JPH0445274A - Production of extra thin grain-oriented silicon steel sheet minimal in iron loss - Google Patents

Production of extra thin grain-oriented silicon steel sheet minimal in iron loss

Info

Publication number
JPH0445274A
JPH0445274A JP15167790A JP15167790A JPH0445274A JP H0445274 A JPH0445274 A JP H0445274A JP 15167790 A JP15167790 A JP 15167790A JP 15167790 A JP15167790 A JP 15167790A JP H0445274 A JPH0445274 A JP H0445274A
Authority
JP
Japan
Prior art keywords
steel sheet
ultra
silicon steel
annealing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15167790A
Other languages
Japanese (ja)
Other versions
JP3067164B2 (en
Inventor
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2151677A priority Critical patent/JP3067164B2/en
Publication of JPH0445274A publication Critical patent/JPH0445274A/en
Application granted granted Critical
Publication of JP3067164B2 publication Critical patent/JP3067164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Chemically Coating (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily produce an extra thin grain-oriented silicon steel sheet minimal in iron loss by forming a tension-giving film of Si nitride, etc., on the surface of a rerolled steel sheet at the time of removing nonmetallic matter from the surface of a grain-oriented silicon steel sheet and applying rerolling and annealing to the above steel sheet under respectively specified conditions. CONSTITUTION:Nonmetallic matter is removed from the surface of a finish- annealed grain-oriented silicon steel sheet, and this steel sheet is rerolled at 5-80% reduction of area to 0.01-0.15mm sheet thickness and then annealed at 700-1,100 deg.C. At this time, before or after the annealing after rerolling, a tension- giving film of one or more kinds among the nitrides, carbides, and carbonitrides of Si, Mn, Cr, Ni, Mo, W, V, Ti, Nb, Ta, B, Cu, Zr, Hf, and Al is formed on the steel sheet surface to about 0.005-5mu film thickness. By this method, the extra thin grain-oriented silicon steel sheet minimal in iron loss can be obtained stable and advantageously.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、アモルファスと同程度の極超低鉄損を有す
る、製品板厚の極く薄い一方向性けい素鋼板の製造方法
に関するもので、この方法によって製造される極超低鉄
損一方向性極薄けい素鋼板は、トランスなどの鉄心材料
として有利に使用される。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet with an extremely thin product thickness and having an ultra-low core loss comparable to that of amorphous steel. The ultra-low iron loss unidirectional ultra-thin silicon steel sheet produced by this method is advantageously used as a core material for transformers and the like.

一方向性けい素鋼板は、製品の2次再結晶粒をゴス方位
に高度に集積させること、 また、鋼板表面上にはフォルステライト被膜を被成させ
、さらにその上に熱膨張係数の小さい絶縁被膜を被成さ
せて鋼板に張力を付与すること、などにより磁気特性の
向上を計っているもので、複雑、多岐にわたる厳格な制
御を必要とする工程を経て製造されている。
Unidirectional silicon steel sheets are manufactured by having the product's secondary recrystallized grains highly concentrated in the Goss orientation, and by forming a forsterite film on the surface of the steel sheet, and then coating it with an insulator with a small coefficient of thermal expansion. Magnetic properties are improved by applying a coating to the steel plate and applying tension to it, and it is manufactured through a complex and diverse process that requires strict control.

このような一方向性けい素鋼板は、主として変圧器、そ
の他電気機器の鉄心として使用されており、磁気特性と
して製品の磁束密度が高く、鉄損が低いこと、さらに表
面性状が良好な絶縁被膜を被成していることなどが要求
されている。と(にエネルギー危機を境にして電力損失
の低減を特徴とする請が著しく強まり、変圧器用鉄心材
料としての鉄損のより低い一方向性けい素鋼板の必要性
はますます高まってきている。
Unidirectional silicon steel sheets of this type are mainly used as iron cores in transformers and other electrical equipment, and their magnetic properties include high magnetic flux density and low core loss, as well as an insulating coating with good surface quality. It is required that the applicant has completed the following. In the wake of the energy crisis, demand for features that reduce power loss has become significantly stronger, and the need for unidirectional silicon steel sheets with lower iron loss as core materials for transformers is increasing.

そして、この一方向性けい素鋼板の鉄損改善の歴史は、
ゴス方位2次再結晶集合組織の改善の歴史であると云っ
ても過言ではない。
The history of improving iron loss in unidirectional silicon steel sheets is as follows.
It is no exaggeration to say that this is a history of improvement in the Goss-oriented secondary recrystallization texture.

(従来の技術) 2次再結晶粒を制御する方法として、AlN。(Conventional technology) AlN as a method for controlling secondary recrystallized grains.

MnS及びMnSe等の1次再結晶粒成長抑制剤、いわ
ゆるインヒビターを用いてゴス方位2次再結晶粒を優先
成長させる方法が実施されている。
A method of preferentially growing secondary recrystallized grains in the Goss orientation using a primary recrystallized grain growth inhibitor, such as MnS and MnSe, has been implemented.

一方、上記の2次再結晶集合組織を制御する冶金的手段
とは異なる鉄損改善技術も種々開発されている。すなわ
ち、市内 正:鉄と鋼、69 (1983) 。
On the other hand, various iron loss improvement techniques different from the metallurgical means of controlling the secondary recrystallization texture described above have also been developed. Namely, Tadashi Uchiuchi: Tetsu to Hagane, 69 (1983).

P、895 、特公昭57−2252号公報、特公昭5
7−53419号公報、特公昭58−26405号公報
、及び特公昭58−26406号公報などにはレーザー
を、又特開昭62−96617号公報、特開昭62−1
51511号公報、特開昭62−151516号公報、
及び特開昭62−151517号公報などにはプラズマ
を、それぞれ鋼板表面に照射することにより、鋼板に局
部微小歪を導入して磁区を細分化し、鉄損を低下させる
画期的な方法が提案開示されている。しかしながら、こ
れらの方法により得られた鋼板は、高温域まで加熱する
と微小歪が消失するため、高温の歪取り焼鈍を施す巻鉄
心トランス用材料に使用する場合、上記効果が発揮でき
ないという欠点があった。
P, 895, Special Publication No. 57-2252, Special Publication No. 57
7-53419, Japanese Patent Publication No. 58-26405, and Japanese Patent Publication No. 58-26406, etc., and Japanese Patent Application Laid-Open No. 62-96617, Japanese Patent Application Laid-open No. 62-1982.
No. 51511, Japanese Patent Application Laid-open No. 151516/1983,
and Japanese Unexamined Patent Publication No. 62-151517 propose an innovative method of irradiating the surface of a steel plate with plasma to introduce local minute strain into the steel plate, subdividing the magnetic domains, and reducing iron loss. Disclosed. However, the steel sheets obtained by these methods lose their microstrains when heated to a high temperature range, so when used as materials for wound core transformers that undergo high-temperature strain relief annealing, they have the disadvantage that the above effects cannot be achieved. Ta.

また、一方このような高温の歪取り焼鈍を施しても鉄損
が劣化しない方法も提案開示されている。
On the other hand, a method has also been proposed in which the iron loss does not deteriorate even if such high-temperature strain relief annealing is performed.

すなわち、特公昭50−35679号公報、特開昭59
−28525号公報、及び特開昭59−197520号
公報などには、仕上焼鈍板の表面に溝もしくはセレーシ
ヨンを形成する方法、特開昭56−130454号公報
には、仕上焼鈍板の表面に微細再結晶粒領域を形成する
方法、特開昭60−92479号公報、特開昭60−9
2480号公報、特開昭60−92481号公報、及び
特開昭60−258479号公報などには、フォルステ
ライト賞被膜に異厚あるいは欠損領域を形成する方法、
時開@60−103124号公報、及び特開昭60−1
03182号公報などには、地鉄中、フォルステライト
質被膜中、又は張力付与絶縁被膜中に異組成領域を形成
する方法等がある。
Namely, Japanese Patent Publication No. 50-35679, Japanese Unexamined Patent Application Publication No. 1983
JP-A-28525 and JP-A-59-197520 disclose a method of forming grooves or serrations on the surface of a finish annealed plate, and JP-A-56-130454 describes a method of forming grooves or serrations on the surface of a finish annealing plate. Method for forming recrystallized grain regions, JP-A-60-92479, JP-A-60-9
No. 2480, JP-A No. 60-92481, and JP-A No. 60-258479, etc., disclose a method of forming a different thickness or a defective region in a forsterite film.
Jikai@60-103124 publication, and Japanese Patent Publication No. 60-1
Publication No. 03182 and the like disclose a method of forming a different composition region in a steel base, in a forsterite coating, or in a tension-applying insulating coating.

しかしながら、これらの方法はいずれも工程が複雑とな
るわりには鉄損の低減効果は少なく、また、製造コスト
が高くなることもあって工業的に採用されるには至って
いない。
However, these methods have not been industrially adopted because the process is complicated, but the effect of reducing iron loss is small, and the manufacturing cost is high.

これらとは別に、特公昭55−19976号公報、特開
昭56−127749号公報、特開平2−3213号公
報において開示されているように非晶質合金が通常の電
力用トランスや高周波トランス等の鉄心材料として注目
されて来ている。このような非晶質材料は通常の一方向
性けい素鋼板に比較して非常に優れた鉄損特性が得られ
るものの、熱的安定性に欠ける、占積率が悪い、切断が
容易でないなど実用上不利な点が多く、大量には使用さ
れていない。
Apart from these, as disclosed in Japanese Patent Publication No. 55-19976, Japanese Patent Application Laid-Open No. 56-127749, and Japanese Patent Application Laid-open No. 2-3213, amorphous alloys are used in ordinary power transformers, high frequency transformers, etc. It is attracting attention as an iron core material. Although such amorphous materials have very superior core loss properties compared to ordinary unidirectional silicon steel sheets, they lack thermal stability, have a poor space factor, are not easy to cut, etc. It has many practical disadvantages and is not used in large quantities.

また、ごく最近、市販の方向性けい素鋼板をさらに薄く
圧延し、高真空中での熱処理により、3次再結晶を生成
させることにより、鉄心用アモルファス材料に匹敵する
鉄損が得られると云う技術が、石山、荒井:日本金属学
会春期大会講演概要(1990年4月) P 290に
示されている。
Also, very recently, it has been reported that iron loss comparable to that of amorphous materials for iron cores can be obtained by rolling commercially available grain-oriented silicon steel sheets even thinner and heat-treating them in a high vacuum to generate tertiary recrystallization. The technology is shown in Ishiyama, Arai: Japanese Institute of Metals Spring Conference Presentation Summary (April 1990), p. 290.

しかしながら、この手法は、1100℃超えの高温長時
間熱処理を必要とするため、実際の製造工程には適用で
きない。
However, this method cannot be applied to actual manufacturing processes because it requires heat treatment at a high temperature of over 1100° C. for a long time.

(発明が解決しようとする課題) この発明は、前記の問題点を排除し、アモルファスと同
程度の極超低鉄損を有する一方向性極薄けい素鋼板を、
有利に、かつ安定した工程で製造する方法を提案するも
のである。
(Problems to be Solved by the Invention) The present invention eliminates the above-mentioned problems and uses a unidirectional ultra-thin silicon steel sheet having an ultra-low core loss comparable to that of amorphous steel.
The present invention proposes an advantageous and stable manufacturing method.

(課題を解決するための手段) まず、特定発明の要旨は、 仕上げ焼鈍済みの一方向性けい素鋼板を素材として、 該鋼板表面上の非金属物質を除去すること、非金属物質
を除去した鋼板に圧下率5%から80%の範囲で再圧延
を行なって0.01閣から0.15閣の範囲の板厚とす
ること、 再圧延を行なった鋼板に700℃以上1100℃以下の
範囲内の温度で焼鈍を行なうこと、 の各工程による極薄一方向性けい素鋼板の製造に際して
、 再圧延後、鋼板表面に、Si+ Mn、 Cr+ Ni
+ Mo+W、  V、 Tt、 Nb、 Ta、  
B、 Cu、 Zr、 If、及びAlfiの窒化物、
炭化物、又は炭窒化物のうちから選んだ1種又は2種以
上の張力付与被膜を被成させること、 を特徴とする極超低鉄損一方向性極薄けい素鋼板の製造
方法である。
(Means for solving the problem) First, the gist of the specified invention is to remove non-metallic substances on the surface of the steel plate using a finish-annealed unidirectional silicon steel plate, and to remove non-metallic substances from the surface of the steel plate. Re-rolling the steel plate at a reduction rate of 5% to 80% to obtain a thickness in the range of 0.01 to 0.15 mm, and re-rolling the steel plate at a temperature of 700°C to 1100°C. During the production of ultra-thin unidirectional silicon steel sheets through the steps of annealing at a temperature within
+Mo+W, V, Tt, Nb, Ta,
B, nitride of Cu, Zr, If, and Alfi;
A method for producing a unidirectional ultra-thin silicon steel sheet with ultra-ultra-low iron loss, characterized by forming a tension imparting coating of one or more types selected from carbides and carbonitrides.

ここに、この発明において張力付与被膜の被成は、再圧
延後の焼鈍の前又は後のいずれかで行なうことができる
In this invention, the tension imparting coating can be formed either before or after the annealing after re-rolling.

つぎに他の発明の第2は、 特定発明において、前記焼鈍後で張力付与被膜を被成し
た鋼板上に、 絶縁被膜を被成させること、 を特徴とする極超低鉄損一方向性極薄けい素鋼板の製造
方法である。
Next, the second invention is an extremely low core loss unidirectional pole, characterized in that, in the specified invention, an insulating film is formed on the steel plate on which the tension imparting film is formed after the annealing. This is a method for manufacturing thin silicon steel sheets.

つぎに他の発明の第3は、 特定発明において、前記焼鈍後で張力付与被膜を被成し
た鋼板に、 磁区細分化処理を施すこと、 を特徴とする極超低鉄損一方向性極薄けい素鋼板の製造
方法である。
Next, the third aspect of another invention is the ultra-low iron loss unidirectional ultra-thin, characterized in that, in the specified invention, the steel plate coated with the tension imparting coating after the annealing is subjected to a magnetic domain refining treatment. This is a method for manufacturing silicon steel sheets.

さらに他の発明の第4は、 他の発明の第2において、前記絶縁被膜を被成した鋼板
に、 磁区細分化処理を施すこと、 を特徴とする極超低鉄損一方向性極薄けい素鋼板の製造
方法である。
A fourth aspect of yet another invention is the ultra-ultra-low core loss unidirectional ultra-thin silicon plate according to the second aspect of the other invention, characterized in that the steel plate coated with the insulating film is subjected to magnetic domain refining treatment. This is a method for manufacturing raw steel sheets.

ここに、純化焼鈍を終えた一方向性けい素鋼板表面上の
非金属物質、すなわち、フォルステライト、酸化物被膜
などの除去は、公知の化学的除去法や、機械的除去法な
どを単独又はこれらの組合せで行なえばよい。
Here, non-metallic substances such as forsterite and oxide films on the surface of the unidirectional silicon steel sheet after purification annealing can be removed by known chemical removal methods, mechanical removal methods, etc. A combination of these may be used.

この酸化物除去処理後、必要に応じて、従来公知の研摩
方法により鋼板表面を鏡面状態に仕上げることが望まし
い。この場合の中心線平均粗さは0.4 μ−以下とす
ることが好ましい。
After this oxide removal treatment, it is desirable to finish the surface of the steel plate to a mirror finish by a conventionally known polishing method, if necessary. In this case, the center line average roughness is preferably 0.4 μ- or less.

再圧延後に行なう、張力付与被膜の被成は、CVD、イ
オンブレーティング、及びイオンインプランチーシラン
などが選択され、この膜厚は、張力付与効果及び占積率
より、0.005μ−から5.0 μmmの範囲とする
ことが好ましい。
CVD, ion blasting, ion implantation silane, etc. are selected for the coating of the tension imparting film after re-rolling, and the thickness of this film is from 0.005μ to 5, based on the tension imparting effect and space factor. It is preferable to set it as the range of .0 micrometer.

張力付与被膜を被成した鋼板、又は張力付与被膜上に絶
縁被膜を被成した鋼板に施す磁区細分化処理は、レーザ
ー、プラズマなどを利用する方法、及び電子ビームを利
用する方法でよい。
The magnetic domain refining treatment performed on a steel plate coated with a tension-applying coating or a steel plate coated with an insulating coating on the tension-applying coating may be performed by a method using a laser, plasma, etc., or a method using an electron beam.

つぎに、この発明の方法の適用に関し一方向性けい素鋼
板の成分組成については、従来公知の成分組成のものい
ずれもが適合するが、代表組成をあげると以下のとおり
である。
Next, regarding the chemical composition of the grain-oriented silicon steel sheet to which the method of the present invention is applied, any conventionally known chemical composition is suitable, but typical compositions are as follows.

C: 0.01wt%以上、0.10wt%以下。C: 0.01 wt% or more and 0.10 wt% or less.

熱間圧延、冷間圧延中の組織の均一微細化のみならず、
ゴス方位の発達に有用な元素であり、少なくとも0.0
1wt%以上の添加が好ましい。
In addition to uniform refinement of the structure during hot rolling and cold rolling,
An element useful for the development of Goss orientation, with at least 0.0
It is preferable to add 1 wt% or more.

しかしながら0.10wt%を超えて含有するとかえっ
てゴス方位に乱れが生じるので上限は0.10wt%が
好ましい。
However, if the content exceeds 0.10 wt%, the Goss orientation will be disturbed, so the upper limit is preferably 0.10 wt%.

Si : 2.Owt%以上、4.5 wt%以下。Si: 2. Owt% or more and 4.5 wt% or less.

鋼板の比抵抗を高め鉄損の低減に有効に寄与するが、2
.Owt%に満たないと比抵抗が低下するだけでなく、
2次再結晶・純化のために行なわれる最終高温焼鈍中に
α−T変態によって結晶方位のランダム化を生じ、十分
な鉄損改善効果が得られず、また4、5 wt%を超え
ると冷延性が損なわれる。したがって、下限を2.Ow
t%、上限を4.5 wt%とすることが好ましい。
It increases the specific resistance of the steel plate and effectively contributes to reducing iron loss, but 2
.. If it is less than Owt%, not only will the specific resistance decrease,
During the final high-temperature annealing performed for secondary recrystallization and purification, randomization of crystal orientation occurs due to α-T transformation, and a sufficient iron loss improvement effect cannot be obtained. Ductility is impaired. Therefore, the lower limit is set to 2. Ow
t%, and the upper limit is preferably 4.5 wt%.

?In : 0.02wt%以上、0.12wt%以下
? In: 0.02wt% or more and 0.12wt% or less.

熱間脆化を防止するため少なくとも0.02wt%を必
要とするが、あまり多すぎると磁気特性を劣化させるの
で、上限は0.12wt%が好ましい。
At least 0.02 wt% is required to prevent hot embrittlement, but too much content will deteriorate the magnetic properties, so the upper limit is preferably 0.12 wt%.

インヒビターとしては、大別してMnS+ MnSe系
とAlN系とがある。MnS、 MnSe系の場合は、
S : 0.005 wt%以上、0.06wt%以下
、及びSe : 0.005 wt%以上、0.06w
t%以下、のうちから選ばれる少なくとも1種。
Inhibitors can be broadly classified into MnS+MnSe type and AlN type. In the case of MnS and MnSe,
S: 0.005 wt% or more, 0.06 wt% or less, and Se: 0.005 wt% or more, 0.06w
At least one species selected from t% or less.

S、Seはいずれも方向性けい素鋼板の2次再結晶を制
御するインヒビターとして有力な元素である。ともに抑
制力確保の観点からは、少なくとも0.005 wt%
程度を必要とするが、0.06賀t%を超えるとその効
果が損なわれるので、その下限を0.005 wt%、
上限を0.06wt%とすることが好ましい。
Both S and Se are effective elements as inhibitors that control secondary recrystallization of grain-oriented silicon steel sheets. In both cases, from the viewpoint of securing suppressive power, at least 0.005 wt%.
However, if it exceeds 0.06 wt%, the effect will be impaired, so the lower limit is set at 0.005 wt%,
It is preferable that the upper limit is 0.06 wt%.

AlN系の場合は、 Al : 0.005 wt%以上、0.10wt%以
下、及びN : 0.004 wt%以上、0.015
 wt%以下。
In the case of AlN-based, Al: 0.005 wt% or more, 0.10 wt% or less, and N: 0.004 wt% or more, 0.015
wt% or less.

Al及びNの範囲についても、上述したMnS系、Mn
Se系の場合と同様の理由により上記の範囲とすること
が好ましい。
Regarding the range of Al and N, the above-mentioned MnS system, Mn
For the same reason as in the Se-based case, it is preferable to fall within the above range.

インヒビター成分としては上記したS、 Se、 If
!の他に、Cr、 Mo、 Cu、 Sn、 Ge、 
sb、 Te、 Bt及びPなどについても有利に適合
するもので、それぞれ少量併せて含有させることもよい
、ここに上記成分の好適添加範囲はそれぞれ、Cr、 
Cu、 Sn : 0.01wt%以上、0.15wt
%以下、Mo、 Ge+ sb、 Te、 Bl :0
.005 wt%以上、0.1 wt%以下、P : 
0.01wt%以上、0.2 wt%以下であり、これ
ら各インヒビター成分についても単独使用及び複合使用
いずれの場合もが適合する。
As inhibitor components, the above-mentioned S, Se, If
! In addition to Cr, Mo, Cu, Sn, Ge,
It is also advantageously compatible with sb, Te, Bt, P, etc., and may also be included in small amounts. Here, the preferred addition range of the above components is Cr,
Cu, Sn: 0.01wt% or more, 0.15wt
% or less, Mo, Ge+ sb, Te, Bl: 0
.. 005 wt% or more, 0.1 wt% or less, P:
The amount is 0.01 wt% or more and 0.2 wt% or less, and each of these inhibitor components can be used either alone or in combination.

(作 用) 素材としての仕上げ焼鈍済みの一方向性けい素鋼板は、
一般に、けい素鋼スラブを熱間圧延した熱延板に、80
0℃から1100℃の温度の均一化焼鈍を経て一回冷延
法か、又は、通常850℃から1050℃の温度の中間
焼鈍をはさんでさらに冷延する2回冷延法を適用し、後
者の場合の1回目の圧延は圧下率を50%から80%、
前者の場合及び後者の2回目の圧延の場合には50%か
ら85%の圧下率で通常0.15論から0.35■厚の
冷延板とするが、必要に応じ0.15 m−以下として
もよい。
(Function) Finish annealed unidirectional silicon steel sheet as a material is
Generally, hot-rolled plates made of hot-rolled silicon steel slabs are
A single cold rolling method is applied after uniform annealing at a temperature of 0° C. to 1100° C., or a two-time cold rolling method is applied, in which intermediate annealing is usually performed at a temperature of 850° C. to 1050° C. and further cold rolling is performed. In the latter case, the first rolling is done at a reduction rate of 50% to 80%.
In the former case and the second rolling of the latter, the cold-rolled plate is usually 0.15mm to 0.35cm thick at a reduction rate of 50% to 85%, but if necessary, the cold rolled plate is 0.15mm thick. The following may be used.

つぎに、冷延を終えた鋼板は、表面脱脂後750℃から
850℃の湿水素中で脱炭および1次再結晶焼鈍を施す
Next, the cold-rolled steel sheet is subjected to surface degreasing and decarburization and primary recrystallization annealing in wet hydrogen at 750°C to 850°C.

このような処理を施した後、鋼板表面に焼鈍分離剤を塗
布する。
After performing such treatment, an annealing separator is applied to the surface of the steel sheet.

なお、この際−船釣には仕上げ焼鈍後必要不可欠とされ
るフォルステライト被膜については、その除去をより容
易にするため、焼鈍分離剤としてMgOにA j! !
03+ Zr0z、 Tio!などを50%以上で混入
させることが好ましく、かくして、鋼板表面の鏡面処理
を簡便にするのにも役立て得る。
At this time, in order to more easily remove the forsterite film, which is essential after finishing annealing for boat fishing, Aj! is added to MgO as an annealing separator. !
03+ Zr0z, Tio! It is preferable to mix 50% or more of the like, and this can also be useful for simplifying the mirror finishing of the surface of the steel plate.

何れにしても、焼鈍分離剤塗布後、2次再結晶粒を十分
に発達させるために施されるもので通常は、箱焼鈍によ
って直ちに1000℃以上に昇温し、その温度に保持す
ることによって行なわれる。
In any case, this is done to sufficiently develop the secondary recrystallized grains after applying the annealing separator, and is usually performed by immediately raising the temperature to 1000°C or higher by box annealing and maintaining it at that temperature. It is done.

なお、コズ方位に高度に揃った2次再結晶粒組織を発達
させるためには、820℃から900℃の低い温度で保
定焼鈍をするか、そのほか例えば0.5℃/hから15
℃/hの昇温速度の徐熱焼鈍を行なったものであっても
よい。
In addition, in order to develop a secondary recrystallized grain structure that is highly aligned in the coz orientation, holding annealing at a low temperature of 820°C to 900°C or other methods such as 0.5°C/h to 15°C
It may also be one that has been subjected to slow heat annealing at a temperature increase rate of °C/h.

2次再結晶後の純化焼鈍は、飽水素中、1100℃以上
で1時間から20時間の条件で十分に鋼板の純化を達成
させる。
The purification annealing after the secondary recrystallization sufficiently purifies the steel plate under the conditions of 1 to 20 hours at 1100° C. or higher in saturated hydrogen.

以上のようにして、仕上げ焼鈍済みの一方向性けい素鋼
板が得られる。
In the manner described above, a finish annealed unidirectional silicon steel plate is obtained.

前記鋼板を素材として、まず、鋼板表面上の非金属物質
、すなわち、酸化物被膜(これにはフォルステライト被
膜も勿論含まれる)を、公知°の酸洗などの化学除去法
や、切削、研削などの機械的除去法、またはこれらの方
法の組合せにより除去する。
Using the above-mentioned steel plate as a raw material, first, the non-metallic substance on the surface of the steel plate, that is, the oxide film (this includes the forsterite film, of course), is removed by a known chemical removal method such as pickling, cutting, or grinding. or a combination of these methods.

この非金属物質除去処理の後、必要に応じて鋼板表面を
鏡面状態に仕上げることがあり、この鏡面仕上げは、化
学研摩、電解研摩、又はパフがけなどの機械的研摩、あ
るいはこれらの方法の組合せにて行なえばよい。
After this non-metallic substance removal treatment, the surface of the steel plate may be finished to a mirror finish as necessary, and this mirror finish can be achieved by chemical polishing, electrolytic polishing, mechanical polishing such as puffing, or a combination of these methods. You can do it at

つぎに、酸化物を除去した鋼板は、圧下率5%から80
%の再圧延により0.01園から0.15閣の範囲の板
厚にする。
Next, the steel plate from which the oxides have been removed is made from a rolling reduction of 5% to 80%.
% re-rolling to a thickness in the range of 0.01mm to 0.15mm.

この場合においての圧延で圧下率を限定する理由は、圧
下率が5%未満では、鋼板に与える加工歪が小さくて、
粒界移動の易動度(Mobflity)が小さいため、
結晶粒の粗大化が起りにくく、また、逆に圧下率が80
%を超えると、転位密度が高くなりすぎて結晶粒を粗大
化させることが困難になるためである。
The reason for limiting the rolling reduction rate in this case is that when the rolling reduction rate is less than 5%, the processing strain imparted to the steel plate is small.
Because the mobility of grain boundary movement (Mobfility) is small,
Coarsening of crystal grains is less likely to occur, and conversely, when the reduction rate is 80
%, the dislocation density becomes too high and it becomes difficult to coarsen the crystal grains.

また、板厚の限定理由は、0.15m−を超える厚さで
は、厚すぎて板厚による鉄損の低減効果が十分でなく 
、0.01m5+以下では、薄すぎて製造の面でも、取
扱いの面でも困難となり実用的でないことによる。
In addition, the reason for limiting the plate thickness is that if the thickness exceeds 0.15 m, it will be too thick and the iron loss reduction effect due to plate thickness will not be sufficient.
, 0.01 m5+ or less, it is too thin and difficult to manufacture and handle, making it impractical.

再圧延後、焼鈍を行なうのであるが、この焼鈍の前又は
後に、CVD、イオンブレーティング、イオンインプラ
ンテーションにより、Si、 ?In、 Cr。
After re-rolling, annealing is performed, and before or after this annealing, Si, ? In, Cr.

Ni、 Mo、 w、  v、 Til Nbl Ta
+  BI Cu、 Zrl Hfl及びAlの窒化物
、炭化物、又は炭窒化物のうちから選んだ1種又は2種
以上の少なくとも一層の張力付与被膜を鋼板表面上に被
成させる。
Ni, Mo, w, v, Til Nbl Ta
+ At least one tension-imparting coating of one or more selected from nitrides, carbides, or carbonitrides of BI Cu, Zrl Hfl, and Al is formed on the surface of the steel sheet.

この張力付与被膜の膜厚は、o、oosp−未満では張
力付与効果が小さいため鉄損を低下させる効果が小さ(
、また、5μ論を超えるほどの膜厚では、占積率の面で
も、経済性の点でも不利なので、0.005μ−から5
μ謬の範囲にすることが好適である。
If the thickness of this tensioning coating is less than o, oosp-, the tensioning effect is small, so the effect of reducing iron loss is small (
Also, if the film thickness exceeds 5μ, it is disadvantageous both in terms of space factor and economical efficiency, so from 0.005μ to 5μ
It is preferable to keep it within the range of μ error.

再圧延後の焼鈍の条件としては、700℃以上1100
℃以下の範囲内の温度で再結晶を行なわせる。
The conditions for annealing after re-rolling are 700°C or higher and 1100°C.
Recrystallization is carried out at a temperature within the range below .degree.

この焼鈍温度範囲を限定する理由は、700℃以下では
結晶中の加工歪を解放し再結晶をさせることができず、
また、1100℃以上では板厚が薄いため安定して形状
の良好な製品を得ることが困難になり、かつ、経済性も
劣ることによる。
The reason for limiting this annealing temperature range is that at temperatures below 700°C, processing strain in the crystal cannot be released and recrystallization cannot occur.
Further, if the temperature is 1100° C. or higher, the plate thickness is thin, making it difficult to obtain a stable product with a good shape, and the cost efficiency is also poor.

また、この焼鈍において、鉄損を低下さすために必要な
再結晶を十分に行なわせるための時間としては、2時間
以上とすることが好ましいが、20時間を超えるような
長時間は不要である。
In addition, in this annealing, it is preferable to set the time to 2 hours or more in order to sufficiently perform the recrystallization necessary to reduce iron loss, but a long time exceeding 20 hours is not necessary. .

かくして得られる極超低鉄損一方向性極薄けい素鋼板に
おける張力付与被膜の絶縁性を、さらに増強して、トラ
ンスの鉄心などの用途に、より適合させるため、張力付
与被膜上に絶縁被膜を重ね被成させることができる。
In order to further enhance the insulation properties of the tensile coating on the ultra-low iron loss unidirectional ultra-thin silicon steel sheet obtained in this way and make it more suitable for applications such as transformer cores, an insulating coating was added on the tension coating. can be overlaid.

この絶縁被膜は、コロイダルシリカ、あるいはりん酸塩
とコロイダルシリカを主成分とする塗膜の焼付層よりな
り、その形成は、従来公知の方法をそのまま用いてよい
This insulating film is composed of a baked layer of colloidal silica or a coating film containing phosphate and colloidal silica as main components, and may be formed using a conventionally known method as is.

さらに、前記張力付与被膜を被成した鋼板、又は、張力
付与被膜上に絶縁被膜を被成した鋼板につき、鉄損の一
層の向上を目的として磁区細分化処理を施すことができ
る。
Furthermore, the steel plate coated with the tension imparting coating or the steel plate coated with the insulating coating on the tension imparting coating may be subjected to magnetic domain refining treatment for the purpose of further improving iron loss.

この磁区細分化処理は、レーザー、プラズマ、あるいは
電子ビームを用いて、圧延方向と交わる方向に3閣から
20mmの走査間隔で照射するが、これらの方法は、従
来公知の手法をそのまま用いることでよい。
This magnetic domain refining process uses laser, plasma, or electron beams to irradiate in the direction intersecting the rolling direction from three points at scanning intervals of 20 mm. These methods can be performed by using conventionally known methods as they are. good.

前記いずれの場合も裁断その他の加工が施された後に歪
取り焼鈍が行なわれるが、この焼鈍は従来の方法を用い
ることができる。
In any of the above cases, strain relief annealing is performed after cutting and other processing, and a conventional method can be used for this annealing.

(実施例) 実施例1 表1に示す化学成分を含有する5種類のけい素鋼スラブ
を、通常の方法で熱間圧延・中間焼鈍・冷間圧延・脱炭
および1次再結晶焼鈍を行なった後、 2次再結晶焼鈍を施して0.15曽蒙とから0.25−
醜厚の一方向性けい素鋼板とした。
(Example) Example 1 Five types of silicon steel slabs containing the chemical components shown in Table 1 were subjected to hot rolling, intermediate annealing, cold rolling, decarburization, and primary recrystallization annealing using normal methods. After that, secondary recrystallization annealing is performed to reduce the temperature from 0.15 to 0.25-
It is made of a unidirectional silicon steel plate with an ugly thickness.

これらのけい素鋼板を素材として、鋼板表面上の酸化物
をベルトサンダーで除去した後、電解研摩を施した後、
10%から70%の圧下率で圧延し、0.08■■の板
厚とした。
Using these silicon steel plates as raw materials, after removing the oxides on the steel plate surface with a belt sander and applying electrolytic polishing,
It was rolled at a rolling reduction of 10% to 70% to give a plate thickness of 0.08■■.

0.08mmの板厚に圧延後、1070℃の焼鈍の前又
は後で張力付与被膜としてTiN被膜を被成(膜厚0.
2μ腸から0.3μ■)した鋼板に、さらに以下の処理
を施した。
After rolling to a thickness of 0.08 mm, a TiN film was applied as a tensioning film before or after annealing at 1070°C (thickness: 0.08 mm).
The steel plate obtained from 2μ intestines to 0.3μ■) was further subjected to the following treatments.

TiN被膜上に、リン酸塩とクロム酸を主成分とする絶
縁被膜を被成する。
An insulating film containing phosphate and chromic acid as main components is formed on the TiN film.

TiN被膜上からエレクトロンビームによる磁区細分化
処理を施す。
Magnetic domain refining treatment is performed on the TiN film using an electron beam.

絶縁被膜上からレーザによる磁区細分化処理を施す。Perform magnetic domain refining treatment using a laser on the insulating coating.

これらの処理によって得た鋼板の鉄損(Wls/s−)
を表2に示す。
Iron loss of steel plate obtained by these treatments (Wls/s-)
are shown in Table 2.

表 注80印は適合項目を示す。table Note 80 marks indicate conformity items.

表2から明らかなように、これらの鋼板の鉄損は0.1
1W/kgから0.36W/kgと優れた値を示してい
る。
As is clear from Table 2, the iron loss of these steel plates is 0.1
It shows excellent values ranging from 1W/kg to 0.36W/kg.

実施例2 C:  0.073 wt%、  St : 3.39
 wt%Mn :  0.072 eyt%、  Mo
 : 0.013 wt%Se:  0.021 wt
%、  Al : 0.026 wt%を含有するけい
素鋼スラブを、1420℃で3時間加熱後熱間圧延して
2.2腫厚の熱延板とした。その後、1050℃の中間
焼鈍をはさんで2回の冷間圧延を施して0.23謹厚の
冷延板とした。その後、840℃の湿水素中で脱炭を兼
ねる1次再結晶焼鈍を施した後、鋼板表面上にフォルス
テライトを主成分とする焼鈍分離剤を塗布し、850℃
から10℃/hで1150℃まで昇温してゴス方位2次
再結晶粒を発達させ、その後1230℃の飽水素中で純
化焼鈍を行なって得られた一方向性けい素鋼板を素材に
用いた。
Example 2 C: 0.073 wt%, St: 3.39
wt%Mn: 0.072 eyt%, Mo
: 0.013 wt%Se: 0.021 wt
%, Al: A silicon steel slab containing 0.026 wt% was heated at 1420° C. for 3 hours and then hot rolled to obtain a hot rolled sheet with a thickness of 2.2. Thereafter, cold rolling was performed twice with intermediate annealing at 1050° C. to obtain a cold rolled sheet with a thickness of 0.23 mm. After that, after performing primary recrystallization annealing that also serves as decarburization in wet hydrogen at 840°C, an annealing separator mainly composed of forsterite is applied to the surface of the steel plate, and the temperature is increased to 850°C.
A unidirectional silicon steel sheet obtained by raising the temperature from 10°C/h to 1150°C to develop Goss-oriented secondary recrystallized grains, and then performing purification annealing in saturated hydrogen at 1230°C was used as the material. there was.

この鋼板表面上のフォルステライト被膜をベルトサンダ
ーにより除去し、ついで電解研摩を行なって中心線平均
粗さRa : 0.08μmmの鏡面に仕上げた後、再
圧延の圧下率56.5%で冷間圧延を行なって0.1■
厚みとした。その後、鋼板表面を脱脂した後、表3に区
別したそれぞれの方法で、種々の窒化物、炭化物、炭窒
化物よりなる張力付与被膜(膜厚0.05μm)を被成
し、700℃から1100℃の範囲内の温度で焼鈍を行
ない、しかる後、コロイダルシリカとりん酸塩を主体と
する絶縁被膜(膜厚0.2μ■)を被成した。
The forsterite film on the surface of this steel plate was removed using a belt sander, and then electropolishing was performed to give a mirror finish with a centerline average roughness Ra of 0.08 μmm, followed by cold rolling at a reduction rate of 56.5% during re-rolling. 0.1■ after rolling
Made thick. Thereafter, after degreasing the surface of the steel plate, a tension imparting film (film thickness 0.05 μm) made of various nitrides, carbides, and carbonitrides was formed using the methods classified in Table 3. Annealing was carried out at a temperature within the range of 0.degree. C., and then an insulating film (thickness: 0.2 .mu.m) mainly composed of colloidal silica and phosphate was formed.

その後、鋼板表面上に加速電圧: 250 kV、加速
電流: 1.OmAの電子ビームを圧延方向に対しi角
をなす方向に走査間隔8■で照射し、磁区細分化を行な
った。
After that, accelerating voltage: 250 kV, accelerating current: 1. Magnetic domain refining was performed by irradiating an electron beam of 0 mA in a direction making an i angle with respect to the rolling direction at a scanning interval of 8 cm.

かくして得られた鋼板の鉄損W、3..。を表3に示す
Iron loss W of the steel plate thus obtained, 3. .. . are shown in Table 3.

表 ・イオンインプランチーシラン・・・3表3から明らか
なように磁区細分化処理を施したこれらの鋼板の鉄損は
、W+3/sllで0.12W/kgから0.25W/
kgと鉄心用アモルファス並の極超低鉄損を示している
Table: Ion implantation silane...3 As is clear from Table 3, the iron loss of these steel plates subjected to magnetic domain refining treatment is from 0.12 W/kg to 0.25 W/kg at W+3/sll.
kg and exhibits extremely low iron loss, comparable to amorphous iron cores.

(発明の効果) この発明によれば、仕上げ焼鈍済みの一方向性けい素鋼
板を素材として、極薄に再圧延した後、特定発明におい
ては、張力付与被膜の被成と再結晶焼鈍を行なうことに
より、鉄心用アモルファスなみの極超低鉄損を示す一方
向性極薄けい素鋼板が容易に製造でき、 加えて発明の第2においては、絶縁被膜を被成さすこと
により、絶縁性をさらに増強し、発明の第3、第4にお
いては、磁区細分化処理を行なうことにより鉄損の一層
の向上が計れるものである。
(Effect of the invention) According to the present invention, after re-rolling a finish-annealed unidirectional silicon steel plate into an extremely thin material, in the specific invention, a tension imparting coating is applied and recrystallization annealing is performed. As a result, it is possible to easily produce a unidirectional ultra-thin silicon steel sheet that exhibits ultra-low iron loss comparable to that of amorphous iron cores. Further, in the third and fourth aspects of the invention, the iron loss can be further improved by performing magnetic domain refining processing.

そしてこの発明によって得られる製品はトランスなどの
鉄心に用いて好適である。
The product obtained by this invention is suitable for use in iron cores of transformers and the like.

Claims (6)

【特許請求の範囲】[Claims] 1.仕上げ焼鈍済みの一方向性けい素鋼板を素材として
、 該鋼板表面上の非金属物質を除去すること、非金属物質
を除去した鋼板に圧下率5%か ら80%の範囲で再圧延を行なって0.01mmから0
.15mmの範囲の板厚とすること、 再圧延を行なった鋼板に700℃以上1100℃以下の
範囲内の温度で焼鈍を行なうこと、 の各工程による極薄一方向性けい素鋼板の 製造に際して、 再圧延後、鋼板表面に、Si,Mn,Cr,Ni,Mo
,W,V,Ti,Nb,Ta,B,Cu,Zr,Hf,
及びAlの窒化物、炭化物、又は炭窒化物のうちから選
んだ1種又は2種以上の張力付与被膜を被成させること
、 を特徴とする極超低鉄損一方向性極薄けい 素鋼板の製造方法。
1. Using a finish annealed unidirectional silicon steel sheet as a material, removing non-metallic substances on the surface of the steel sheet, and re-rolling the steel sheet from which the non-metallic substance has been removed at a reduction rate of 5% to 80%. 0.01mm to 0
.. When producing ultra-thin unidirectional silicon steel sheets through the following steps: making the plate thickness within the range of 15 mm, and annealing the re-rolled steel plate at a temperature within the range of 700°C to 1100°C. After re-rolling, Si, Mn, Cr, Ni, Mo
, W, V, Ti, Nb, Ta, B, Cu, Zr, Hf,
An ultra-low iron loss unidirectional ultra-thin silicon steel sheet characterized by being coated with one or more tension imparting coatings selected from the group consisting of nitrides, carbides, and carbonitrides of Al. manufacturing method.
2.張力付与被膜の被成が、再圧延後の焼鈍前である請
求項第1項記載の極超低鉄損一方向性極薄けい素鋼板の
製造方法。
2. 2. The method for producing an ultra-low core loss unidirectional ultra-thin silicon steel sheet according to claim 1, wherein the tension imparting coating is formed before annealing after re-rolling.
3.張力付与被膜の被成が、再圧延後の焼鈍後である請
求項第1項記載の極超低鉄損一方向性極薄けい素鋼板の
製造方法。
3. 2. The method for producing an ultra-low core loss unidirectional ultra-thin silicon steel sheet according to claim 1, wherein the tension imparting coating is formed after re-rolling and annealing.
4.仕上げ焼鈍済みの一方向性けい素鋼板を素材として
、 該鋼板表面上の非金属物質を除去すること、非金属物質
を除去した鋼板に圧下率5%か ら80%の範囲で再圧延を行なって0.01mmから0
.15mmの範囲の板厚とすること、 再圧延を行なった鋼板に700℃以上1100℃以下の
範囲内の温度で焼鈍を行なうこと、 の各工程による極薄一方向性けい素鋼板の 製造に際して、 再圧延後、鋼板表面に、Si,Mn,Cr,Ni,Mo
,W,V,Ti,Nb,Ta,B,Cu,Zr,HF,
及びAlの窒化物、炭化物、又は炭窒化物のうちから選
んだ1種又は2種以上の張力付与被膜を被成させること
、 焼鈍後で張力付与被膜を被成した鋼板上に、絶縁被膜を
被成させること、 を特徴とする極超低鉄損一方向性極薄けい 素鋼板の製造方法。
4. Using a finish annealed unidirectional silicon steel sheet as a material, removing non-metallic substances on the surface of the steel sheet, and re-rolling the steel sheet from which the non-metallic substance has been removed at a reduction rate of 5% to 80%. 0.01mm to 0
.. When producing ultra-thin unidirectional silicon steel sheets through the following steps: making the plate thickness within the range of 15 mm, and annealing the re-rolled steel plate at a temperature within the range of 700°C to 1100°C. After re-rolling, Si, Mn, Cr, Ni, Mo
, W, V, Ti, Nb, Ta, B, Cu, Zr, HF,
and coating one or more types of tension imparting coating selected from nitrides, carbides, or carbonitrides of Al, and forming an insulating coating on the steel plate coated with the tension imparting coating after annealing. A method for producing an ultra-low iron loss unidirectional ultra-thin silicon steel sheet, characterized by:
5.仕上げ焼鈍済みの一方向性けい素鋼板を素材として
、 該鋼板表面上の非金属物質を除去すること、非金属物質
を除去した鋼板に圧下率5%か ら80%の範囲で再圧延を行なって0.01mmから0
.15mmの範囲の板厚とすること、 再圧延を行なった鋼板に700℃以上1100℃以下の
範囲内の温度で焼鈍を行なうこと、 の各工程による極薄一方向性けい素鋼板の 製造に際して、 再圧延後、鋼板表面に、Si,Mn,Cr,Ni,Mo
,W,V,Ti,Nb,Ta,B,Cu,Zr,Hf,
及びAlの窒化物、炭化物、又は炭窒化物のうちから選
んだ1種又は2種以上の張力付与被膜を被成させること
、 焼鈍後で張力付与被膜を被成した鋼板上に 磁区細分化処理を施すこと、 を特徴とする極超低鉄損一方向性極薄けい 素鋼板の製造方法。
5. Using a finish annealed unidirectional silicon steel sheet as a material, removing non-metallic substances on the surface of the steel sheet, and re-rolling the steel sheet from which the non-metallic substance has been removed at a reduction rate of 5% to 80%. 0.01mm to 0
.. When producing ultra-thin unidirectional silicon steel sheets through the following steps: making the plate thickness within the range of 15 mm, and annealing the re-rolled steel plate at a temperature within the range of 700°C to 1100°C. After re-rolling, Si, Mn, Cr, Ni, Mo
, W, V, Ti, Nb, Ta, B, Cu, Zr, Hf,
and forming one or more types of tension imparting coating selected from nitrides, carbides, or carbonitrides of Al, and performing magnetic domain refining treatment on the steel plate coated with the tension imparting coating after annealing. A method for producing an ultra-low iron loss unidirectional ultra-thin silicon steel sheet, characterized by:
6.仕上げ焼鈍済みの一方向性けい素鋼板を素材として
、 該鋼板表面上の非金属物質を除去すること、非金属物質
を除去した鋼板に圧下率5%か ら80%の範囲で再圧延を行なって0.01mmから0
.15mmの範囲の板厚とすること、 再圧延を行なった鋼板に700℃以上1100℃以下の
範囲内の温度で焼鈍を行なうこと、 の各工程による極薄一方向性けい素鋼板の 製造に際して、 再圧延後、鋼板表面に、Si,Mn,Cr,Ni,Mo
,W,V,Ti,Nb,Ta,B,Cu,Zr,Hf,
及びAlの窒化物、炭化物、又は炭窒化物のうちから選
んだ1種又は2種以上の張力付与被膜を被成させること
、 焼鈍後で張力付与被膜を被成した鋼板上に、絶縁被膜を
被成させること、 絶縁被膜を被成した鋼板に磁区細分化処理 を施すこと、 を特徴とする極超低鉄損一方向性極薄けい 素鋼板の製造方法。
6. Using a finish annealed unidirectional silicon steel sheet as a material, removing non-metallic substances on the surface of the steel sheet, and re-rolling the steel sheet from which the non-metallic substance has been removed at a reduction rate of 5% to 80%. 0.01mm to 0
.. When producing ultra-thin unidirectional silicon steel sheets through the following steps: making the plate thickness within the range of 15 mm, and annealing the re-rolled steel plate at a temperature within the range of 700°C to 1100°C. After re-rolling, Si, Mn, Cr, Ni, Mo
, W, V, Ti, Nb, Ta, B, Cu, Zr, Hf,
and coating one or more types of tension imparting coating selected from nitrides, carbides, or carbonitrides of Al, and forming an insulating coating on the steel plate coated with the tension imparting coating after annealing. 1. A method for producing an ultra-low iron loss unidirectional ultra-thin silicon steel sheet, characterized by: applying a magnetic domain refining treatment to the steel sheet coated with an insulating film.
JP2151677A 1990-06-12 1990-06-12 Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet Expired - Fee Related JP3067164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2151677A JP3067164B2 (en) 1990-06-12 1990-06-12 Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2151677A JP3067164B2 (en) 1990-06-12 1990-06-12 Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet

Publications (2)

Publication Number Publication Date
JPH0445274A true JPH0445274A (en) 1992-02-14
JP3067164B2 JP3067164B2 (en) 2000-07-17

Family

ID=15523840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2151677A Expired - Fee Related JP3067164B2 (en) 1990-06-12 1990-06-12 Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet

Country Status (1)

Country Link
JP (1) JP3067164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100270394B1 (en) * 1996-12-09 2000-11-01 이구택 The manufacturing method for oriented electric steel sheet
KR100270393B1 (en) * 1996-12-09 2000-11-01 이구택 The manufacturing method for low hysterisis oriented electric steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100270394B1 (en) * 1996-12-09 2000-11-01 이구택 The manufacturing method for oriented electric steel sheet
KR100270393B1 (en) * 1996-12-09 2000-11-01 이구택 The manufacturing method for low hysterisis oriented electric steel sheet

Also Published As

Publication number Publication date
JP3067164B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US6562473B1 (en) Electrical steel sheet suitable for compact iron core and manufacturing method therefor
CA2900111A1 (en) Method for producing grain-oriented electrical steel sheet
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JPS63186826A (en) Production of grain-orientated silicon steel plate having super low iron loss
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JPH0347975A (en) Low-iron loss grain-oriented silicon steel sheet
JP7231888B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH0347974A (en) Heat-stable extremely low-iron loss grain-oriented silicon steel sheet and its production
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP3067164B2 (en) Manufacturing method of ultra-low iron loss unidirectional ultra-thin silicon steel sheet
JP3893766B2 (en) Method for producing grain oriented silicon steel sheet having homogeneous forsterite coating
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JP3492965B2 (en) Cold rolling method to obtain unidirectional electrical steel sheet with excellent magnetic properties
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
EP4335938A1 (en) Method for producing grain-oriented electromagnetic steel sheet
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPH04350124A (en) Production of grain-oriented silicon steel sheet reduced in thickness
JP2819994B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPS6269503A (en) Very low iron loss grain oriented silicon steel plate and manufacture thereof
JPH0327633B2 (en)
JPH0741861A (en) Production of grain-oriented silicon steel sheet
JPH01159322A (en) Production of ultra-low iron loss grain oriented silicon steel sheet
JP2000144250A (en) Production of grain oriented silicon steel sheet extremely low in core loss
JPH10110217A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees