JPS6349614A - Premixing atomizer - Google Patents

Premixing atomizer

Info

Publication number
JPS6349614A
JPS6349614A JP19237086A JP19237086A JPS6349614A JP S6349614 A JPS6349614 A JP S6349614A JP 19237086 A JP19237086 A JP 19237086A JP 19237086 A JP19237086 A JP 19237086A JP S6349614 A JPS6349614 A JP S6349614A
Authority
JP
Japan
Prior art keywords
fuel
mixing chamber
cwm
atomizer
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19237086A
Other languages
Japanese (ja)
Other versions
JPH0788940B2 (en
Inventor
Kazunori Satou
一教 佐藤
Kunio Okiura
沖浦 邦夫
Akira Baba
彰 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19237086A priority Critical patent/JPH0788940B2/en
Publication of JPS6349614A publication Critical patent/JPS6349614A/en
Publication of JPH0788940B2 publication Critical patent/JPH0788940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/10Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour
    • F23D11/101Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet
    • F23D11/102Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space the spraying being induced by a gaseous medium, e.g. water vapour medium and fuel meeting before the burner outlet in an internal mixing chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Abstract

PURPOSE:To improve making of fine particles and provide a stable flame having reinforced flame stabilization characteristic by a method wherein medium for making fine particles is arranged adjacent to a mixing chamber and a fuel separation nozzle is provided in order to connect at least one second mixing chamber formed with injection holes at a side facing to a furnace, a second mixing chamber and an inner diameter modified part of a fuel supplying portion. CONSTITUTION:Fuel 2 is pressurized by a fuel supplying nozzle 21 and a fuel separation chamber 25, a dehydration occurs at a fuel separation nozzle 30 having a small diameter and CWM having a more decreased condensation than that of initial CWM is supplied to a gas-liquid mixing chamber 28. In turn, CWM having more condensed condensation than that of the initial CWM is supplied from a fuel nozzle 26 to the gas-liquid mixing chamber 27. CWM having low condensation is made such that its rheology characteristic is varied from it dilatant to Newtonian and is facilitated to be fine particled. In turn, a highly condensed CWM shows a variation from its dilatant to pseudo-plastic condition, resulting in that a remarkable superior fine particle formation can be made. Therefore, ignition is made stable and a flame stabilization characteristic is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は予混合式アトマイザに係り、特に微粉固体を含
有するスラリ状燃料の高効率、低公害燃焼化を図るに好
適な予混合式アトマイザに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a premix atomizer, and in particular, a premix atomizer suitable for achieving high efficiency and low pollution combustion of slurry fuel containing fine powder solids. Regarding.

〔従来の技術〕[Conventional technology]

CWM (高濃度石炭・水スラリ)は流体化した燃料で
あり、従来の油と同じようにアトマイザを用いて噴霧燃
焼させることができるが、微粉炭と比較した場合の問題
点として着火保炎性の悪さと未燃分が増大してしまうこ
とが知られている0着火性の悪さの原因は水の蒸発に熱
が費やされるためであり、微粉炭と比較してかなり着火
距離が長くなる。また、未燃分の増加を招く原因として
は未解明な部分が少なくないが、液滴内で微小な石炭粒
子が凝集しているため微粉炭のように個々の粒子のまま
燃え切らないことと、水分によって燃焼が低下するため
である。さらに石炭燃焼の特徴として、保炎性が悪く火
炎がリフトした状態では安定な還元域を形成しにりく(
シかも高温にならない)NOxを抑制するのが難しい(
この事実は微粉炭燃焼にもあてはまる)ことが挙げられ
る。
CWM (Highly Concentrated Coal/Water Slurry) is a fluidized fuel that can be sprayed and burned using an atomizer in the same way as conventional oil. The cause of the poor ignition performance is that heat is consumed in evaporating water, and the ignition distance is considerably longer than that of pulverized coal. In addition, although there are many unknown reasons for the increase in unburned coal, it is likely that the tiny coal particles are agglomerated within the droplets and are not burnt out as individual particles like pulverized coal. This is because moisture reduces combustion. Furthermore, a characteristic of coal combustion is that it has poor flame stability and is difficult to form a stable reduction zone when the flame is lifted.
It is difficult to suppress NOx (it may not reach high temperatures)
This fact also applies to pulverized coal combustion.

したがって、CWMの燃焼効率を微粉炭並みまで上昇さ
せるには、噴霧性能にすぐれCWMの燃焼に適したアト
マイザを開発することが必要である。
Therefore, in order to increase the combustion efficiency of CWM to the level of pulverized coal, it is necessary to develop an atomizer that has excellent spray performance and is suitable for CWM combustion.

第6図及び第7図は従来型の代表的な二流体アトマイザ
の構造の2例を示す断面図である。
FIGS. 6 and 7 are cross-sectional views showing two examples of the structure of a typical conventional two-fluid atomizer.

第6図は内部混合式の一例を示し、CWMを噴出孔8よ
り噴出させるアトマイザチップ本体lの底部には、燃料
2を導入する燃料ノズル4、微粒化媒体3を導入する微
流下媒体供給孔5、及び燃料2と微粒化媒体3を混合す
る気液衝突孔6の各々を備え、混合体を本体1の混合室
7へ供給するインタメゾイエイトプレート10が配設さ
れ、このプレート10に対し本体1がキャップナフト9
によって一体的に結合されている。
FIG. 6 shows an example of an internal mixing type. At the bottom of the atomizer chip main body l, which ejects CWM from the ejection hole 8, there is a fuel nozzle 4 for introducing the fuel 2, and a fine flow medium supply hole for introducing the atomization medium 3. 5 and gas-liquid collision holes 6 for mixing the fuel 2 and the atomizing medium 3, and an intermezzoate plate 10 for supplying the mixture to the mixing chamber 7 of the main body 1. On the other hand, main body 1 is cap naft 9
are integrally connected by.

第6図の構成では、インタメゾイエイトプレート10の
中心に開口する気液衝突孔6で燃料2と微粒化媒体3を
合流混合させて1次微粒化を行わせ、次いで、混合室7
で滞留させた後に噴出孔8より噴射微粒化している。
In the configuration shown in FIG. 6, the fuel 2 and the atomization medium 3 are mixed together in the gas-liquid collision hole 6 opened at the center of the intermezzoate plate 10 to perform primary atomization, and then the mixture chamber 7
After being allowed to stay in the water, it is injected from the ejection hole 8 and atomized.

第7図はYジェット式と称される中間混合式アトマイザ
であり、燃料供給孔11、人口部に微粒化媒体孔12を
有し中間部に燃料供給孔11が連結された混合噴出孔1
3の各々が設けられたアトマイザチップ本体14と、導
入した微粒化媒体3を微粒化媒体孔12に供給するバー
ナガン内筒15と、この内筒15に対し同心円状に配設
さて導入された燃料2を燃料供給孔11に供給するバー
ナガン外筒16と、この外筒16の上端と本体14との
接触面及び内筒15と本体14の接触面の各々に配設さ
れるパツキン17a、17bと本体14とバーナガン外
筒16を一体的に結合するキャップナツト18とをもっ
て構成されている。
FIG. 7 shows an intermediate mixing type atomizer called a Y-jet type, which has a fuel supply hole 11, an atomizing medium hole 12 in the artificial part, and a mixing jet hole 1 connected to the fuel supply hole 11 in the middle part.
3, a burner gun inner cylinder 15 for supplying the introduced atomization medium 3 to the atomization medium hole 12, and a burner gun inner cylinder 15 that is arranged concentrically with respect to the inner cylinder 15 and introduced fuel. A burner gun outer cylinder 16 that supplies fuel 2 to the fuel supply hole 11, and gaskets 17a and 17b disposed on the contact surface between the upper end of the outer cylinder 16 and the main body 14, and the contact surface between the inner cylinder 15 and the main body 14, respectively. It is comprised of a cap nut 18 that integrally connects the main body 14 and the burner gun outer cylinder 16.

第7図の構成では、燃料2と微粒化媒体3の各々を個別
にバーナガンを介してアトマイザチップ本体14に供給
し、この本体14内の混合噴出孔13内で両者を衝突合
流させ、この混合液を混合噴出孔13から直接噴射する
In the configuration shown in FIG. 7, each of the fuel 2 and the atomization medium 3 is individually supplied to the atomizer chip body 14 via a burner gun, and the two are collided and merged within the mixing ejection hole 13 in this body 14, and the mixture is The liquid is directly injected from the mixing jet hole 13.

第6図及び第7図に示したいずれのアトマイザも、事業
用産業用を問わす油焚ボイラでの使用実績はきわめて多
い、しかし、燃料がCWMとなると比較的大きな液滴を
多量に発生するなど微粒化に関しては不十分であり、こ
のまま適用することはきわめて難しい。
Both of the atomizers shown in Figures 6 and 7 have been used extensively in oil-fired boilers for commercial and industrial use.However, when the fuel is CWM, a large amount of relatively large droplets are generated. It is insufficient in terms of atomization, and it is extremely difficult to apply it as is.

一方、CWMは、見掛けの粘度や濃度あるいは石炭粒度
分布が同一であってもレオロジー特性が異なると微粒化
特性が大きく変化する。この特徴は上記したいずれのタ
イプのアトマイザでも観察される。擬塑性あるいはニュ
ートニアンのCWMと比較して、グイラタント性を示す
CWMはせん断力の上昇に対して粘度が増加するためさ
らに微粒化が不良になる。石炭種によっては、製造した
CWMがグイラタント性を示すことが少なくない。
On the other hand, in CWM, even if the apparent viscosity, concentration, or coal particle size distribution is the same, if the rheological properties differ, the atomization properties will vary greatly. This feature is observed in any type of atomizer mentioned above. Compared to pseudoplastic or Newtonian CWM, CWM exhibiting giratant properties has an increased viscosity with respect to an increase in shear force, resulting in poor atomization. Depending on the type of coal, manufactured CWM often exhibits giratant properties.

使用するCWMがたとえグイラクント性を示すものであ
っても、アトマイザの構造を選定することによって、少
なくとも他のレオジー特性のCWMと同等程度の微粒化
特性が得られれば極めて有利になると考えられる。
Even if the CWM used exhibits gilactonity, it would be extremely advantageous if, by selecting the structure of the atomizer, at least the same level of atomization properties as other CWMs with rheological properties could be obtained.

尚、この種装置に関するものとして、日本機械学会講演
論文集No、865−1(昭61/8)109頁、三菱
重工枝軸Vo1.22.No、5(1985−9>66
4頁、石川島播磨重工枝軸Vo1. 25.No、  
5  (1985−9)308真に記載のものがある。
Regarding this type of device, see Proceedings of the Japan Society of Mechanical Engineers No. 865-1 (August 1986), p. 109, Mitsubishi Heavy Industries Branch Axis Vol. 1.22. No. 5 (1985-9>66
Page 4, Ishikawajima Harima Heavy Industries Branch Axis Vol. 25. No,
5 (1985-9) 308.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のアトマイザにあっては、CWMに適用し
た場合、十分な微粒化が出来ないために着火保炎状態が
極めて不安定になり、未燃分ばかりかNOxの排出量も
増大する。また炉出口にも燃え残りが多いため灰処理に
も支障をきたすことになる。
However, when conventional atomizers are applied to CWM, sufficient atomization cannot be achieved, resulting in extremely unstable ignition and flame stability, resulting in increased emissions of not only unburned matter but also NOx. Additionally, there is a lot of unburned remains at the furnace outlet, which poses a problem in ash disposal.

一方、石炭種が変われば製造されたCWMは、見かけ粘
度のみならずレオロジー特性も大きく変化する。レオロ
ジー特性は微粒化特性に多くの影響を及ぼすにもかかわ
らず、従来技術ではこのようなCWMの広範な物性変化
への対応策がほどこされていない。
On the other hand, if the type of coal changes, not only the apparent viscosity but also the rheological properties of the manufactured CWM will change significantly. Although rheological properties have many effects on atomization properties, conventional techniques have not taken measures to deal with such wide changes in physical properties of CWM.

本発明の目的は、上記した従来技術の問題点を解消し、
微粒化の向上を図り、保炎を強化した安定な火炎を作り
出すことのできる予混合式アトマイザを提供することに
ある。
The purpose of the present invention is to solve the problems of the prior art described above,
An object of the present invention is to provide a premixed atomizer capable of producing a stable flame with improved atomization and enhanced flame holding.

C問題点を解決するための手段〕 上記目的を達成するために、本発明は、内径に差異のあ
る形状を有する燃料供給部を混合室の上流側に設け、該
混合室に隣接して少なくとも1つの第2の混合室を設け
、この混合室に微粒化媒体及び燃料供給部よりの燃料を
供給して、二種類の濃度のCWMが得られるように構成
したものである。
Means for Solving Problem C] In order to achieve the above object, the present invention provides a fuel supply section having a shape with different inner diameters on the upstream side of the mixing chamber, and adjacent to the mixing chamber, at least One second mixing chamber is provided, and the atomizing medium and fuel from the fuel supply section are supplied to this mixing chamber so that two types of CWM concentrations can be obtained.

〔作用〕[Effect]

中心部に設けられた混合室は高濃度化した擬塑性のCW
Mを生成し、周辺部に設けられた混合室は低濃度化した
ニュートアンなCWMを生成し、共に微粒化が促進され
る。各々の混合室より噴霧された噴霧流は全体に噴霧粒
径が小さくなり、着火保炎性が向上し、未燃分を低減す
る。
The mixing chamber located in the center contains highly concentrated pseudoplastic CW.
The mixing chamber provided at the periphery generates neutron CWM with a reduced concentration, and atomization is promoted in both cases. The atomized stream sprayed from each mixing chamber has a small atomized particle size as a whole, improving ignition flame stability and reducing unburned matter.

〔発明の実施例〕[Embodiments of the invention]

以下、図面に基づいて本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the drawings.

第1図及び7142図は本発明の一実施例を示す断面図
及び平面図である。なお、第6図と同一であるものには
同一の引用数字を用いている。
FIG. 1 and FIG. 7142 are a sectional view and a plan view showing an embodiment of the present invention. Note that the same reference numbers are used for parts that are the same as in Figure 6.

本発明になるアトマイザは、燃料2及び微粒化媒体3が
導入されるインタメゾイエイトプレート19と、このプ
レート19に結合されてCWMを噴射するアトマイザチ
ップ本体20とよりなり、両者はキャップナンド9によ
って固定される。
The atomizer according to the present invention consists of an intermezzoate plate 19 into which the fuel 2 and atomization medium 3 are introduced, and an atomizer chip body 20 that is coupled to this plate 19 and injects CWM, both of which are connected to a cap nand 9. Fixed by

インタメゾイエイトプレート19は、燃料2が導入され
ると共にセラミックス等の耐摩耗性材料により燃料供給
ノズル21、このノズル21に連結させて設けられる燃
料分離室22、この燃料分離室22の周囲に配設されて
微粒化媒体3が導入される第1の微粒化媒体供給孔23
及び第2の微粒化媒体供給孔24の各々を備えて構成さ
れる。
The intermezoate plate 19 is connected to a fuel supply nozzle 21, a fuel separation chamber 22 connected to the nozzle 21, and a surrounding area of the fuel separation chamber 22, into which the fuel 2 is introduced and is made of a wear-resistant material such as ceramics. A first atomization medium supply hole 23 is provided and into which the atomization medium 3 is introduced.
and a second atomizing medium supply hole 24.

また、アトマイザチップ本体20は、燃料分離室22に
連通ずる燃料分離室25、この燃料分離室25に連通ず
る燃料ノズル26、該燃料ノズル26に連通ずる第1の
気液混合室27、第2の微粒化媒体供給孔24に連通ず
る第2の気液混合室28、第1の気液混合室27の内周
部に設けられる耐摩耗材による衝突板(ターゲソ))2
9、燃料分離室25と気液混合室28を連通ずる燃料分
離ノズル30、気液混合室27の気液噴出面に形成され
る噴出孔31、気液混合室28の気液噴出面に形成され
る噴出孔32、微粒化媒体供給孔23と気液混合室27
の底部を連通ずる微粒化媒体ノズル33の各々を備えて
構成される。
The atomizer chip body 20 also includes a fuel separation chamber 25 communicating with the fuel separation chamber 22, a fuel nozzle 26 communicating with the fuel separation chamber 25, a first gas-liquid mixing chamber 27 communicating with the fuel nozzle 26, and a second gas-liquid mixing chamber 27 communicating with the fuel nozzle 26. Collision plate (target plate) 2 made of wear-resistant material provided on the inner periphery of the second gas-liquid mixing chamber 28 and the first gas-liquid mixing chamber 27 communicating with the atomization medium supply hole 24 of
9. A fuel separation nozzle 30 that communicates the fuel separation chamber 25 and the gas-liquid mixing chamber 28, an ejection hole 31 formed on the gas-liquid ejection surface of the gas-liquid mixing chamber 27, and an ejection hole 31 formed on the gas-liquid ejection surface of the gas-liquid mixing chamber 28. The ejection hole 32, the atomization medium supply hole 23, and the gas-liquid mixing chamber 27
each of the atomizing media nozzles 33 communicating with the bottom of the atomizing medium nozzle 33 .

燃料分離室22は、燃料供給ノズル21よりも直径が大
きく設定される。また、微粒化媒体供給孔23と24は
円周方向に交互に形成されている。
The fuel separation chamber 22 is set to have a larger diameter than the fuel supply nozzle 21. Further, the atomizing medium supply holes 23 and 24 are formed alternately in the circumferential direction.

燃料分離室25の下流側中心部は、この燃料分離室25
内で燃料を加圧するために孔径が小さくされ(燃料ノズ
ル26)でいる。さらに、燃料分離ノズル30の合計断
面積は燃料ノズル26の断面積よりも小さくなるように
設定する。
The central part of the downstream side of the fuel separation chamber 25 is
The hole diameter is reduced (fuel nozzle 26) in order to pressurize the fuel within. Furthermore, the total cross-sectional area of the fuel separation nozzles 30 is set to be smaller than the cross-sectional area of the fuel nozzles 26.

次に、上記のように構成される予混合式アトマイザの作
用効果について説明する。
Next, the effects of the premixing atomizer configured as described above will be explained.

燃料2は、バーナガン内筒内を流れて、インタメゾイエ
イトプレート19の中心に開口する燃料供給ノズル21
に加圧供給される。また内筒と外筒の環状隙間内を微粒
化媒体3である蒸気あるいは圧縮空気が流れ、インクメ
ゾイエイトプレート19に各々複数個開口する微粒化媒
体供給孔23及び24に供給される。
The fuel 2 flows through the inner cylinder of the burner gun and enters a fuel supply nozzle 21 that opens at the center of the intermezoate plate 19.
is supplied under pressure. Further, steam or compressed air, which is the atomizing medium 3, flows through the annular gap between the inner cylinder and the outer cylinder, and is supplied to the atomizing medium supply holes 23 and 24, each of which has a plurality of openings in the ink mezzoate plate 19.

微粒化媒体供給23を介して供給された微粒化媒体3及
び燃料ノズル26を介して供給された燃料2は、共に衝
突板29に衝突して両者が混合(1次微粒化)し、混合
室27に噴射される。混合室27内の気液は、複数の噴
出孔31がら噴霧流となって放出される。
The atomizing medium 3 supplied via the atomizing medium supply 23 and the fuel 2 supplied via the fuel nozzle 26 collide with the collision plate 29 and mix (primary atomization), and the mixture enters the mixing chamber. It is injected on 27th. The gas and liquid in the mixing chamber 27 is emitted as a spray stream through the plurality of ejection holes 31 .

一方、燃料分離室25より分岐された燃料は、気液混合
室28で微粒化媒体供給孔24より供給された微粒化媒
体3(蒸気)と混合される。この気液混合室28で生成
された混合体は噴出孔32の各々より噴出されるが、噴
出孔31によるものとは性状が異なっている。
On the other hand, the fuel branched from the fuel separation chamber 25 is mixed with the atomization medium 3 (steam) supplied from the atomization medium supply hole 24 in the gas-liquid mixing chamber 28 . The mixture generated in the gas-liquid mixing chamber 28 is ejected from each of the ejection holes 32, but its properties are different from those from the ejection holes 31.

ここに、燃料としてグイラタント性を示すcwMがアト
マイザに供給されると仮定する。
Here, it is assumed that cwM exhibiting giratant properties is supplied to the atomizer as fuel.

燃ネ12は、燃料供給ノズル21、燃料分離室25で加
圧され、孔径の小さな燃料分離ノズル30では脱水作用
が生じて気液混合室28へは供給された当初よりも濃度
の低下したく同時に見掛けの粘度も下がる”)CWMが
供給される。一方、燃料ノズル26からは、当初のもの
より高濃度化したCWMが気液混合室27へ供給される
。この場合には、高濃度化しても見掛けの粘度が増加す
るとは限らない。
The fuel fuel 12 is pressurized by the fuel supply nozzle 21 and the fuel separation chamber 25, and dehydration occurs in the fuel separation nozzle 30 with a small hole diameter, so that the fuel gas 12 is supplied to the gas-liquid mixing chamber 28 at a lower concentration than when it was initially supplied. At the same time, the apparent viscosity also decreases.'') CWM is supplied. On the other hand, from the fuel nozzle 26, CWM with a higher concentration than the original one is supplied to the gas-liquid mixing chamber 27. However, the apparent viscosity does not necessarily increase.

低濃度化されたCWMは、レオロジー特性が、グイラタ
ント(せん断速度の増加に対しせん断力が増加する性質
)からニュートニアン(せん断速度とせん断心力が比例
関係になる性質)に変化し、微粒化し易くなる。一方、
高濃度化したCWMは、グイラタントから擬塑性(せん
断速度の増加に対しせん断心力が低下する性質)に変化
し、著しく微粒化が良好になる。この作用が本発明の特
徴とするところであり、以下詳細に説明する。
The rheological properties of CWM that has been reduced in concentration change from giratant (the property that the shear force increases as the shear rate increases) to Newtonian (the property that the shear rate and shear core force are in a proportional relationship), making it easier to atomize. Become. on the other hand,
Highly concentrated CWM changes from giratant to pseudoplastic (a property in which the core shear force decreases as the shear rate increases), resulting in significantly better atomization. This action is a feature of the present invention, and will be explained in detail below.

第3図に、従来型アトマイザと本発明になるアトマイザ
の噴霧液滴の粒度分布曲線を比較して示す0本発明アト
マイザの方が微小な液滴が多く、比較的大きな液滴が少
ない、すなわち、微粒化が良好になっていることがわか
る。本発明になるアトマイザにおいて、噴霧流中心と外
周部の粒度分布を比較すると、高濃度て擬塑性を示すC
WMを微粒化した噴霧流中心部の方が、微小な液滴の量
が多い一方で大きな液滴も相対的にやや多くなっている
。これらの特性変化は、CWMの濃度とレオロジー特性
の相違に起因するものと考えられる。
FIG. 3 shows a comparison of particle size distribution curves of atomized droplets from a conventional atomizer and an atomizer according to the present invention.The atomizer according to the present invention has more minute droplets and relatively fewer large droplets, i.e. , it can be seen that the atomization is good. In the atomizer according to the present invention, when comparing the particle size distribution at the center of the spray flow and at the outer periphery, it is found that C exhibits pseudoplasticity at high concentrations.
In the center of the spray flow where the WM is atomized, the amount of minute droplets is larger, but the number of large droplets is also relatively larger. These property changes are considered to be due to differences in CWM concentration and rheological properties.

第4図には、本発明になるアトマイザを利用した条件で
の火炎構造模式図として示す、第4図において、20は
アトマイザチップ本体、32はバーナスロート、33は
燃焼用空気、34は高温還元炎、35は酸化炎である。
FIG. 4 shows a schematic diagram of the flame structure under conditions using the atomizer of the present invention. In FIG. 4, 20 is the atomizer chip body, 32 is the burner throat, 33 is the combustion air, and 34 is the high temperature reduction. Flame 35 is an oxidizing flame.

第4図から明らかなように、火炎中心は、高濃度化した
CWMが微粒化された噴霧が燃焼する高温還元域となり
、下流での再燃焼(Rs−Burning)によって低
NOx燃焼が達成される。従来においては、火炎中心は
酸素と温度の不足のため燃焼が遅れ、未燃分が増大する
のではないかという危惧があったが、本発明の場合は微
粒化を良好にすることでこのハンディを補っている。
As is clear from Figure 4, the flame center becomes a high-temperature reduction zone where the atomized spray of highly concentrated CWM burns, and low NOx combustion is achieved through downstream re-burning (Rs-burning). . In the past, there was concern that combustion would be delayed due to the lack of oxygen and temperature at the flame center, resulting in an increase in unburned matter, but in the case of the present invention, this handicap is overcome by improving atomization. is supplementing.

第5図は、NOxと未燃分の関係で実験データを整理し
、本発明になるアトマイザの効果を実証したものである
。同一未燃分レベルで比較した場合、本発明によるアト
マイザではNOxについて100〜200ppmの低下
がみられる。また、同−NOxレベルで比べた場合、著
しく未燃分が低下しており、本発明によるアトマイザの
効果がきわめて大きいことがわかる。
FIG. 5 shows experimental data organized in terms of the relationship between NOx and unburned matter, and demonstrates the effectiveness of the atomizer according to the present invention. When compared at the same unburned content level, the atomizer according to the present invention shows a 100 to 200 ppm reduction in NOx. Furthermore, when compared at the same -NOx level, the amount of unburned matter is significantly reduced, which shows that the effect of the atomizer according to the present invention is extremely large.

尚、以上の構成においては、噴出孔31.32の個数、
孔径を同一にし、開口位置を各々同じバーナ半径方向軸
上に設定したが、これらの条件に関しては、本発明では
特に規定しない。個数、孔径もしくは開口位置の変化を
適宜組合わせれば、本発明の効果に付随する種々の効果
を生み出すことも可能である。
In addition, in the above configuration, the number of ejection holes 31, 32,
Although the hole diameters were made the same and the opening positions were set on the same burner radial axis, these conditions are not particularly specified in the present invention. By appropriately combining changes in the number, hole diameter, or opening position, it is possible to produce various effects accompanying the effects of the present invention.

さらに本発明になる二流体アトマイザは、本文中で特に
例として取り上げたCWMにとどまらず、他の微粉固体
を液中に懸濁するスラリ状燃料に対しても適用可能であ
る。
Furthermore, the two-fluid atomizer according to the present invention is applicable not only to CWM, which is specifically taken as an example in this text, but also to other slurry fuels in which finely divided solids are suspended in the liquid.

以下に、該当する燃料を列記する。The applicable fuels are listed below.

(1)COM (石炭・油スラリ) (2)メタコール(石炭・メタノールスラリ)(3)P
WM (石油コークス・水スラリ)(4)ピッチ・水ス
ラリ (5)固形残炭骨の多い劣質残渣 以上説明した本発明の実施例によると、具体的に次に列
挙する如き効果が得られる。
(1) COM (coal/oil slurry) (2) Methanol (coal/methanol slurry) (3) P
WM (Petroleum Coke/Water Slurry) (4) Pitch/Water Slurry (5) Solid Residue Carbon Inferior Residue with Many Bones According to the embodiments of the present invention described above, the effects as specifically listed below can be obtained.

(1) いかなる性状のCWMに対しても微粒化特性が
良好になり着火が安定し、保炎性が向上する。
(1) Atomization characteristics are improved for CWM of any nature, ignition is stabilized, and flame stability is improved.

(2) 上記保炎性の向上と関連し、フライアッシュ中
の灰中未燃分が低減するため燃焼効果が向上する。
(2) In connection with the above-mentioned improvement in flame stability, the combustion effect is improved because the unburned content in the fly ash is reduced.

(3) 上記効果(2)、(3)と関連し、A/Hで補
足されるシンターアッシュ(燃えがら、燃え残り灰)や
炉底へ落下するクリンカアッシュの全体量が減少するば
かりでなく、それらの灰中未燃分が低減する。そのため
灰処理が著しく容易になり、灰の利用範囲も拡大される
(3) Related to effects (2) and (3) above, not only does the overall amount of sinter ash (cinders, unburned ash) supplemented by A/H and clinker ash that falls to the bottom of the furnace decrease, The unburned content in the ash is reduced. This greatly facilitates ash disposal and expands the scope of ash usage.

(4) 短炎化するためボイラ火炉を小さくできる。し
たがって経済性の面から有利になる。
(4) Boiler furnace can be made smaller due to shorter flame. Therefore, it is advantageous from an economic point of view.

(5) 上記した(1)〜(3)の効果により、燃焼性
の劣る高燃料比炭(燃料比−固定炭素/揮発分)を用い
たスラリ燃料にも有利になる。
(5) The above-mentioned effects (1) to (3) are also advantageous for slurry fuels using high fuel ratio coal (fuel ratio - fixed carbon/volatile content), which has poor combustibility.

(6)   (1)の効果により、バーナ近傍に安定な
高温還元域が形成され、NOxを低減できる。
(6) Due to the effect of (1), a stable high-temperature reduction region is formed near the burner, and NOx can be reduced.

(7) 大容量化(スケール・アンプ)が可能になる。(7) Enables larger capacity (scale amplifier).

(8) 微粒化媒体(蒸気)量を低減できる。したがっ
て、ボイラ効率が上昇し補機動力費を削減できる。
(8) The amount of atomization medium (steam) can be reduced. Therefore, boiler efficiency increases and auxiliary equipment power costs can be reduced.

(9) 低過剰空気燃焼が可能になる。よってS(イオ
ウ)分を多く含をする炭種(日本国内へ輸入される石炭
では一般に3分が少ないが)を用いても低温腐食を防止
できる。
(9) Low excess air combustion becomes possible. Therefore, low-temperature corrosion can be prevented even if a type of coal containing a large amount of S (sulfur) is used (although coal imported into Japan generally has less than 3 sulfur).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、微粒化特性が良好になる
ため、着火が安定し、保炎性が向上することによって燃
焼性が著しく向上するため、省エネルギー及び環境保全
対策が容易となる。
As described above, according to the present invention, since the atomization characteristics are improved, ignition is stabilized, flame stability is improved, and combustibility is significantly improved, thereby facilitating energy saving and environmental protection measures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を示す断面図及び
平面図、第3図は噴霧の粒度分布を示す微粒化特性図、
第4図は本発明における噴霧のフローパターンを示す特
性図、第5図は本発明と従来の燃vF、試験結果を示す
灰中未燃分特性図、第6図及び第7図は従来のアトマイ
ザの2例を示す断面図である。 19・・・・・・インタメゾイエイトプレート、20・
・・・・・アトマイザチップ本体、21・・・・・・燃
料供給ノズル、22.25・・・・・・燃料分離室、2
3.24・・・・・・微粒化媒体供給孔、26・・・・
・・燃料ノズル、27゜28・・・・・・気液混合室、
29・・・・・・衝突板、30・・・・・・燃料分離ノ
ズル、31.32・・・・・・噴出孔。 代理人 弁理士 西 元 勝 − 嬉1図 第2図 第5図 Otoo  200 300 40O NOx(026%tQ、ppm) 累11t8牟(%) トー へ1  −
Figures 1 and 2 are a cross-sectional view and a plan view showing an embodiment of the present invention, Figure 3 is an atomization characteristic diagram showing the particle size distribution of the spray,
Fig. 4 is a characteristic diagram showing the spray flow pattern in the present invention, Fig. 5 is a characteristic diagram of unburned content in ash showing the fuel vF and test results of the present invention and the conventional one, and Figs. 6 and 7 are the characteristic diagrams of the conventional It is sectional drawing which shows two examples of an atomizer. 19...Intermezoite plate, 20.
... Atomizer chip body, 21 ... Fuel supply nozzle, 22.25 ... Fuel separation chamber, 2
3.24... Atomization medium supply hole, 26...
...Fuel nozzle, 27°28... Gas-liquid mixing chamber,
29...Collision plate, 30...Fuel separation nozzle, 31.32...Ejection hole. Agent Patent Attorney Masaru Nishimoto - Figure 1 Figure 2 Figure 5 Otoo 200 300 40O NOx (026%tQ, ppm) Cumulative 11t8m (%) Toohe1 -

Claims (2)

【特許請求の範囲】[Claims] (1)個別に供給された燃料及び微粒化媒体を混合する
混合室と、該混合室内の混合流体を外部に噴出させる噴
出部とを備えたアトマイザにおいて、内径に差異のある
形状を有して前記混合室の上流側に配設される燃料供給
部と、前記混合室に隣接して配設されて微粒化媒体が供
給されると共に火炉側端に噴出孔が形成された少なくと
も1個の第2の混合室と、該第2の混合室と前記燃料供
給部の内径変化部とを連結する燃料分離ノズルを設けた
ことを特徴とする予混合式アトマイザ。
(1) In an atomizer equipped with a mixing chamber that mixes separately supplied fuel and atomization medium, and a jetting section that jets the mixed fluid in the mixing chamber to the outside, the atomizer has a shape that has a different inner diameter. a fuel supply section disposed on the upstream side of the mixing chamber; and at least one fuel supply section disposed adjacent to the mixing chamber, supplied with an atomizing medium, and having an ejection hole formed at an end on the furnace side. 1. A premixing type atomizer comprising: two mixing chambers; and a fuel separation nozzle connecting the second mixing chamber and the inner diameter changing section of the fuel supply section.
(2)前記混合室がアトマイザの中心軸上に配置され、
前記第2の混合室が前記混合室の周囲に所定の間隔で環
状に配置されていることを特徴とする特許請求の範囲第
(1)項記載の予混合式アトマイザ。
(2) the mixing chamber is arranged on the central axis of the atomizer;
The premixing atomizer according to claim 1, wherein the second mixing chamber is arranged annularly at predetermined intervals around the mixing chamber.
JP19237086A 1986-08-18 1986-08-18 Premix atomizer Expired - Fee Related JPH0788940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19237086A JPH0788940B2 (en) 1986-08-18 1986-08-18 Premix atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19237086A JPH0788940B2 (en) 1986-08-18 1986-08-18 Premix atomizer

Publications (2)

Publication Number Publication Date
JPS6349614A true JPS6349614A (en) 1988-03-02
JPH0788940B2 JPH0788940B2 (en) 1995-09-27

Family

ID=16290154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19237086A Expired - Fee Related JPH0788940B2 (en) 1986-08-18 1986-08-18 Premix atomizer

Country Status (1)

Country Link
JP (1) JPH0788940B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001078A (en) * 2014-06-12 2016-01-07 三菱日立パワーシステムズ株式会社 Spray nozzle, combustion device equipped with spray nozzle, and gas turbine plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016001078A (en) * 2014-06-12 2016-01-07 三菱日立パワーシステムズ株式会社 Spray nozzle, combustion device equipped with spray nozzle, and gas turbine plant
US9970356B2 (en) 2014-06-12 2018-05-15 Mitsubishi Hitachi Power Systems, Ltd. Atomizer, combustion device including atomizer, and gas turbine plant

Also Published As

Publication number Publication date
JPH0788940B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US5569020A (en) Method and device for operating a premixing burner
US6622944B1 (en) Fuel oil atomizer and method for discharging atomized fuel oil
US4741279A (en) Method of and apparatus for combusting coal-water mixture
US4255125A (en) Mixing apparatus and the uses thereof
US4195779A (en) Mixing apparatus with outlet nozzle and uses thereof
JPH0550646B2 (en)
JPS6349614A (en) Premixing atomizer
JPS6349615A (en) Intermixing type atomizer
KR100231975B1 (en) Two stage nozzle for reducing nox
JP2526234B2 (en) Atomizer for low nitrogen oxide combustion
JPH0820062B2 (en) Two-fluid atomizer
JPH0318819Y2 (en)
JPH045867Y2 (en)
JP2513668B2 (en) Burner device
JPS63226513A (en) Atomizer
JPH0788939B2 (en) Internal mixing atomizer
JPH0245615Y2 (en)
JPS6183817A (en) Burner device for coal-water slurry fuel
JPS62158906A (en) Low nox combustion burner for coal and water slurry
JP2510568B2 (en) Combustion method of coal / water mixed fuel
JP2739748B2 (en) Burner for slurry fuel
JP2505796B2 (en) Atomizer for slurry fuel and burner ignition method using the atomizer
JPH0480288B2 (en)
JPH0788937B2 (en) Slurry combustion device
KR19980084551A (en) Nitrogen oxide (NOx) reduction type two-stage nozzle with equal division

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees