JPH044493B2 - - Google Patents

Info

Publication number
JPH044493B2
JPH044493B2 JP58022869A JP2286983A JPH044493B2 JP H044493 B2 JPH044493 B2 JP H044493B2 JP 58022869 A JP58022869 A JP 58022869A JP 2286983 A JP2286983 A JP 2286983A JP H044493 B2 JPH044493 B2 JP H044493B2
Authority
JP
Japan
Prior art keywords
cwm
passage
medium
atomizing
atomization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58022869A
Other languages
Japanese (ja)
Other versions
JPS59150213A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2286983A priority Critical patent/JPS59150213A/en
Publication of JPS59150213A publication Critical patent/JPS59150213A/en
Publication of JPH044493B2 publication Critical patent/JPH044493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/005Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Nozzles (AREA)

Description

【発明の詳細な説明】 本発明は微粉炭−水スラリの霧化方法に係り、
特に微粉炭−水スラリ通路の閉塞防止に好適な霧
化方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for atomizing pulverized coal-water slurry,
In particular, the present invention relates to an atomization method suitable for preventing blockage of pulverized coal-water slurry passages.

近年、エネルギー源の多様化がさけばれるにつ
れ、石炭を事業用ボイラ等の燃焼装置の燃料とし
て使用することが多くなつている。
In recent years, as energy sources have become more diversified, coal has been increasingly used as fuel for combustion devices such as commercial boilers.

従来から各種の石炭燃焼法が知られているが、
その1つとして重油等の液体燃料に代え、微粉化
した石炭を水の添加によりスラリ化したもの(以
下、CWMと称する)を用いる燃焼方式が注目さ
れている。この燃焼方式によれば、格別の設備変
更をともなうことなく、従来の媒体噴霧式バーナ
を備えた石油焚燃焼設備をそのまま適用できる
上、重油等の液体燃料を使用する必要がない等の
利点がある。
Various coal combustion methods have been known for a long time, but
One of these is a combustion method that uses pulverized coal made into a slurry by adding water (hereinafter referred to as CWM) instead of liquid fuel such as heavy oil, which is attracting attention. According to this combustion method, conventional oil-fired combustion equipment equipped with a medium spray burner can be applied as is without any special equipment changes, and there are other advantages such as no need to use liquid fuel such as heavy oil. be.

しかし、従来の媒体噴霧式バーナは、燃料通路
と霧化媒体通路とを有し、それらの間は単に金属
壁からなる構成となつているため、このバーナを
そのままCWM用として適用した場合には下記の
ような種々のトラブルを生じることが分つた。す
なわち、その1つは霧化媒体からの伝熱により
CWM中の水分が通路壁面から蒸発し、そのため
CWM中の石炭分が壁面部から順次固体化して最
終的には通路を閉塞することである。また、火炉
内の火炎輻射によりノズルチツプが加熱され、こ
の場合にも上記と同様な理由によりノズルチツプ
内におけるCWM噴口や霧化室が閉塞するという
問題もある。上記閉塞によるCWM連続供給上の
トラブルを解消するために、CWM中の微粉炭濃
度を低くして低粘度化を図ることが考えられる
が、この場合には排煙にともない大気へ放出され
る熱量が増加するので、プラント全体の熱効率が
低下するという欠点を生じる。またCWMの低粘
度化を図れば、CWM中の微粉炭がかえつて沈降
しやすくなり、部分的に固化してCWM通路を閉
塞することがある。さらに上記のように微粉炭の
高濃度側では壁面から進行する固体化による制限
を受け、他方、低粘度側では微粉炭の沈降による
固体化の制限があるので、実用的なCWMの微粉
炭濃度範囲が狭く、従つてその濃度管理が極めて
難かしくなるという問題がある。
However, conventional media atomization burners have a fuel passage and an atomized medium passage, and the space between them is simply a metal wall, so if this burner is used as is for CWM, It was found that various troubles such as those described below occur. One of them is due to heat transfer from the atomizing medium.
Moisture in the CWM evaporates from the passage walls, so
The coal content in the CWM gradually solidifies from the wall surface and eventually blocks the passage. Further, the nozzle tip is heated by flame radiation in the furnace, and in this case as well, there is a problem that the CWM nozzle or atomization chamber in the nozzle tip is clogged for the same reason as above. In order to solve the problem of continuous supply of CWM due to the above-mentioned blockage, it is possible to reduce the viscosity by lowering the concentration of pulverized coal in CWM, but in this case, the amount of heat released to the atmosphere due to exhaust gas increases, resulting in a disadvantage that the thermal efficiency of the entire plant decreases. Furthermore, if the viscosity of the CWM is lowered, the pulverized coal in the CWM will more easily settle, and may partially solidify and block the CWM passage. Furthermore, as mentioned above, on the high concentration side of pulverized coal, there is a limit due to solidification that progresses from the wall surface, and on the other hand, on the low viscosity side, there is a limit on solidification due to sedimentation of pulverized coal, so the pulverized coal concentration of practical CWM is There is a problem that the range is narrow and therefore concentration control becomes extremely difficult.

本発明の目的は、CWM霧化の際のCWM通路
等の閉塞を防止するCWMの霧化方法を提供する
ことにある。
An object of the present invention is to provide a CWM atomization method that prevents clogging of CWM passages and the like during CWM atomization.

本発明者らは、CWM通路におけるCWMの圧
力を霧化媒体の温度に相当する水の飽和圧力より
も高く保ち、CWMに含まれる水の沸騰を防止す
ることにより、CWM通路内の閉塞が避けられる
こと、および上記沸騰防止のためには、CWMの
温度を低く保つことにより、水の飽和圧力を下げ
て、CWMの圧力を水の飽和圧力より相対的に高
めればよいことを見出した。
The inventors avoided blockage in the CWM passage by keeping the pressure of the CWM in the CWM passage higher than the saturation pressure of water corresponding to the temperature of the atomizing medium and preventing boiling of the water contained in the CWM. It has been found that in order to prevent boiling, the temperature of the CWM is kept low, thereby lowering the saturation pressure of water, and making the pressure of the CWM relatively higher than the saturation pressure of water.

本発明は、微粉炭−水スラリと霧化媒体とを
別々の通路から霧化室に衝突合流させて該スラリ
を霧化する微粉炭−水スラリの霧化方法におい
て、微粉炭−水スラリ通路における該スラリの圧
力を霧化媒体の温度に相当する水の飽和圧力より
も高く保持することを特徴とする。
The present invention provides a pulverized coal-water slurry atomization method in which a pulverized coal-water slurry and an atomization medium are collided and merged into an atomization chamber from separate passages to atomize the slurry. characterized in that the pressure of the slurry is maintained higher than the saturation pressure of the water, which corresponds to the temperature of the atomizing medium.

上記CWMの圧力を高く保持するには、CWM
噴口の流動抵抗に対しCWMの供給流量を増加さ
せればよいが、CWMの流量が減少する低負荷時
には流量を増加できないので、流量増加以外に
CWMの圧力を高く保持し、CWMの含有水の沸
騰を防止する手段が必要になる。
To keep the above CWM pressure high, CWM
It is possible to increase the CWM supply flow rate to compensate for the flow resistance of the nozzle, but the flow rate cannot be increased at low loads when the CWM flow rate decreases, so there is no option other than increasing the flow rate.
A means is required to maintain the CWM pressure high and prevent the water contained in the CWM from boiling.

上記流量増加以外にCWMの相対的圧力を高く
する手段としては、CWMの昇温を防止できるも
のが広く適用され、例えばCWM通路を囲む周壁
に設けられた断熱構造体や、バーナ先端のノズル
チツプに設けられた断熱構造体、またはこれらの
組合せ等を示すことができる。上記の断熱構造体
は、該当部分の金属母材中に独立または連通状の
中空室を設けたものでもよく、また該当部分を熱
伝導性の悪い非金属材で構成したものでもよい。
なお、上記連通状の中空室を設けた場合には、該
室内へ外部から冷却媒体を導入し、強制冷却を行
うことも可能である。
In addition to increasing the flow rate mentioned above, as means to increase the relative pressure of the CWM, methods that can prevent the temperature rise of the CWM are widely applied. A thermal insulation structure provided, a combination thereof, etc. can be shown. The above-mentioned heat insulating structure may have independent or continuous hollow chambers in the metal base material of the relevant portion, or may be constructed of a non-metallic material with poor thermal conductivity.
In addition, when the above-mentioned communicating hollow chamber is provided, it is also possible to introduce a cooling medium into the chamber from the outside to perform forced cooling.

以下、実施例により本発明をさらに詳しく説明
する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一実施例に用いられる
CWM用霧化バーナの断面図である。このバーナ
装置は、CWM通路5を形成する中心部に設けら
れた内筒4と、その外側に設けられ、上記内筒4
の外周との間に霧化媒体(例えばスチーム)用の
環状通路7を形成する外筒3と、CWM通路5の
火炉側先端部に設けられたCWM噴口8と、霧化
媒体通路7の火炉側先端部に設けられた、通常複
数個の霧化媒体噴口10と、CWM噴口8および
霧化媒体噴口10に通じる霧化室9と、霧化室9
の火炉側先端部においてキヤツプ12により固定
されたノズルチツプ11とから主に構成され、上
記内筒4の内部には、本発明に従い複数個の独立
した断熱用の中空室6がバーナ軸に沿つて順次設
けられ、断熱構造体を形成している。
FIG. 1 is used in one embodiment of the present invention.
FIG. 3 is a cross-sectional view of a CWM atomizing burner. This burner device includes an inner cylinder 4 provided at the center forming a CWM passage 5, and an inner cylinder 4 provided outside the inner cylinder 4.
an outer cylinder 3 forming an annular passage 7 for atomizing medium (e.g. steam) between the outer periphery of the CWM passage 5, a CWM nozzle 8 provided at the furnace side tip of the CWM passage 5, and a furnace side of the atomizing medium passage 7. A generally plurality of atomizing medium nozzles 10 provided at the side tips, an atomizing chamber 9 communicating with the CWM nozzle 8 and the atomizing medium nozzle 10, and an atomizing chamber 9.
A nozzle tip 11 is fixed by a cap 12 at the tip end on the furnace side. Inside the inner cylinder 4, according to the present invention, a plurality of independent heat-insulating hollow chambers 6 are provided along the burner axis. They are arranged one after the other to form a heat insulating structure.

上記構成の装置において、CWM1はCWM通
路5を通つたのちCWM噴口8から霧化室9内へ
噴出される。一方、通常200℃程度に昇温された
霧化媒体例のスチーム2は、霧化媒体通路7を通
つたのち霧化媒体噴口10から旋回流下に霧化室
9内へ噴出され、上記噴出後のCWMを霧化させ
る。霧化後のCWMは、外筒3の外側を流れる燃
焼空気13と混合されたのち燃焼される。該燃焼
空気13は燃焼改善のため、一般に300〜350℃に
予熱されている場合が多い。
In the apparatus configured as described above, the CWM 1 passes through the CWM passage 5 and is then ejected from the CWM nozzle 8 into the atomization chamber 9. On the other hand, the steam 2, which is an example of an atomizing medium whose temperature is normally raised to about 200°C, passes through the atomizing medium passage 7 and is then jetted into the atomizing chamber 9 from the atomizing medium nozzle 10 in a swirling flow. Atomize the CWM. The atomized CWM is mixed with combustion air 13 flowing outside the outer cylinder 3 and then combusted. The combustion air 13 is generally preheated to 300 to 350°C in many cases to improve combustion.

CWM1はCWM通路5を通る間に霧化媒体通
路7を流れるスチーム2および外筒3の外側を流
れる燃焼空気13により加熱を受け易い環境下に
あるが、上述のように内筒4を断熱構造体とした
ことにより加熱が抑制され、これにより、CWM
中の水の飽和圧力をCWM圧力より相対的に低く
することができるので、低負荷運転時であつても
CWM中の水が沸騰することはなく、そのため石
炭分が固体化して通路を閉塞することはなくな
る。
The CWM 1 is in an environment where it is easily heated by the steam 2 flowing through the atomization medium passage 7 and the combustion air 13 flowing outside the outer cylinder 3 while passing through the CWM passage 5, but as described above, the inner cylinder 4 is constructed with an insulating structure. The heating is suppressed by making the CWM
The saturation pressure of the water inside can be made relatively lower than the CWM pressure, so even during low load operation
The water in the CWM will not boil, so the coal will not solidify and block the passageways.

次に、第2図は本発明の実施に用いられる他の
バーナ装置を示すもので、外筒3Aも第1図の内
筒4と同様な構造の断熱構造体で形成する以外は
第1図と同様な構成としたものである。この場
合、内筒4内の通路は霧化媒体通路7となり、一
方、内筒4の外周と外筒3Aの内周との間に形成
される環状通路はCWM通路5となる。
Next, FIG. 2 shows another burner device used for carrying out the present invention, except that the outer cylinder 3A is also formed of a heat insulating structure having the same structure as the inner cylinder 4 of FIG. 1. It has a similar configuration. In this case, the passage within the inner cylinder 4 becomes the atomized medium passage 7, while the annular passage formed between the outer periphery of the inner cylinder 4 and the inner periphery of the outer cylinder 3A becomes the CWM passage 5.

このような構成の装置においても、第1図に示
す装置の場合と同様にCWMの加熱を抑制し、
CWM通路の閉塞防止効果が得られる。
In a device with such a configuration, heating of the CWM is suppressed as well as in the case of the device shown in Fig. 1, and
The effect of preventing blockage of the CWM passage can be obtained.

さらに第3図は、本発明の実施に用いられる別
の装置のノズルチツプ部を示すもので、この装置
は、火炉側先端部にバーナ軸に対し直角な独立中
空室61と、CWM噴口8の外周に独立中空室6
2を設けて断熱構造とした以外は第1図に示すノ
ズルチツプ11と同様な構成としたものである。
Furthermore, FIG. 3 shows the nozzle tip of another device used for carrying out the present invention. This device has an independent hollow chamber 61 perpendicular to the burner axis at the tip on the furnace side, and an outer periphery of the CWM nozzle 8. Independent hollow chamber 6
The nozzle tip 11 has the same structure as the nozzle chip 11 shown in FIG.

このような構成とすることにより、火炉体の火
炎輻射や通路7を通る霧化媒体による加熱を抑制
できるので、CWM通路の閉塞防止に加え、
CWM噴口8や霧化室9の閉塞を防止することも
できる。
With this configuration, it is possible to suppress flame radiation of the furnace body and heating by the atomizing medium passing through the passage 7, so in addition to preventing clogging of the CWM passage,
It is also possible to prevent clogging of the CWM nozzle 8 and the atomization chamber 9.

上記実施例において、例えば第1図に示す
CWM用霧化バーナの中空室6内に断熱材を挿入
することにより、一層断熱効果を向上させること
もできる。また、上記中空室は連通構造状のもの
でもよく、その際、外部から冷却媒体を強制的に
注入可能として冷却効果を与えることができる。
In the above embodiment, for example, as shown in FIG.
By inserting a heat insulating material into the hollow chamber 6 of the CWM atomizing burner, the heat insulating effect can be further improved. Further, the hollow chamber may have a communicating structure, in which case a cooling medium can be forcibly injected from the outside to provide a cooling effect.

上記の連通中空室は、第3図に示すノズルチツ
プの中空室と連通させることもでき、このように
して得られる全体の連通室に外部から冷却媒体を
強制的に注入して冷却効果を一層向上させること
もできる。また、第3図に示すノズルチツプに代
え、全体を熱伝導度の小さい非金属材で製作した
ノズルチツプを用いても同様な効果が得られる。
さらに、本発明は各実施例に示す型式のバーナ
(二流体バーナ)に限らず、公知の媒体噴霧式バ
ーナに対し広く適用可能である。
The communicating hollow chamber described above can also be communicated with the hollow chamber of the nozzle chip shown in Fig. 3, and a cooling medium can be forcibly injected from the outside into the entire communicating chamber thus obtained to further improve the cooling effect. You can also do it. Furthermore, the same effect can be obtained by using a nozzle chip made entirely of a non-metallic material with low thermal conductivity in place of the nozzle chip shown in FIG.
Furthermore, the present invention is not limited to the type of burner (two-fluid burner) shown in each embodiment, but is widely applicable to known medium spray type burners.

以上、本発明によれば、CWM通路内を送られ
るCWMの圧力を霧化媒体の温度における水の飽
和圧力よりも高くすることにより、CWM通路内
においてCWM中の石炭分が壁面部から順次固体
化して閉塞に到る欠点を解消することが可能とな
り、これにより水の沸騰が起り易い低負荷運転時
であつても、CWMの燃焼を閉塞を生ずることな
く、高高率で行うことができる。
As described above, according to the present invention, by making the pressure of the CWM sent through the CWM passage higher than the saturation pressure of water at the temperature of the atomizing medium, the coal content in the CWM is gradually solidified from the wall surface in the CWM passage. This makes it possible to eliminate the disadvantage of clogging and clogging, and as a result, CWM combustion can be performed at a high rate without clogging, even during low-load operation where water boiling is likely to occur. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施に用いるCWM用霧化
バーナの側断面図、第2図は、本発明の他の実施
に用いるCWM用霧化バーナの筒部を示す側断面
図、第3図は、本発明の実施に用いる別のCWM
用霧化バーナのノズルチツプ部を示す側断面図で
ある。 1……CWM、2……霧化媒体、3,3A……
外筒、4……内筒、5……CWM通路、6,6
1,62……中空室、7……霧化媒体通路、8…
…CWM噴口、9……霧化室、10……霧化媒体
噴口、11……ノズルチツプ、13……燃焼空
気。
FIG. 1 is a side sectional view of a CWM atomizing burner used in carrying out the present invention, FIG. The figure shows another CWM used to implement the invention.
FIG. 3 is a side sectional view showing a nozzle tip of the atomizing burner. 1...CWM, 2...Atomization medium, 3,3A...
Outer cylinder, 4... Inner cylinder, 5... CWM passage, 6, 6
1,62...Hollow chamber, 7...Atomization medium passage, 8...
... CWM nozzle, 9 ... atomization chamber, 10 ... atomization medium nozzle, 11 ... nozzle tip, 13 ... combustion air.

Claims (1)

【特許請求の範囲】[Claims] 1 微粉炭−水スラリと霧化媒体とを別々の通路
から霧化室に衝突合流させて該スラリを霧化する
微粉炭−水スラリの霧化方法において、微粉炭−
水スラリ通路における該スラリの圧力を霧化媒体
の温度に相当する水の飽和圧力よりも高く保持す
ることを特徴とする微粉炭−水スラリの霧化方
法。
1 In a pulverized coal-water slurry atomization method in which a pulverized coal-water slurry and an atomization medium are collided and merged into an atomization chamber from separate passages to atomize the slurry, the pulverized coal-water slurry is
A method for atomizing a pulverized coal-water slurry, characterized in that the pressure of the slurry in the water slurry passage is maintained higher than the saturation pressure of water corresponding to the temperature of the atomizing medium.
JP2286983A 1983-02-16 1983-02-16 Method for atomization of pulverized coal-water slurry and burner thereof Granted JPS59150213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2286983A JPS59150213A (en) 1983-02-16 1983-02-16 Method for atomization of pulverized coal-water slurry and burner thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2286983A JPS59150213A (en) 1983-02-16 1983-02-16 Method for atomization of pulverized coal-water slurry and burner thereof

Publications (2)

Publication Number Publication Date
JPS59150213A JPS59150213A (en) 1984-08-28
JPH044493B2 true JPH044493B2 (en) 1992-01-28

Family

ID=12094694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2286983A Granted JPS59150213A (en) 1983-02-16 1983-02-16 Method for atomization of pulverized coal-water slurry and burner thereof

Country Status (1)

Country Link
JP (1) JPS59150213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254457A (en) * 2012-08-06 2012-12-27 Nozzle Network Co Ltd Liquid atomizing device and liquid atomizing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169128U (en) * 1980-05-19 1981-12-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254457A (en) * 2012-08-06 2012-12-27 Nozzle Network Co Ltd Liquid atomizing device and liquid atomizing method

Also Published As

Publication number Publication date
JPS59150213A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
EP0149901B1 (en) Burner tip
CA2045199A1 (en) Oxygen-fuel burner assembly and operation
US4669399A (en) Method of reducing the NOx content in combustion gases
JPH044493B2 (en)
JPH0587721B2 (en)
JP2561382B2 (en) Low NOx burner
RU2001350C1 (en) Atomizer
JP2505796B2 (en) Atomizer for slurry fuel and burner ignition method using the atomizer
JPS5731720A (en) Heating method of high temperature heating furnace
DE19518787A1 (en) Vapour burner for liquid fuel in domestic and small heaters
JPH0318819Y2 (en)
JP2006137965A (en) Metal-heating furnace
JPH045867Y2 (en)
JPS646930Y2 (en)
KR100231971B1 (en) Energy saving burner tip for reducing nox
JP2526234B2 (en) Atomizer for low nitrogen oxide combustion
JPS6349614A (en) Premixing atomizer
JP2739748B2 (en) Burner for slurry fuel
JPH0663628B2 (en) Efficient combustion method of pitch water slurry
JPS6349613A (en) Intermixing type atomizer
JPS5912961Y2 (en) Liquid atomization device using reduced pressure boiling
JPH025210Y2 (en)
JPS6314185Y2 (en)
SU1125255A1 (en) Method for heating open-hearth furnace
JPS6183812A (en) Atomizer for slurry fuel