of the light transmission paths 5 are connected to the light receiving elements 7 separately for each light transmission path 5, the ends of the light transmission paths 5 are bundled as shown in FIG. 4 as follows. That is, for example, when the number of light receiving eyes 4 in the light receiving state and therefore the number of the plurality of light transmission paths 5 corresponding thereto is seven, for example, the light receiving eyes 4
If the numbers assigned sequentially from the end of the sequence are the numbers of the optical fibers 5' connected to it, each group of every seventh number, ie (,,,...), (, ,,...),,
,,...),(,,,...),(,,
,……),(,,……),as well as(,,
,...) in each group (○ in sequence in Figure 4)

Claims (1)

【特許請求の範囲】 1 次の(イ),(ロ)及び(ハ)の各部から成ることを特徴
とする膜状物の曇り価測定装置、 (イ) 光源1と、膜状物9の片面から一定距離の位
置に投光端2bとしての一端を該片面に向けて
ほぼ幅方向に沿つて一列状にほぼ隣接して並べ
られておりその並び順に従つて分配光受入端2
aとしての他端が一定ピツチで並べられている
多数の投光用光フアイバー2と、光源光受入端
3aとしての一端が該光源1から受けた光を光
分配移動端3bとしての他端が移動しながら該
投光用光フアイバー2の分配光受入端2aに順
次接続して送光する所定本数の投光分配用光フ
アイバー3とから成る投光部、 (ロ) 前記膜状物9の他面側で前記投光用光フアイ
バー2の投光端2bと対向する位置に並べられ
ている光フアイバーから成る受光眼4を有し、
該受光眼4と該投光端2bとの間において受光
眼4の受光し得る最大開き角が投光端2bの放
光角より大きい関係を有し、前記投光用光フア
イバー2の投光端2bからの光10を受けて受
光状態となつた各受光眼4からの光を各別に送
光する光フアイバーから成る複数個の送光路5
を備えた受光部、 (ハ) 該受光部の各送光路5の光送出端6にそれぞ
れ接続される受光素子7と該受光素子7が検出
した光量に対応した電気信号を演算して前記膜
状物9の曇り価を測定する演算回路8とを備え
た信号処理部。
[Scope of Claims] 1. A device for measuring haze value of a film-like material characterized by comprising the following parts (a), (b), and (c): (a) a light source 1 and a film-like material 9; Distributed light receiving ends 2 are arranged at a certain distance from one surface in a line substantially adjacent to each other along the width direction with one end as the light emitting end 2b facing the one surface, and the distributed light receiving ends 2 are arranged in a line substantially adjacent to each other along the width direction.
A large number of light emitting optical fibers 2 are arranged at a constant pitch, and one end as a light source light receiving end 3a receives light from the light source 1, and the other end as a light distribution moving end 3b receives light from the light source 1. (b) a light projecting section comprising a predetermined number of light projecting and distributing optical fibers 3 that sequentially connect to the distributed light receiving ends 2a of the light projecting optical fibers 2 while moving and transmitting light; It has a light-receiving eye 4 made of optical fibers arranged in a position facing the light-emitting end 2b of the light-emitting optical fiber 2 on the other side,
There is a relationship between the light-receiving eye 4 and the light-emitting end 2b, in which the maximum opening angle at which the light-receiving eye 4 can receive light is larger than the light emission angle of the light-emitting end 2b, and the light emitted from the light-emitting optical fiber 2 is A plurality of light transmission paths 5 each made of an optical fiber that individually transmits light from each light receiving eye 4 that has received light 10 from the end 2b and is in a light receiving state.
(c) a light receiving element 7 connected to the light transmitting end 6 of each light transmitting path 5 of the light receiving part, and calculating an electric signal corresponding to the amount of light detected by the light receiving element 7 to a signal processing section including an arithmetic circuit 8 for measuring a haze value of a shaped object 9;
JP9688282A 1982-06-08 1982-06-08 Haze value measuring apparatus for film-like object Granted JPS58214842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9688282A JPS58214842A (en) 1982-06-08 1982-06-08 Haze value measuring apparatus for film-like object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9688282A JPS58214842A (en) 1982-06-08 1982-06-08 Haze value measuring apparatus for film-like object

Publications (2)

Publication Number Publication Date
JPS58214842A JPS58214842A (en) 1983-12-14
JPH0445773B2 true JPH0445773B2 (en) 1992-07-27

Family

ID=14176772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9688282A Granted JPS58214842A (en) 1982-06-08 1982-06-08 Haze value measuring apparatus for film-like object

Country Status (1)

Country Link
JP (1) JPS58214842A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634676Y2 (en) * 1986-06-12 1994-09-07 株式会社サイニクス Test solution spectroscopic analyzer
US5019710A (en) * 1989-03-30 1991-05-28 Measurex Corporation Optical system for detecting properties of traveling sheet materials
FI86340C (en) * 1990-10-31 1992-08-10 Labsystems Oy Procedure for conducting light
US7142307B1 (en) * 1991-03-01 2006-11-28 Stark Edward W Method and apparatus for optical interactance and transmittance measurements
JP4300102B2 (en) 2003-12-05 2009-07-22 株式会社三菱化学ヤトロン Analyzer and collector
JP6016777B2 (en) * 2013-12-27 2016-10-26 三菱重工業株式会社 Gas component concentration distribution measuring device and exhaust gas denitration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153132U (en) * 1974-10-21 1976-04-22
JPS5172447A (en) * 1974-12-20 1976-06-23 Mitsubishi Rayon Co
JPS5229631U (en) * 1975-08-22 1977-03-02
JPS5233778A (en) * 1975-09-11 1977-03-15 Suga Shikenki Kk Direct reading type clouiness value measuring device
JPS5294017A (en) * 1976-02-03 1977-08-08 Ricoh Co Ltd Scanner for facsimile

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5153132U (en) * 1974-10-21 1976-04-22
JPS5172447A (en) * 1974-12-20 1976-06-23 Mitsubishi Rayon Co
JPS5229631U (en) * 1975-08-22 1977-03-02
JPS5233778A (en) * 1975-09-11 1977-03-15 Suga Shikenki Kk Direct reading type clouiness value measuring device
JPS5294017A (en) * 1976-02-03 1977-08-08 Ricoh Co Ltd Scanner for facsimile

Also Published As

Publication number Publication date
JPS58214842A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
US6449036B1 (en) Sensor unit, process and device for inspecting the surface of an object
US5623553A (en) High contrast fingerprint image detector
CA1192417A (en) Optical system for analysing the surface of a fibrous web
EP2239552B1 (en) Image picking-up device for lens
EP0768542B2 (en) Optical distance measuring apparatus
US4484070A (en) Sheet detecting device
JPH0445773B2 (en)
JP2004037377A (en) Reflection type sensor, filter for reflection type sensor used therefor, and detection object detection method using filter
KR101738188B1 (en) Relief pattern detection device
US4227091A (en) Optical monitoring apparatus
JPH0640076B2 (en) Defect inspection system using line light source
JP5514845B2 (en) Light guide, image reading apparatus, and image forming apparatus
JP3248445B2 (en) Surface abnormality detection method and surface condition measuring device for multi-core optical fiber
JPS597926B2 (en) position detection device
US20170241773A1 (en) Surface shape measuring apparatus and defect determining apparatus
US20240210327A1 (en) Pinhole detection device
JPS607425A (en) Light emitting element
WO2016098872A1 (en) Surface shape measuring apparatus and defect determining apparatus
JPH0320722Y2 (en)
JP5190226B2 (en) Transmission type optical area sensor
JPS62129746A (en) Edge pinhole detector
JPH03163340A (en) Method and apparatus for detecting defect at drum part of bottle
JPH03182702A (en) Light guide
JPS63295948A (en) Defect detector for light transmitting sheet
JPS63295949A (en) Agc apparatus for transmission scattered light of identification type defect detector