JPH0445574B2 - - Google Patents

Info

Publication number
JPH0445574B2
JPH0445574B2 JP32783487A JP32783487A JPH0445574B2 JP H0445574 B2 JPH0445574 B2 JP H0445574B2 JP 32783487 A JP32783487 A JP 32783487A JP 32783487 A JP32783487 A JP 32783487A JP H0445574 B2 JPH0445574 B2 JP H0445574B2
Authority
JP
Japan
Prior art keywords
less
steel
cutting
inclusions
wide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32783487A
Other languages
Japanese (ja)
Other versions
JPH01168848A (en
Inventor
Tooru Karasutani
Kazuichi Tsubota
Kaneaki Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP32783487A priority Critical patent/JPH01168848A/en
Publication of JPH01168848A publication Critical patent/JPH01168848A/en
Publication of JPH0445574B2 publication Critical patent/JPH0445574B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は自動車部品のクランクシヤフト、ギヤ
ー、ピン類などに使用する広範囲の切削速度域で
快削性を有し、しかも、機械的性質などの特性が
良好なことを特徴とする自動車部品用広域快削鋼
に関する。 (従来技術とその問題点) わが国では、自動車部品にSもしくはPbを添
加した快削鋼を大量に使用している。これらの鋼
はハイス工具を用いる低速切削では優れた被削性
を示すが、超硬合金工具による高速切削では十分
な快削性が得られない。 それゆえ、業界では、ハイスと超硬合金工具と
を用いる広い範囲の切削条件でも十分な被削性が
得られる広域快削鋼の開発を進め、S添加とCa
脱酸とを組み合わせる提案がなされている。(例
えば、特公昭51−6088、昭51−30845、昭54−
3126、昭54−16445参照) しかしながら、これらの広域快削鋼は基本鋼に
比し、機械的性質の劣化、特に靱性、冷間加工
性、材力の異方性などの低下が大きく、使用が制
限されてきた。そこで、不純物量を規制し、例え
ば、S量を0.010%以下とし、O量を100ppm以下
としたり(特公昭61−10027)O量をさらに低値
の25〜40ppmに規制することも行われているが、
(特公昭61−16337)需要家から要求される広域で
の被削性と材力とを同時に満足させることが極め
て困難な状況にある。一方、基本鋼の側からみる
と、真空脱ガス、取鍋精錬技術が普及し、高純度
鋼(低P,S,O,Cu,Sn,Pb材料をさす)の
製造が可能となつたが、これらの鋼において切削
加工が困難となる問題が発生し、切削加工条件の
高速化のニーズとあいまつて、機械的性質の良好
な新しい自動車部品用広域快削鋼の出現が望まれ
ている。 (発明の目的) 本発明は前述の従来技術の問題点を解決するた
めになされたものであつて、機械的性質は一般の
真空脱ガスした基本鋼とほぼ同等であり、特に靱
性の良い、新規な自動車部品用広域快削鋼を提供
することを目的とするものである。 (発明の構成) かかる目的達成のため、本発明者らはCa−S2
元系快削鋼について高純度化(低P,Cu,Sn化)
と低酸素化による介在物の形態、量のコントロー
ルの組み合わせを検討し、60ton塩基性電気炉で
の溶製実験により改良研究を重ねた結果、鋼中の
不純物元素であるPを0.020%以下、Cuを0.15%
以下、Snを0.020%以下に規制し、さらにAl0.005
〜0.015%、Ca15〜60ppmとした鋼においてO量
を一般脱ガス鋼と同等、もしくはそれ以下の5〜
15ppmとすれば高純度化により靱性が改善され、
また、鋼質に有害な影響をおよぼす酸化物系介在
物は著しく少なくなり、微細化して、後から大量
に析出する硫化物系介在物中に核としてとりこま
れるため、酸化物系介在物の90%以上が硫化物系
介在物中に完全にくるみこまれた形で存在するよ
うにコントロールできることがわかつた。また硫
化物系介在物を形成しているMnSの一部もCaS
に置換されることにより熱間加工で変形し難くな
るため機械的性質の向上、材力の異方性の改善が
行われることを見い出した。また、被削性そのも
のはSを0.030〜0.060%、Caを15〜60ppm、Alを
0.005〜0.015%とすれば、基本鋼より著しく向上
することを見い出し、この効果はとくに炭素鋼、
合金鋼において顕著であることから本発明をなし
たものである。 本願における第一の発明鋼はC 0.10〜0.70
%、Si 0.30%以下、Mn 0.30〜1.70%、P0.020%
以下、S 0.030〜0.060%、Cu 0.15%以下、Sn
0.020%以下、Al 0.005〜0.015%、Ca 15〜
60ppm、0.5〜15ppm残部は鉄および不可避不純
物からなり、酸化物系介在物の90%以上が硫化物
系介在物中にくるみこまれた組織を有する、広範
囲の切削速度域で被削性が改善され、機械的性質
が良好なことを特徴とする自動車部品用広域快削
炭素鋼である。この鋼はSを〜0.060%まで添加
し、P,Cu,Snの不純物元素量を規制し、O量
を極低値としたため、酸化物系介在物量は著しく
少なくなり、しかもその大きさが細かくなるの
で、後から大量に析出してくる硫化物系介在物の
核として働く。それゆえ、酸化物系介在物の90%
以上を硫化物系介在物中に完全にくるみこむよう
にコントロールできる。また、硫化物系介在物を
形成しているMnSの一部はCaの効率的な添加に
よつてCaSに置換されて、熱間加工で変形し難く
なるため、機械的性質は一般の真空脱ガスした基
本鋼と同等以上の水準となる。また、Al量を規
制してアルミナの生成を阻止し、CaとSとの複
合添加を行つているため、ハイス、超硬合金工
具、いずれの切削でも基本鋼に比し、優れた被削
性が得られる。それゆえ、自動車部品のクランク
シヤフト、ギヤー、ピン類などの加工材料として
最適である。 本願における第二の発明鋼は第一の発明鋼に
Ni 5%以下、Cr 1.50%以下、Mo 0.5%以下の
合金元素を1種以上添加して、機械的性質、浸
炭・焼入れ焼もどしなどの熱処理特性の一層の改
善、向上を計つた自動車部品用広域快削合金鋼で
あり、基本鋼と同等以上の材力特性と基本鋼より
優れたハイス、超硬合金工具寿命を有するため、
自動車部品のギヤー用材料として最適である。 本願における第三の発明鋼は、第二の発明鋼に
Ti 0.5%以下、Nb 0.1%以下、V 0.1%以下、
Zr 0.1%の1種以上を添加して、これらの元素に
より結晶粒度特性を向上させ、機械的性質、熱処
理特性を大幅に改善させた自動車部品用広域快削
合金鋼であり、基本鋼より優れた材力特性とハイ
ス、超硬合金工具寿命を併せて保有するため、高
馬力四輪駆動車などの高強度を要求されるギヤー
用材料として最適である。 (作用) 次に、第一、第二及び第三の発明鋼の成分範囲
を前述のごとく限定した理由を以下に述べる。な
お、とくにことわりがない限り、本明細書におい
て[%]は重量%である。 C(炭素) 自動車部品のクランクシヤフト、各種ギヤー、
ピン類には焼入焼もどし、あるいは焼ならした炭
素鋼、および浸炭、浸炭窒化した合金鋼が用いら
れている。 浸炭鋼のコアーカタサは最低でもHRC25以上
必要なので、C量の下限は0.10%とする。一方、
焼入焼もどし用鋼の実用的なC量の上限は0.7%
であることから、本発明鋼のC量については上限
を0.7%とする。 Si(ケイ素) 鋼中のSiは固溶強化および焼もどし軟化抵抗性
の向上に有効であり、焼入性、材力を向上せしめ
るが、フエライトを硬化して被削性を阻害するた
め、上限を0.35%とする。 Mn(マンガン) 鋼中のMnは焼入性の調整に大きな役割を有
し、とくに炭素鋼の焼入性の向上には廉価なこと
もあつて好んで用いられている。焼入性の調整に
は2%までで十分であり、これ以上必要な場合は
CrやNiなどで調整することが好ましい。よつて
Mnの上限を1.7%とする。一方、0.30%以下にす
ると焼入性の確保のため他の元素を必要とするの
で0.3%を下限とする。 P(リン) 鋼中のPは靱性を減じ、有害な元素である。P
量はできる限り低い方が望ましい。P量低減によ
る靱性改善硬化はS量を0.030〜0.060%とし、
Al,Ca,O量を規制すると0.020%から顕著とな
るため、経済性をも考慮して上限を0.020%とす
る。 S(イオウ) 鋼中のSは主としてMnS系硫化物の形で存在
し、鋼の被削性を向上させるが靱性を低下させ
る。それゆえ、S添加による靱性の低下をP,
Cu,Sn量の低減によつてカバーするとともに、
Caを添加してAl,O量を規制することにより、
有害な酸化物系介在物を著しく減少微細化させ、
後から大量に析出してくる硫化物系介在物中に核
として取り込ませる。そうすると、鋼中の酸化物
系介在物の90%以上が硫化物系介在物中にほぼ完
全にくるみこまれる組織となり、またCa添加に
よつてMnS系硫化物の一部がCaSに置換され、
熱間加工で変形し難くなるため機械的性質が向上
し、同時に被削性もさらに改善される。S量が
0.060%を越えると前記した機械的性質の改善硬
化は小さくなるので上限を0.060%とする。 一方、S量が0.030%以下となると、ハイス工
具寿命改善効果が少なくなり、また、前記した硫
化物系介在物が酸化物系介在物をくるみこむ効果
が小さくなるため下限を0.030%とする。 CU(銅) 鋼中のCuとPと同時に靱性を減じ、熱間加工
性を低下させる有害な元素であり、Cu量はでき
る限り低値とする必要がある。しかしながら、電
気炉精錬では除去が困難で溶解材料を厳選するし
かない。 それゆえ、経済性を考慮し上限を0.15%とす
る。 Sn(スズ) 鋼中のSnはPと同時に靱性を減じ、有害な元
素である。Sn量はできる限り低値とすべきであ
る。溶鋼の真空脱ガス処理と溶解材料の厳選によ
つて0.020%までの低減は十分可能である。経済
性をも考慮して上限を0.020%とする。 Al(アルミニウム) 鋼中のAlは酸素レベルの調節、結晶粒度の調
整に効果的に作用する。しかしながら、鋼中に生
成してくるアルミナが超硬合金工具による高速切
削性を阻害するため、Al量はできる限り低値と
する必要がある。O量が5〜15ppm,Caが15〜
60ppmにてAl量が0.015%を越えると、前記した
高速切削性の改善効果が小さくなるので、上限を
0.015%とする。また、Al量が0.005%以下になる
と、O量を15ppm以下に保持することが困難にな
るので下限を0.005%とする。 Ca(カルシウム) 鋼中のCaは主としてCaOもしくはCaSの形で
存在し他の酸化物/硫化物と容易に複合化合物を
形成する。これらの複合化合物が高速切削時、超
硬合金工具面に保護層を形成して工具寿命を従来
鋼の数倍まで延長することが知られている。この
効果はO量を5〜15ppm,Al量を0.005〜0.015%
とすると15ppmから顕著となるので下限を15ppm
とした。また60ppmを越えると前記した効果は飽
知するため上限を60ppmとする。 O(酸素) 鋼中のOは酸化物系介在物の形で存在し、鋼の
機械的性質に有害であり、できる限り低値とする
必要がある。Al 0.015%にてCaを5〜15ppmと
する時、低減可能なO量は5ppmである。それゆ
え、O量の下限は5ppmとする。一方、O量が
15ppmを越えると機械的性質の改善効果がほとん
どなくなるので上限を15ppmとする。 Ni(ニツケル) 鋼にニツケルを添加する目的は必要な焼入性を
あたえ、焼入焼もどし後に機械的性質を向上させ
るためである。本発明鋼で焼入性、機械的性質を
必要とする場合にNiを大量に添加する。一方、
Ni量が多くなると残留オーステナイトが過剰と
なつて表面カタサが低下し、自動車部品に必要な
規格カタサを満たすことが困難となる。それゆ
え、上限は5%とする。 Cr(クロム) 鋼にCrを添加する目的は必要な焼入性をあた
え、浸炭などの熱処理作業を容易にするためであ
る。しかし、1.50%を越えると複炭化物が生成し
浸炭が困難になるので上限を1.50%とする。 Mo(モリブデン) 鋼にMoを添加する目的は必要な焼入性をあた
え、機械的性質を改善することにある。しかし、
添加量が多くなるとその効果が小さくなる。ま
た、Moは高価なため単独添加より複合添加が好
ましい。それゆえ、上限を0.5%とする。 Ti(チタン) Tiは鋼中の炭素、窒素などと結びつき、細か
い析出物となつて結晶粒を微細化し、機械的性質
を改善する。添加効果と経済性の面から上限を
0.5%とする。 Nb(ニオブ) NbはTiと同じく結晶粒を微細化し常温、高温
における強さを増加する。添加効果はTiより大
きいため、経済性を考慮し、上限を0.1%とする。 V(バナジウム) Vは鋼中に溶けこみフエライトを強化するとと
もに結晶粒を微細化し、その成長を抑制して合金
元素の特性を高める。添加効果と経済性の面から
上限を0.1%とする。 Zr(ジルコニウム) ZrはTi,Nbと同様に結晶粒を微細化し、機械
的性質を改善する。添加効果と経済性の面から上
限を0.1%とする。 (実施例) つぎに、実施例によつて本発明をさらに説明す
る。基本鋼種にはS53C,S35C,SMn443,
SAE2330,SCr420,SCr440,SAE4063,
SNC631,SAE4620,SCM420,SNCM420,
SNCM815の類似鋼合計12種類を採用した。試験
した第一の発明鋼(No.Al〜A5,B1,2),第二
の発明鋼(A6,A7,A11〜A13,A16),第三の
発明鋼(A8〜A10,A14,A15,A17〜A20)お
よび比較鋼(No.H1〜H14)合計36ヒートの化学
成分を表1に示す。 No.Al〜A20の第一、第二、第三の発明鋼は
60ton塩基性電気炉で溶製し、C,Mn,P,S,
Ni,Cr,Mo,Cu,Sn,Alなどの合金元素を調
整し、ほぼ完全にスラツグを取り除いた溶鋼を高
アルミナ質レンガをライニングした取鍋に出鋼
し、ついで12〜15分間、RH方式による真空脱ガ
ス処理を行い、(到達真空度0.1torr)、ついで取
鍋上部を耐火物でライニングした蓋でシールし、
蓋にとりつけたガイドを介して直径約9mmのCa
−Si合金ワイヤーを取鍋底部に垂直
(Field of Industrial Application) The present invention is used for crankshafts, gears, pins, etc. of automobile parts, and has free machinability over a wide cutting speed range, and has good properties such as mechanical properties. Concerning the characteristic wide-area free-cutting steel for automobile parts. (Prior art and its problems) In Japan, a large amount of free-cutting steel with added S or Pb is used in automobile parts. Although these steels exhibit excellent machinability in low-speed cutting using high-speed steel tools, sufficient free machinability cannot be obtained in high-speed cutting with cemented carbide tools. Therefore, the industry is progressing with the development of wide-area free-cutting steels that can obtain sufficient machinability under a wide range of cutting conditions using high speed steel and cemented carbide tools, and
Proposals have been made to combine this with deoxidation. (For example, Special Publications 1971-6088, 1984-30845, 1984-
3126, 1984-16445) However, compared to basic steels, these wide-area free-cutting steels suffer from significant deterioration in mechanical properties, especially in toughness, cold workability, and anisotropy of material strength, making them difficult to use. has been restricted. Therefore, the amount of impurities is regulated, for example, the amount of S is set to 0.010% or less and the amount of O is set to 100 ppm or less (Japanese Patent Publication No. 61-10027), and the amount of O is regulated to an even lower value of 25 to 40 ppm. There are, but
(Special Publication No. 61-16337) It is extremely difficult to simultaneously satisfy the demands of customers for machinability over a wide area and material strength. On the other hand, from the perspective of basic steel, vacuum degassing and ladle refining technologies have become widespread, and it has become possible to manufacture high-purity steel (referring to low-P, S, O, Cu, Sn, and Pb materials). However, problems have arisen in which cutting is difficult in these steels, and in conjunction with the need for faster cutting conditions, there is a desire for the emergence of new wide-area free-cutting steels with good mechanical properties for automotive parts. (Object of the Invention) The present invention has been made in order to solve the problems of the prior art described above, and has mechanical properties almost equivalent to general vacuum degassed basic steel, and has particularly good toughness. The purpose is to provide a new wide-area free-cutting steel for automobile parts. (Structure of the Invention) In order to achieve this purpose, the present inventors have developed Ca-S2
High purity of original free-cutting steel (lower P, Cu, Sn)
We investigated the combination of controlling the form and amount of inclusions by lowering oxygen levels and conducted improvement research through melting experiments in a 60-ton basic electric furnace. As a result, we were able to reduce the impurity element P in steel to 0.020% or less. Cu 0.15%
Below, Sn is regulated to 0.020% or less, and Al0.005
In steel with ~0.015% and Ca15~60ppm, O content is equal to or lower than general degassing steel.
If it is 15ppm, toughness will be improved due to high purity,
In addition, oxide inclusions that have a detrimental effect on steel quality are significantly reduced, refined, and incorporated as nuclei in the sulfide inclusions that precipitate in large quantities later. It was found that it is possible to control so that over 90% of the sulfide-based inclusions are completely encapsulated. In addition, some of the MnS forming sulfide inclusions is also CaS.
It has been found that by replacing with , it becomes difficult to deform during hot working, thereby improving mechanical properties and anisotropy of material strength. In addition, the machinability itself is determined by S content of 0.030 to 0.060%, Ca content of 15 to 60 ppm, and Al content of 0.030 to 0.060%.
It was found that when the concentration is 0.005 to 0.015%, the improvement is markedly higher than that of basic steel, and this effect is particularly evident in carbon steel,
The present invention was developed because this phenomenon is noticeable in alloy steel. The first invention steel in this application has C 0.10 to 0.70
%, Si 0.30% or less, Mn 0.30-1.70%, P0.020%
Below, S 0.030-0.060%, Cu 0.15% or less, Sn
0.020% or less, Al 0.005~0.015%, Ca 15~
60ppm, the rest 0.5-15ppm consists of iron and unavoidable impurities, and has a structure in which more than 90% of oxide inclusions are wrapped in sulfide inclusions, improving machinability over a wide cutting speed range. This is a wide-area free-cutting carbon steel for automobile parts that is characterized by its excellent mechanical properties. This steel has S added up to ~0.060%, the amount of impurity elements P, Cu, and Sn is controlled, and the amount of O is set to an extremely low value, so the amount of oxide-based inclusions is significantly reduced, and their size is fine. Therefore, it acts as a nucleus for sulfide-based inclusions that will later precipitate in large quantities. Therefore, 90% of oxide inclusions
The above can be controlled so that they are completely wrapped in sulfide inclusions. In addition, some of the MnS that forms sulfide inclusions is replaced by CaS through the efficient addition of Ca, making it difficult to deform during hot working, so the mechanical properties are different from that of general vacuum decomposition. The level is equivalent to or higher than gasified basic steel. In addition, the amount of Al is regulated to prevent the formation of alumina, and the combined addition of Ca and S provides superior machinability compared to basic steel when cutting both high-speed steel and cemented carbide tools. is obtained. Therefore, it is ideal as a processing material for automobile parts such as crankshafts, gears, and pins. The second invention steel in this application is the first invention steel.
For automotive parts with the addition of one or more alloying elements of Ni 5% or less, Cr 1.50% or less, Mo 0.5% or less to further improve mechanical properties and heat treatment properties such as carburizing, quenching and tempering. It is a wide-area free-cutting alloy steel, and has material properties equal to or better than basic steel, and has superior high speed and cemented carbide tool life than basic steel.
It is ideal as a material for gears in automobile parts. The third invention steel in this application is the second invention steel.
Ti 0.5% or less, Nb 0.1% or less, V 0.1% or less,
This is a wide-range free-cutting alloy steel for automotive parts that has been added with one or more types of Zr 0.1% to improve grain size characteristics and significantly improve mechanical properties and heat treatment properties, and is superior to basic steel. It has the same material strength properties as high speed steel and cemented carbide tool life, making it ideal as a material for gears that require high strength, such as in high-horsepower four-wheel drive vehicles. (Function) Next, the reason why the composition ranges of the first, second and third invention steels were limited as described above will be described below. In this specification, [%] is % by weight unless otherwise specified. C (carbon) Automotive parts such as crankshafts, various gears,
Hardened and tempered or normalized carbon steel, and carburized and carbonitrided alloy steel are used for pins. Since the core strength of carburized steel needs to be at least HRC25 or higher, the lower limit of the C content is set at 0.10%. on the other hand,
The practical upper limit of C content in steel for quenching and tempering is 0.7%.
Therefore, the upper limit of the amount of C in the steel of the present invention is set to 0.7%. Si (Silicon) Si in steel is effective in solid solution strengthening and improving temper softening resistance, improving hardenability and material strength, but it hardens ferrite and impedes machinability, so the upper limit is is set to 0.35%. Mn (manganese) Mn in steel plays a major role in adjusting the hardenability, and is particularly preferred for improving the hardenability of carbon steel because it is inexpensive. Up to 2% is sufficient for adjusting hardenability, and if more is required,
It is preferable to adjust with Cr, Ni, etc. Sideways
The upper limit of Mn is set at 1.7%. On the other hand, if it is less than 0.30%, other elements are required to ensure hardenability, so 0.3% is set as the lower limit. P (phosphorus) P in steel reduces toughness and is a harmful element. P
It is desirable that the amount be as low as possible. For toughness improvement hardening by reducing the amount of P, the amount of S is 0.030 to 0.060%,
If the amounts of Al, Ca, and O are regulated, they become noticeable starting from 0.020%, so the upper limit is set at 0.020%, also considering economic efficiency. S (Sulfur) S in steel mainly exists in the form of MnS-based sulfides, which improves the machinability of steel but reduces toughness. Therefore, the decrease in toughness due to S addition is P,
This is covered by reducing the amounts of Cu and Sn, and
By adding Ca and regulating the amount of Al and O,
Significantly reduces and refines harmful oxide inclusions,
It is incorporated as a nucleus into the sulfide-based inclusions that will precipitate in large quantities later. This results in a structure in which more than 90% of the oxide inclusions in the steel are almost completely wrapped in sulfide inclusions, and due to the addition of Ca, some of the MnS sulfides are replaced with CaS.
Since it is difficult to deform during hot working, mechanical properties are improved, and machinability is further improved at the same time. The amount of S
If it exceeds 0.060%, the above-mentioned improvement in mechanical properties will be reduced, so the upper limit is set at 0.060%. On the other hand, if the amount of S is 0.030% or less, the effect of improving the life of a high-speed steel tool will be reduced, and the effect of the sulfide-based inclusions enveloping the oxide-based inclusions will be reduced, so the lower limit is set to 0.030%. CU (Copper) A harmful element that reduces toughness and hot workability at the same time as Cu and P in steel, and the amount of Cu must be kept as low as possible. However, it is difficult to remove with electric furnace refining, and the only option is to carefully select the melted material. Therefore, considering economic efficiency, the upper limit is set at 0.15%. Sn (Tin) Sn in steel reduces toughness at the same time as P, and is a harmful element. The amount of Sn should be kept as low as possible. It is fully possible to reduce it to 0.020% by vacuum degassing treatment of molten steel and careful selection of melting materials. Considering economic efficiency, the upper limit is set at 0.020%. Al (Aluminum) Al in steel effectively controls oxygen levels and grain size. However, the amount of Al needs to be as low as possible because alumina generated in the steel inhibits the high-speed cutting performance of cemented carbide tools. O amount is 5-15ppm, Ca is 15-15ppm
If the Al amount exceeds 0.015% at 60ppm, the above-mentioned effect of improving high-speed machinability will be reduced, so the upper limit should be
It shall be 0.015%. Furthermore, when the Al amount is 0.005% or less, it becomes difficult to maintain the O amount at 15 ppm or less, so the lower limit is set to 0.005%. Ca (Calcium) Ca in steel mainly exists in the form of CaO or CaS and easily forms complex compounds with other oxides/sulfides. It is known that these composite compounds form a protective layer on the cemented carbide tool surface during high-speed cutting, extending the tool life several times that of conventional steel. This effect has an O content of 5 to 15 ppm and an Al content of 0.005 to 0.015%.
Then, it becomes noticeable from 15ppm, so the lower limit is set to 15ppm.
And so. Moreover, since the above-mentioned effect is exhausted when the amount exceeds 60 ppm, the upper limit is set to 60 ppm. O (Oxygen) O in steel exists in the form of oxide inclusions and is harmful to the mechanical properties of steel, so the value must be kept as low as possible. When Ca is 5 to 15 ppm with Al 0.015%, the amount of O that can be reduced is 5 ppm. Therefore, the lower limit of the amount of O is set at 5 ppm. On the other hand, the amount of O
If it exceeds 15 ppm, the effect of improving mechanical properties will be almost gone, so the upper limit is set at 15 ppm. Ni (nickel) The purpose of adding nickel to steel is to provide the necessary hardenability and improve mechanical properties after quenching and tempering. When hardenability and mechanical properties are required for the steel of the present invention, a large amount of Ni is added. on the other hand,
When the amount of Ni increases, residual austenite becomes excessive and the surface roughness decreases, making it difficult to meet the standard roughness required for automobile parts. Therefore, the upper limit is set at 5%. Cr (Chromium) The purpose of adding Cr to steel is to provide the necessary hardenability and facilitate heat treatment operations such as carburizing. However, if it exceeds 1.50%, double carbides are generated and carburization becomes difficult, so the upper limit is set at 1.50%. Mo (Molybdenum) The purpose of adding Mo to steel is to provide the necessary hardenability and improve mechanical properties. but,
The effect becomes smaller as the amount added increases. Further, since Mo is expensive, combined addition is preferable to single addition. Therefore, the upper limit is set at 0.5%. Ti (Titanium) Ti combines with carbon, nitrogen, etc. in steel, becomes fine precipitates, refines crystal grains, and improves mechanical properties. The upper limit has been set in terms of additive effect and economic efficiency.
Set at 0.5%. Nb (niobium) Like Ti, Nb refines crystal grains and increases strength at room and high temperatures. Since the effect of addition is greater than that of Ti, the upper limit is set at 0.1% in consideration of economic efficiency. V (vanadium) V dissolves into steel and strengthens ferrite, refines crystal grains, suppresses their growth, and improves the properties of the alloying element. The upper limit is set at 0.1% from the viewpoint of additive effect and economic efficiency. Zr (Zirconium) Like Ti and Nb, Zr refines crystal grains and improves mechanical properties. The upper limit is set at 0.1% from the viewpoint of additive effect and economic efficiency. (Examples) Next, the present invention will be further explained by examples. Basic steel types include S53C, S35C, SMn443,
SAE2330, SCr420, SCr440, SAE4063,
SNC631, SAE4620, SCM420, SNCM420,
A total of 12 types of steel similar to SNCM815 were used. The first invention steel tested (No.Al~A5, B1, 2), the second invention steel (A6, A7, A11~A13, A16), and the third invention steel (A8~A10, A14, A15, Table 1 shows the chemical components of a total of 36 heats of A17 to A20) and comparative steels (No. H1 to H14). The first, second and third invented steels of No.Al~A20 are
Smelted in a 60ton basic electric furnace, C, Mn, P, S,
After adjusting alloying elements such as Ni, Cr, Mo, Cu, Sn, and Al, the molten steel from which slag has been almost completely removed is tapped into a ladle lined with high alumina bricks, and then heated for 12 to 15 minutes using the RH method. Perform vacuum degassing treatment (achieved vacuum level of 0.1 torr), then seal the top of the ladle with a lid lined with refractory material.
Approximately 9 mm in diameter is fed through a guide attached to the lid.
−Si alloy wire perpendicular to the bottom of the ladle

【表】【table】

【表】 に押し込んでCa添加を行つた。(添加速度〜
5m/sec)ワイヤー添加後、直ちに取鍋底部にと
りつけたポーラスプラグより〜4Kg/mm2の圧力で
窒素ガスを溶鋼中に2分間導入して溶鋼を強制的
に攪拌した後、さらに窒素ガス保護雰囲気下で
2.6ton鋼塊に下注ぎした。 前記したCa−Si合金ワイヤー添加と窒素ガス
による溶鋼攪拌によつてCaの添加歩留20〜50%
がえられる。 No.B1〜B2の第一の発明鋼は90ton塩基性電気
炉で溶解し、取鍋精錬炉(LF炉)に出鋼後、前
記取鍋精錬炉でC,Mn,P,S,Ni,Cr,Mo,
Cu,Sn,Alなどの合金元素を調整した後、役12
分間RH方式による真空脱ガス処理を行い(到達
真空度0.1torr)、ついで、取鍋上部を耐火物でラ
イニングした蓋でシールし、蓋に取り付けたガイ
ドを介して直径約10mmのCa−Si合金ワイヤーを
取鍋底部に垂直に押し込んでCa添加を行つた。 ワイヤー添加終了後、直ちに取鍋底部のポーラ
スプラグより窒素ガスを〜6Kg/mm2の圧力で約2
分間導入し溶鋼を強制的に攪拌した後、ブルーム
(断面寸法370×470mm)に連続鋳造した。 No.H1〜H14の比較鋼は60ton塩基性電気炉で溶
解し、C,Si,Mn,P,S,Ni,Cr,Mo,Cu
などの合金元素を調整した溶鋼を取鍋に出鋼し、
ついで、約15分間RH方式による真空脱ガス処理
を行い、2.6ton鋼塊に下注ぎした。 得られた第一、第二、及び第三の発明鋼の鋼
塊、ブルームおよび比較鋼の鋼塊は丸70mmに圧延
し、焼ならし処理後各種の調査に供した。 まず、丸70mm圧延材の非金属介在物の清浄度を
JIS G0555に定められている点算法により測定し
た。また、ミクロ被検面について酸化物系介在物
の存在形態を調査し、20個の酸化物系介在物が硫
化物系介在物と複合する比率(くるみこまれた比
率)を百分率で比較した。得られた結果を表1の
右端ランに示す。 第一、第二および第三の発明鋼(No.Al〜A20,
B1,B2)は比較鋼(No.H1〜H14)に比し、酸化
物系介在物の量が少なく、しかも、酸化物系介在
物の90%以上が硫化物系介在物にくるみこまれて
いることがわかる。 ついで、表2に第一、第二および第三の発明鋼
と比較鋼の引張強さ、伸び、絞り値、衝撃値、お
よび小野式回転曲げ疲労試験結果を示した。 第一、第二および第三の発明鋼では、伸び、絞
り値、衝撃値、疲労強度、疲労比共に比較鋼より
向上することがわかる。とくに、中炭素鋼
(S53CUS1)において疲労強度の改善度が大き
い。 第一、第二および第三の発明鋼が比較鋼より良
好な機械的性質を示す理由は十分に明らかではな
いが、鋼中の不純物元素(P,Cu,Sn)を極低
値とし、さらに、Al,Ca,O量をコントロール
することにより有害な酸化物系介在物のほとんど
を硫化物系介在物にくるみこんだためと考えられ
る。 表3にはドリル穿孔試験、ハイス工具による切
削試験、および超硬合金工具による切削試験結果
を示す。 第一、第二および第三の発明鋼のドリル穿孔時
間、ハイス工具寿命はいずれも比較鋼よ
[Table] Calcium was added by pressing into the table. (Addition rate ~
5m/sec) Immediately after adding the wire, nitrogen gas was introduced into the molten steel at a pressure of ~4Kg/mm 2 for 2 minutes from a porous plug attached to the bottom of the ladle to forcibly stir the molten steel, and then further nitrogen gas protection was applied. under the atmosphere
It was poured into a 2.6 ton steel ingot. By adding Ca-Si alloy wire and stirring the molten steel with nitrogen gas, the Ca addition yield is 20-50%.
It can be grown. The first invention steels No. B1 to B2 were melted in a 90-ton basic electric furnace and tapped into a ladle refining furnace (LF furnace). Cr, Mo,
After adjusting alloying elements such as Cu, Sn, and Al,
Vacuum degassing treatment is carried out using the minute RH method (achieved vacuum degree of 0.1 torr), then the upper part of the ladle is sealed with a lid lined with refractory material, and a Ca-Si alloy with a diameter of approximately 10 mm is passed through a guide attached to the lid. Ca addition was performed by pushing the wire vertically into the bottom of the ladle. Immediately after adding the wire, apply nitrogen gas through the porous plug at the bottom of the ladle at a pressure of ~6Kg/ mm2 .
After introducing the molten steel for a few minutes and forcibly stirring it, it was continuously cast into a bloom (cross-sectional dimensions: 370 x 470 mm). Comparative steels No.H1 to H14 were melted in a 60 ton basic electric furnace and were made of C, Si, Mn, P, S, Ni, Cr, Mo, Cu.
The molten steel prepared with alloying elements such as
Next, vacuum degassing treatment was performed using the RH method for about 15 minutes, and the mixture was poured into a 2.6 ton steel ingot. The obtained steel ingots of the first, second, and third invention steels, blooms, and comparative steel ingots were rolled to a round size of 70 mm, normalized, and then subjected to various investigations. First, we checked the cleanliness of non-metallic inclusions in a 70mm round rolled material.
Measured using the point counting method specified in JIS G0555. In addition, the existence form of oxide inclusions was investigated on the microscopically inspected surface, and the ratio of 20 oxide inclusions combined with sulfide inclusions (wrapped ratio) was compared in percentage terms. The results obtained are shown in the rightmost run of Table 1. First, second and third invention steels (No.Al~A20,
B1, B2) have a smaller amount of oxide inclusions than the comparison steels (No. H1 to H14), and more than 90% of the oxide inclusions are wrapped in sulfide inclusions. I know that there is. Next, Table 2 shows the tensile strength, elongation, reduction of area, impact value, and Ono rotary bending fatigue test results of the first, second, and third invention steels and comparative steel. It can be seen that the first, second and third invention steels have better elongation, reduction of area, impact value, fatigue strength, and fatigue ratio than the comparative steel. In particular, the degree of improvement in fatigue strength is large for medium carbon steel (S53CUS1). The reason why the first, second, and third invented steels exhibit better mechanical properties than comparative steels is not fully clear, but the impurity elements (P, Cu, Sn) in the steels are kept at extremely low values, and This is thought to be because most of the harmful oxide-based inclusions were wrapped up in the sulfide-based inclusions by controlling the amounts of , Al, Ca, and O. Table 3 shows the results of a drilling test, a cutting test using a high-speed steel tool, and a cutting test using a cemented carbide tool. The drilling time and high speed tool life of the first, second and third invention steels are all better than the comparison steel.

【表】【table】

【表】【table】

【表】【table】

【表】 (注)
(1) 秒:ドリル、SKH51、丸8mm JIS標準タイプを
用い、915rpm(23.2m/〓)、70Kgの推力で10mmを穿孔す
るに要する秒数。
(2) ld:穿孔時間(秒)の逆数をとり、比較鋼(基本
鋼)を100として算出した指数。
(3) V60:ハイス工具SKH4A(6、6、5、5、15、15
、0.4R)、送り0.2mm/rev、切込み1.5mmにて切削した時
の60分具寿命速度(m/〓)。
(4) V60比、T70比:比較鋼(基本鋼)のハイス
、超硬合金工具による60分工具寿命速度(V60)および
、70m/〓で切削した時の工具寿命時間
(T70)を100として算出した指数。
(5) 切屑:切屑処理性を×不可 △不良 ○良の3
段階にて評価。
(6) V60:超硬チツプSTi20(−5、−6、5、6、15
、15、0.8R)を用い、送り0.2mm/rev、切込み1.5mmにて
切削した時の60分工具寿命速度(m/
〓:但し、工具寿命基準はK=0.06mm、V=0.
2mmとする。)
(7) T70:70m/〓で切削した時の工具寿命時間(
分)。
り良好で、改善率は比較鋼の〜144%にまで達す
る。また、ハイス工具による切屑の処理性も改善
される。さらに、超硬合金工具による高速切削特
性の向上し、例えば、切削速度70m/minでの工
具寿命時間は比較鋼の〜5倍にまで達する。酸素
量が5〜15ppmの低値でも広範囲の切削速度域で
被削性が改善される理由は、十分に明らかではな
いが、S,Al,Ca量の規制により鋼中の酸化物
系介在物を硫化物系介在物にくるみこまれるよう
にコントロールしたためと考えられる。 (発明の効果) 以上、詳述したように、第一、第二、および第
三の発明鋼では引張強さ、伸び、絞り、衝撃値、
回転曲げ疲労強度などの機械的性質が従来鋼と同
等以上に良好となり、しかも広範囲の切削速度域
で従来鋼より優れた被削性が得られる。 第一、第二および第三の発明の広域快削鋼を自
動車部品のクランクシヤフト、ギヤー、ピン類な
どに使用すると、需要家から要求される広範囲の
切削速度域での優れた被削性と良好な機械的性質
とを同時に満足させ、加工コストを大幅に低減で
きる。
[Table] (Note)
(1) Seconds: The number of seconds required to drill a 10mm hole using a drill, SKH51, round 8mm JIS standard type, at 915rpm (23.2m/〓) and a thrust of 70Kg.
(2) ld: An index calculated by taking the reciprocal of the drilling time (seconds) and setting the comparison steel (base steel) as 100.
(3) V 60 : High speed tool SKH4A (6, 6, 5, 5, 15, 15
, 0.4R), 60-minute tool life speed (m/〓) when cutting at feed rate 0.2mm/rev, depth of cut 1.5mm.
(4) V 60 ratio, T 70 ratio: 60-minute tool life speed (V 60 ) and tool life time when cutting at 70 m/〓 using comparative steel (basic steel) HSS and cemented carbide tools
Index calculated with (T 70 ) as 100.
(5) Chips: Chip disposability × Not possible △ Poor ○ Good 3
Evaluated in stages.
(6) V 60 : Carbide tip STi20 (−5, −6, 5, 6, 15
, 15, 0.8R), 60-minute tool life speed (m/
〓: However, the tool life standards are K T = 0.06mm, V B = 0.
2mm. )
(7) T70 : Tool life time when cutting at 70m/〓 (
minutes).
The improvement rate is ~144% compared to the comparative steel. Furthermore, the disposal of chips by the high-speed steel tool is also improved. Furthermore, the high-speed cutting characteristics of the cemented carbide tool are improved, and for example, the tool life at a cutting speed of 70 m/min is ~5 times that of comparative steel. The reason why machinability is improved over a wide range of cutting speeds even when the oxygen content is as low as 5 to 15 ppm is not fully clear, but the regulation of S, Al, and Ca content reduces oxide inclusions in steel. This is thought to be due to the control so that it is wrapped in sulfide inclusions. (Effects of the invention) As detailed above, the first, second, and third invented steels have tensile strength, elongation, area of area, impact value,
Mechanical properties such as rotary bending fatigue strength are as good as or better than conventional steels, and machinability superior to conventional steels can be obtained over a wide cutting speed range. When the wide-area free-cutting steels of the first, second, and third inventions are used in automobile parts such as crankshafts, gears, and pins, excellent machinability can be achieved over a wide cutting speed range required by customers. It simultaneously satisfies good mechanical properties and can significantly reduce processing costs.

Claims (1)

【特許請求の範囲】 1 C 0.10〜0.70% Si 0.35%以下 Mn 0.30〜1.70% P 0.020%以下 S 0.030〜0.060% Cu 0.15%以下 Sn 0.020%以下 Al 0.005〜0.015% Ca 15〜60ppm O 5〜15ppm 残部は鉄および不可避不純物からなり、酸化物
系介在物の90%以上が硫化物系介在物にくるみこ
まれた組織を有する、広範囲の切削速度域で被削
性が改善され、機械的性質が良好なことを特徴と
する自動車部品用広域快削炭素鋼。 2 C 0.10〜0.70% Si 0.35%以下 Mn 0.30〜1.70% P 0.020%以下 S 0.030〜0.060% Cu 0.15%以下 Sn 0.020%以下 Al 0.005〜0.015% Ca 15〜60ppm O 5〜15ppm さらに Ni 5%以下 Cr 1.50%以下 Mo 0.5%以下の1種以上 を含有し、残部は鉄および不可避不純物からな
り、酸化物系介在物の90%以上が硫化物系介在物
にくるみこまれた組織を有する、広範囲の切削速
度域で被削性が改善され、機械的性質が良好なこ
とを特徴とする自動車部品用広域快削合金鋼。 3 C 0.10〜0.70% Si 0.35%以下 Mn 0.30〜1.70% P 0.020%以下 S 0.030〜0.060% Cu 0.15%以下 Sn 0.020%以下 Al 0.005〜0.015% Ca 15〜60ppm O 5〜15ppm さらに Ni 5%以下 Cr 1.50%以下 Mo 0.5%以下の1種以上 および Ti 0.5%以下 Nb 0.1%以下 V 0.1%以下 Zr 0.1%以下の1種以上 を含有し、残部は鉄および不可避不純物からな
り、酸化物系介在物の90%以上が硫化物系介在物
にくるみこまれた組織を有する、広範囲の切削速
度域で被削性が改善され、機械的性質が良好なこ
とを特徴とする自動車部品用広域快削合金鋼。
[Claims] 1 C 0.10-0.70% Si 0.35% or less Mn 0.30-1.70% P 0.020% or less S 0.030-0.060% Cu 0.15% or less Sn 0.020% or less Al 0.005-0.015% Ca 15-60ppm O 5- 15ppm The remainder consists of iron and unavoidable impurities, and the structure has a structure in which more than 90% of the oxide inclusions are wrapped in sulfide inclusions, which improves machinability over a wide cutting speed range and improves mechanical properties. A wide-area free-cutting carbon steel for automobile parts that is characterized by good properties. 2 C 0.10-0.70% Si 0.35% or less Mn 0.30-1.70% P 0.020% or less S 0.030-0.060% Cu 0.15% or less Sn 0.020% or less Al 0.005-0.015% Ca 15-60ppm O 5-15ppm Furthermore, Ni 5% or less Contains one or more of the following: Cr 1.50% or less Mo 0.5% or less, the remainder consists of iron and unavoidable impurities, and has a structure in which 90% or more of oxide inclusions are wrapped in sulfide inclusions. A wide-range free-cutting alloy steel for automotive parts that is characterized by improved machinability and good mechanical properties in the cutting speed range of . 3 C 0.10-0.70% Si 0.35% or less Mn 0.30-1.70% P 0.020% or less S 0.030-0.060% Cu 0.15% or less Sn 0.020% or less Al 0.005-0.015% Ca 15-60ppm O 5-15ppm Furthermore, Ni 5% or less Contains one or more of the following: Cr 1.50% or less Mo 0.5% or less, Ti 0.5% or less Nb 0.1% or less V 0.1% or less Zr 0.1% or less, the remainder consists of iron and inevitable impurities, with oxide-based inclusions Wide-area free cutting for automotive parts, characterized by improved machinability over a wide cutting speed range and good mechanical properties, with a structure in which more than 90% of the material is wrapped in sulfide-based inclusions. Alloy steel.
JP32783487A 1987-12-23 1987-12-23 Universal free cutting steel for automobile parts and its production Granted JPH01168848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32783487A JPH01168848A (en) 1987-12-23 1987-12-23 Universal free cutting steel for automobile parts and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32783487A JPH01168848A (en) 1987-12-23 1987-12-23 Universal free cutting steel for automobile parts and its production

Publications (2)

Publication Number Publication Date
JPH01168848A JPH01168848A (en) 1989-07-04
JPH0445574B2 true JPH0445574B2 (en) 1992-07-27

Family

ID=18203504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32783487A Granted JPH01168848A (en) 1987-12-23 1987-12-23 Universal free cutting steel for automobile parts and its production

Country Status (1)

Country Link
JP (1) JPH01168848A (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025406B2 (en) * 1994-03-19 2000-03-27 山陽特殊製鋼株式会社 Ferritic and martensitic stainless steels with excellent machinability
JPH10287953A (en) * 1997-04-16 1998-10-27 Daido Steel Co Ltd Steel for machine structural use, excellent in mechanical property and drilling property
JP3550308B2 (en) * 1998-12-25 2004-08-04 Ntn株式会社 Rolling bearing
JP3739958B2 (en) * 1999-03-09 2006-01-25 新日本製鐵株式会社 Steel with excellent machinability and its manufacturing method
US7195736B1 (en) 2000-02-10 2007-03-27 Sanyo Special Steel Co., Ltd. Lead-free steel for machine structural use with excellent machinability and low strength anisotropy
JP4564189B2 (en) * 2001-02-20 2010-10-20 新日本製鐵株式会社 High toughness non-tempered steel for hot forging
JP3753054B2 (en) * 2001-06-08 2006-03-08 大同特殊鋼株式会社 Free-cutting steel for machine structures with excellent carbide tool machinability
WO2003064715A1 (en) * 2002-01-29 2003-08-07 Tanaka Seimitsu Kogyo Co., Ltd. Bainite type non-refined steel for nitriding, method for production thereof and nitrided product
JP4534694B2 (en) * 2004-09-28 2010-09-01 愛知製鋼株式会社 Manufacturing method of gear material for high speed dry cutting and manufacturing method of gear using the gear material
RU2566130C2 (en) * 2010-07-02 2015-10-20 Актиеболагет Скф Bearing part made by butt fusion welding
RU2503736C1 (en) * 2012-12-11 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Low-carbon structural steel with improved machinability
RU2507293C1 (en) * 2012-12-11 2014-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" (национальный исследовательский университет) (ФГБОУ ВПО "ЮУрГУ" (НИУ)) Low-carbon alloyed steel of high cutting processibility
JP6294618B2 (en) * 2013-09-25 2018-03-14 Ntn株式会社 Hub bearing
US10208798B2 (en) 2013-09-05 2019-02-19 Ntn Corporation Rolling device
JP6294617B2 (en) * 2013-09-25 2018-03-14 Ntn株式会社 Rolling bearings for automotive electrical equipment and accessories
JP6294620B2 (en) * 2013-09-25 2018-03-14 Ntn株式会社 Rolling bearing for transmission
JP6294619B2 (en) * 2013-09-25 2018-03-14 Ntn株式会社 Roller bearing for speed reducer and speed reducer
JP6860265B2 (en) * 2016-04-05 2021-04-14 大同特殊鋼株式会社 Steel, crankshafts and automotive parts
US11274354B2 (en) 2016-04-05 2022-03-15 Daido Steel Co., Ltd. Steel material, crankshaft, and automobile component
CN108950359A (en) * 2018-06-19 2018-12-07 东北大学 A method of improving photovoltaic industry cutting wire steel tensile strength and cleanliness

Also Published As

Publication number Publication date
JPH01168848A (en) 1989-07-04

Similar Documents

Publication Publication Date Title
JPH0445574B2 (en)
JP3205745B2 (en) Abrasion resistant seizure resistant hot roll
EP3831970A1 (en) Spring steel having superior fatigue life, and manufacturing method for same
US4279646A (en) Free cutting steel containing sulfide inclusion particles with controlled aspect, size and distribution
EP0236505B1 (en) Case-hardening steel and process for its production
US4810287A (en) Process for producing steel for valve springs
JP5368885B2 (en) Machine structural steel with excellent hot workability and machinability
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP3706560B2 (en) Mechanical structural steel with excellent chip control and mechanical properties
US5415711A (en) High-strength spring steels and method of producing the same
JP3464356B2 (en) Boron steel gear excellent in fatigue resistance and method of manufacturing the same
JP4041413B2 (en) Machine structural steel having excellent chip disposal and manufacturing method thereof
CN112779468B (en) High-performance steel for automobile gear and production method thereof
JPS6338418B2 (en)
JPS59182952A (en) Case hardening steel
CN113106345B (en) High-plasticity dual-phase steel and production method thereof
JPS593537B2 (en) welded structural steel
JP3149476B2 (en) Ingot making method of rare earth element containing low nitrogen steel
JPS62274052A (en) Case-hardening steel for bearing
WO2003064715A1 (en) Bainite type non-refined steel for nitriding, method for production thereof and nitrided product
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
JPH07238342A (en) Carburizing steel for high strength gear
RU2337148C2 (en) Band out of medium carbon boron containing steel of upgraded hardenability and cutability
RU2023049C1 (en) Structural steel
JPH07188853A (en) Carburizing steel for gear