JPH0444614B2 - - Google Patents

Info

Publication number
JPH0444614B2
JPH0444614B2 JP61057341A JP5734186A JPH0444614B2 JP H0444614 B2 JPH0444614 B2 JP H0444614B2 JP 61057341 A JP61057341 A JP 61057341A JP 5734186 A JP5734186 A JP 5734186A JP H0444614 B2 JPH0444614 B2 JP H0444614B2
Authority
JP
Japan
Prior art keywords
weight
sintered body
glass
glass powder
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61057341A
Other languages
Japanese (ja)
Other versions
JPS62216939A (en
Inventor
Masayuki Ishihara
Keizo Makio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5734186A priority Critical patent/JPS62216939A/en
Priority to US07/004,198 priority patent/US4764486A/en
Priority to DE19873701973 priority patent/DE3701973A1/en
Publication of JPS62216939A publication Critical patent/JPS62216939A/en
Publication of JPH0444614B2 publication Critical patent/JPH0444614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、銀、銀−パラジウム、金などの低
抵抗金属と同時焼成でき、高集積化したLSIを多
数搭載するための多層配線基板などの絶縁材料を
製造するのに用いられるガラス粉末焼結体の製造
方法に関する。 〔背景技術〕 近年、高集積化したLSIや各種の素子を多数搭
載するための多層配線基板では、小型化や高信頼
性の要求が高まるにつれてセラミツクス材の多層
配線基板の利用が拡がつてきている。セラミツク
ス材の多層基板は、アルミナを主材にしてグリー
ンシート上に高融点金属(Mo,W等)の導体配
線を厚膜技術により印刷形成する。そのあと、こ
のグリーンシートを貼り合わせて積層した多層グ
リーンシートを約1500〜1600℃の高温非酸化雰囲
気中で焼成する。 しかし、上述のようなアルミナを主材料とする
多層配線基板では、アルミナの高い比誘電率と、
高い抵抗値を有する極細高融点金属配線によつ
て、基板配線中を伝搬する信号の伝達時間が長く
なり、高速化の要望に応え難かつた。もちろん、
高抵抗の高融点金属材料の代わりに、低抵抗金属
材料(Au,Ag,Ag−Pd,Cu等)を使つて配線
を形成することも考えられる。しかしながら、上
記の各低抵抗金属材料は融点が1000℃付近であ
り、アルミナの焼結温度よりもはるかに低くなつ
ている。そのため、仮に用いたとしても、焼結以
前に配線パターンが融解して表面張力で収縮し断
線してしまうという問題があつた。 この問題を解決するため、ガラス、あるいはガ
ラス粉末焼結体(ガラス−セラミツクス体)の多
層配線基板が提案されている。 このようなガラス粉末焼結体、とくに、SiO2
−Al2O3−MgO系(以下に、「コーデイエライト
系」と記す)の具体例が、特公昭59−22399号公
報、特開昭59−178752号公報、特公昭57−6257号
公報、および、特公昭59−46900号公報に記載さ
れている。しかし、特公昭59−46900号公報以外
の上記公報に記載されているガラス粉末焼結体
は、いずれも、組成にNa,K,Li,Pbの比較的
イオン伝導性の高い元素を含んでいることから、
マイグレーシヨン現象が生ずる。そのため、基板
としてもつとも重要な特性である絶縁性の劣化が
生じやすいという問題がある。一方、特公昭59−
46900号公報に記載されているガラス粉末焼結体
は、上記のイオン伝導性の高い元素をほとんど含
んでおらず、上記マイグレーシヨンに伴う絶縁性
の劣化というものはない。しかしながら、特公昭
59−46900号公報記載のガラス粉末焼結体は、950
℃近辺の焼成温度で緻密な焼結体を得られるので
あるが、さらに、誘電率を下げたいという要求が
依然として残る。 一方、純粋なコーデイエライトガラス(2Al2
O3・2MgO・5SiO2)は、昔から知られているよ
うに、その誘電率が4.1と小さい。しかしながら、
このコーデイエライトガラスは、焼成を1000℃を
かなり越える温度で行うようにしなければ、析出
結晶が完全なα−コーデイエライトにならず、μ
−コーデイエライトが多くない、目的に合うよう
な電気特性や熱膨張率が得られないばかりか、α
型とμ型の混在した再現性の悪い結晶体した得ら
れない。 〔発明の目的〕 この発明は、このような事情に鑑みて、1000℃
以下の低い温度での焼成で十分緻密化され、誘電
率も低く、しかも多層配線基板材料として用いて
も、マイグレーシヨン現象による絶縁劣化の心配
がないガラス粉末焼結体を容易に製造することの
できる方法を提供することを目的としている。 〔発明の開示〕 この発明者らは、このような目的を達成するた
めに、鋭意検討を行いコーデイエライト系のガラ
ス組成物に対して4〜10重量%のB2O3を添加す
るようにすれば、さらに、低温で焼成でき、μ−
コーデイエライトからα−コーデイエライトへの
転移も1000℃以下で行えることを見出した。この
ガラス組成物から得られる焼結体(ガラスセラミ
ツクス)は、アルミナの持つ比較的高い誘電率
(96%アルミナで約10)に比べ低いレベルになつ
ているが、十分なものではなかつた。このため、
さらに、誘電率を下げるべく研究を重ねた結果、
この発明を完成するに至つた。 したがつて、この発明は、SiO248〜63重量%,
Al2O310〜25重量%,B2O34〜10重量%,
MgO10〜25重量%を主成分とするガラス組成物
において、前記MgOのうちの3〜20重量%が
BaO,SrOおよびCaOからなる群より選ばれた少
なくとも1つに置換されてなるガラス組成物の粉
末の成形体を焼成するようにするガラス粉末焼結
体の製造方法を要旨とする。 以下に、この発明にかかるガラス粉末焼結体の
製造方法を詳しく説明する。 上記組成範囲のSiO2−Al2O3−MgO−B2O3
のガラス組成物のうちのMgOを、Bao,SrO,
CaOなどのアルカリ土類金属酸化物で3〜20重量
%置換しても、置換されていない上記組成範囲の
SiO2−Al2O3−MgO−B2O3系のガラス組成物と
同様に、850℃付近、少なくとも950℃以下の焼成
温度で緻密な非多孔質の焼結体を得ることができ
る。得られた焼結体は、置換されていないSiO2
−Al2O3−MgO−B2O3系のガラス組成物のそれ
に比べて誘電率が低くなる。ガラス原料の融解温
度も1400℃で十分であるため、通常の粘土ルツボ
や溶解炉で間に合い、製造上からも都合がよい。
このガラス組成物に3重量%以下、好ましくは
0.5〜2重量%の核発生剤を添加するようにする
と、焼結体の結晶をより確実にα−コーデイエラ
イトとすることができる。核発生剤としては、
TiO2,ZrO2,SnO2,P2O5,ZnO,MoO3,Ta2
O5,Nb2O5,As2O3,Li2Oなどが挙げられる。 SiO2の組成割合が63重量%を越えると、緻密
な焼結体となり難い。48重量%を下回ると、結晶
化温度が上昇して、950℃以下の焼成温度では十
分に結晶化することができなかつたり、緻密化が
難しくなる。 Al2O3の組成割合が25重量%を越えると、焼結
できる温度が上昇して、950℃以下の焼成温度で
は十分な焼結が行えない。10重量%を下回ると、
コーデイエライト結晶が少なくなり、SiO2
MgO系の結晶が多く析出するので比誘電率が上
昇する。 MgOの組成割合が25重量%を越えると、恐ら
くは、ケイ酸マグネシウムが析出するためと思わ
れるが、変形が大きくなり実用性に乏しい。10重
量%を下回ると、緻密な焼結体となり難い。 B2O3の組成割合が10重量%を越えると、ガラ
ス相が多く、発泡しやすくなり、焼成可能な温度
範囲も狭くなる。また、機械的強度も弱く実用性
に乏しくなる。4重量%を下回ると、ガラス粉末
の表面層の結晶化が急激に進みすぎるため緻密な
焼結体となり難い。 MgOと置換するROの置換率は、20重量%を越
えると、MgO成分が少なくなるため、α−コー
デイエライト結晶の析出が悪くなり、電気特性が
悪くなる。3重量%を下回ると、効果が現れな
い。 核発生剤は、3重量%を越えると、結晶化が急
激に進みすぎて緻密な焼結体とならない。 つぎに、この発明の実施例で使うガラス組成物
について詳しく説明する。 第1表の実施例1〜14および比較例1〜4に示
す割合の組成となるように各酸化物を調合し、そ
れぞれをアルミナ質ルツボ内に入れて約1400℃の
加熱温度下で溶融した。このようにして得られた
溶融液を水中に投下して、透明性のガラス組成物
(フリツト)を得た。この組成物を、乾式または
湿式で、アルミナ質ボールミル中で十分粉砕し
て、平均粒径1〜10μmのガラス粉末とした。 このガラス粉末にポリブチルメタクリレート樹
脂、フタル酸ジブチル、トルエン等を加え混練
し、減圧下で脱泡処理しスラリーを得た。そのあ
と、スラリーを用いてドクタブレード法によりフ
イルムシート上に0.2mm厚の連続した乾燥シート
を作成した。この乾燥シートをフイルムシートか
らはがし、打ち抜きして適当な大きさのグリーン
シートとした。つぎに、個々のグリーンシートに
スルホールおよび低抵抗金属材料による配線パタ
ーンを印刷形成した。スルホールと配線パターン
を形成したグリーンシート複数枚を積層し、プレ
ス成形により成形体とした。 この積層グリーンシートを、まず、毎時150℃
の速度で500℃まで昇温し、2時間45分そのまま
で保持してグリーンシート中の有機物質を除去し
た。その後毎時200℃の速度で第1表に示した所
定の焼成温度まで昇温し、この焼成温度出3時間
保持して積層グリーンシートを焼成した。このの
ち、毎時110℃の速度で400℃まで降温し、以後、
自然放冷して焼結体を得た。 このようにして得た実施例および比較例の焼結
体について比誘電率および吸水率を測定し、その
結果を第1表に示した。比誘電率の測定は、1M
Hzの周波数で行つた。吸水率の測定は、JIS C−
2141に従つて行つた。
[Technical Field] This invention can be co-fired with low-resistance metals such as silver, silver-palladium, and gold, and is used to manufacture insulating materials such as multilayer wiring boards on which many highly integrated LSIs are mounted. The present invention relates to a method for manufacturing a glass powder sintered body. [Background technology] In recent years, the use of ceramic multilayer wiring boards for mounting highly integrated LSIs and large numbers of various elements has increased as demands for miniaturization and high reliability have increased. ing. A multilayer ceramic board is made of alumina as the main material, and conductor wiring made of high melting point metal (Mo, W, etc.) is printed on a green sheet using thick film technology. Thereafter, a multilayer green sheet made by laminating these green sheets together is fired in a high-temperature non-oxidizing atmosphere at about 1,500 to 1,600°C. However, in multilayer wiring boards mainly made of alumina as mentioned above, alumina's high dielectric constant and
Due to the ultra-thin refractory metal wiring having a high resistance value, the transmission time of the signal propagating through the board wiring becomes longer, making it difficult to meet the demand for higher speeds. of course,
It is also possible to form wiring using low-resistance metal materials (Au, Ag, Ag-Pd, Cu, etc.) instead of high-resistance, high-melting-point metal materials. However, each of the above-mentioned low-resistance metal materials has a melting point of around 1000°C, which is much lower than the sintering temperature of alumina. Therefore, even if it were used, there was a problem that the wiring pattern would melt before sintering, shrink due to surface tension, and break. To solve this problem, multilayer wiring boards made of glass or glass powder sintered bodies (glass-ceramic bodies) have been proposed. Such glass powder sintered bodies, especially SiO 2
Specific examples of the -Al 2 O 3 -MgO system (hereinafter referred to as "cordierite system") are disclosed in Japanese Patent Publication No. 59-22399, Japanese Patent Application Laid-open No. 59-178752, and Japanese Patent Publication No. 57-6257. , and described in Japanese Patent Publication No. 59-46900. However, all of the glass powder sintered bodies described in the above publications other than Japanese Patent Publication No. 59-46900 contain elements with relatively high ionic conductivity such as Na, K, Li, and Pb in their compositions. Therefore,
A migration phenomenon occurs. Therefore, there is a problem in that insulation, which is an important characteristic of a substrate, is likely to deteriorate. On the other hand, the special public service in 1983-
The glass powder sintered body described in Publication No. 46900 contains almost no of the above-mentioned elements with high ionic conductivity, and there is no deterioration of insulation properties due to the above-mentioned migration. However, Tokko Akira
The glass powder sintered body described in Publication No. 59-46900 is 950
Although it is possible to obtain a dense sintered body at a firing temperature around 0.degree. C., there still remains a need to lower the dielectric constant. On the other hand, pure cordierite glass (2Al 2
As has been known for a long time, O 3 2MgO 5SiO 2 ) has a low dielectric constant of 4.1. however,
This cordierite glass must be fired at a temperature well above 1000℃, or the precipitated crystals will not become complete α-cordierite, and μ
-There is not a lot of cordierite, and not only are the electrical properties and thermal expansion coefficients suitable for the purpose not obtained, but α
It is impossible to obtain a crystal with poor reproducibility, which is a mixture of type and μ type. [Object of the invention] In view of the above circumstances, this invention has been developed to
To easily produce a glass powder sintered body that can be sufficiently densified by firing at the following low temperature, has a low dielectric constant, and is free from the risk of insulation deterioration due to migration phenomenon even when used as a multilayer wiring board material. The purpose is to provide a way to do so. [Disclosure of the Invention] In order to achieve the above object, the inventors conducted extensive studies and decided to add 4 to 10% by weight of B 2 O 3 to a cordierite glass composition. If it is, it can be fired at a lower temperature, and μ−
It has been found that the transition from cordierite to α-cordierite can also be carried out at temperatures below 1000°C. Although the sintered body (glass ceramics) obtained from this glass composition has a dielectric constant lower than that of alumina (approximately 10 for 96% alumina), it was not sufficient. For this reason,
Furthermore, as a result of repeated research to lower the dielectric constant,
This invention was completed. Therefore, the present invention provides SiO 2 48-63% by weight,
Al 2 O 3 10-25% by weight, B 2 O 3 4-10% by weight,
In a glass composition containing 10 to 25% by weight of MgO as a main component, 3 to 20% by weight of the MgO is
The gist of the present invention is a method for producing a glass powder sintered body, which involves firing a molded body of powder of a glass composition substituted with at least one selected from the group consisting of BaO, SrO, and CaO. Below, the method for producing a glass powder sintered body according to the present invention will be explained in detail. Of the SiO 2 −Al 2 O 3 −MgO−B 2 O 3 glass composition in the above composition range, MgO is used as Bao, SrO,
Even if 3 to 20% by weight is substituted with alkaline earth metal oxides such as CaO, the above composition range that is not substituted
Similar to the SiO2 - Al2O3 - MgO - B2O3 - based glass composition, a dense non-porous sintered body can be obtained at a firing temperature of around 850°C and at least 950°C or lower. The obtained sintered body contains unsubstituted SiO 2
-Al2O3 - MgO - B2O3 - based glass compositions have a lower dielectric constant. Since the melting temperature of the glass raw material is 1,400°C, which is sufficient, a normal clay crucible or melting furnace can be used, which is convenient from a manufacturing standpoint.
3% by weight or less, preferably in this glass composition.
By adding 0.5 to 2% by weight of the nucleating agent, the crystals of the sintered body can be more reliably made into α-cordierite. As a nucleating agent,
TiO 2 , ZrO 2 , SnO 2 , P 2 O 5 , ZnO, MoO 3 , Ta 2
Examples include O 5 , Nb 2 O 5 , As 2 O 3 and Li 2 O. When the composition ratio of SiO 2 exceeds 63% by weight, it is difficult to form a dense sintered body. If it is less than 48% by weight, the crystallization temperature will rise, and at a firing temperature of 950° C. or lower, sufficient crystallization will not be possible or densification will become difficult. When the composition ratio of Al 2 O 3 exceeds 25% by weight, the temperature at which sintering can be performed increases, and sufficient sintering cannot be performed at a firing temperature of 950° C. or lower. If it is less than 10% by weight,
There are fewer cordierite crystals, and SiO 2
Since many MgO-based crystals precipitate, the relative dielectric constant increases. If the composition ratio of MgO exceeds 25% by weight, this is probably due to the precipitation of magnesium silicate, but deformation becomes large and it is impractical. If it is less than 10% by weight, it is difficult to form a dense sintered body. If the composition ratio of B 2 O 3 exceeds 10% by weight, the glass phase will be large, foaming will occur easily, and the firing temperature range will be narrowed. In addition, the mechanical strength is weak, making it impractical. If it is less than 4% by weight, crystallization of the surface layer of the glass powder progresses too rapidly, making it difficult to form a dense sintered body. If the substitution ratio of RO to replace MgO exceeds 20% by weight, the MgO component will decrease, resulting in poor precipitation of α-cordierite crystals and poor electrical properties. If it is less than 3% by weight, no effect will be seen. If the nucleating agent exceeds 3% by weight, crystallization will proceed too rapidly to form a dense sintered body. Next, the glass composition used in the examples of this invention will be explained in detail. Each oxide was prepared to have a composition in the proportions shown in Examples 1 to 14 and Comparative Examples 1 to 4 in Table 1, and each was placed in an alumina crucible and melted at a heating temperature of about 1400°C. . The molten liquid thus obtained was dropped into water to obtain a transparent glass composition (frit). This composition was sufficiently ground in an alumina ball mill, either dry or wet, to obtain a glass powder with an average particle size of 1 to 10 μm. Polybutyl methacrylate resin, dibutyl phthalate, toluene, etc. were added to this glass powder and kneaded, followed by defoaming treatment under reduced pressure to obtain a slurry. Thereafter, a continuous dry sheet with a thickness of 0.2 mm was formed on a film sheet using the slurry by a doctor blade method. This dried sheet was peeled off from the film sheet and punched out to obtain a green sheet of an appropriate size. Next, through-holes and a wiring pattern made of a low-resistance metal material were printed on each green sheet. A plurality of green sheets with through holes and wiring patterns formed thereon were laminated and press molded to form a molded body. First, this laminated green sheet was heated to 150°C per hour.
The temperature was raised to 500° C. at a rate of 2 hours and maintained at that temperature for 2 hours and 45 minutes to remove organic substances in the green sheets. Thereafter, the temperature was raised at a rate of 200° C./hour to the predetermined firing temperature shown in Table 1, and this firing temperature was maintained for 3 hours to fire the laminated green sheet. After this, the temperature decreased to 400℃ at a rate of 110℃ per hour, and from then on,
A sintered body was obtained by cooling naturally. The relative permittivity and water absorption of the thus obtained sintered bodies of Examples and Comparative Examples were measured, and the results are shown in Table 1. Measurement of dielectric constant is 1M
It was performed at a frequency of Hz. Measurement of water absorption rate is based on JIS C-
I followed 2141.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上に述べたこの発明にかかるガラス粉末焼結
体の製造方法は、下記の顕著な効果を一挙に奏す
ることができまる。 (a) 1000℃以下の低い温度での焼成で十分に緻密
化することが出来きる。 これは、粉末のガラス組成が「SiO248〜63
%重量、Al2O310〜25重量、B2O34〜10重量
%、MgO10〜25重量%(25重量%は含まず)
を主成分とするガラス組成物において、前記
MgOのうちの3〜20重量%がBaO,SrOおよ
びCaOからなる群より選ばれた少なくとも1つ
で置換されてなる」という組成だからである。 (b) 得られたガラス粉末焼結体が低誘電率であ
る。 これも、粉末のガラス組成が上記の組成であ
ることに起因する。 (c) マイグレーシヨン劣化の心配がない。 これは、この発明に用いるガラス粉末のガラ
ス組成がアルカリ金属元素を構成成分の中に含
まないからである。この結果、多層配線基板用
材料として適したガラス粉末焼結体が得られ
る。 (d) 上のように特性に優れたガラス粉末焼結体が
容易に製造できる。 これは、この発明の場合、格別に困難な工程
が新たに加わるわけでなく、肝心のガラス粉末
もつ粉末も所定組成となるように原料配合に留
意する程度のことで簡単に作成することが出
来、容易に実施できるからである。
The method for manufacturing a glass powder sintered body according to the present invention described above can achieve the following remarkable effects all at once. (a) It can be sufficiently densified by firing at a low temperature of 1000°C or less. This means that the glass composition of the powder is “SiO 2 48~63
% weight, Al 2 O 3 10-25 weight %, B 2 O 3 4-10 weight %, MgO 10-25 weight % (25 weight % is not included)
In a glass composition containing as a main component, the above-mentioned
This is because 3 to 20% by weight of MgO is substituted with at least one selected from the group consisting of BaO, SrO, and CaO. (b) The obtained glass powder sintered body has a low dielectric constant. This is also due to the fact that the glass composition of the powder is the above-mentioned composition. (c) There is no need to worry about migration deterioration. This is because the glass composition of the glass powder used in this invention does not contain an alkali metal element among its constituent components. As a result, a glass powder sintered body suitable as a material for a multilayer wiring board is obtained. (d) Glass powder sintered bodies with excellent properties as described above can be easily produced. This is because, in the case of the present invention, no particularly difficult process is added, and it can be easily produced by paying attention to the blend of raw materials so that the powder containing the glass powder has a predetermined composition. This is because it is easy to implement.

Claims (1)

【特許請求の範囲】 1 SiO248〜63重量%,Al2O310〜25重量%、B2
O34〜10重量%,MgO10〜25重量%(25重量%
は含まず)を主成分とするガラス組成物におい
て、前記MgOのうちの3〜20重量%がBaO,
SrOおよびCaOからなる群より選ばれた少なくと
も1つで置換されてなるガラス組成物の粉末の成
形体を焼成するようにするガラス粉末焼結体の製
造方法。 2 ガラス組成物には、TiO2,ZrO2,SnO2,P2
O5,ZnO,MoO3,Ta2O5,Nb2O5,As2O3およ
びLi2Oからなる群より選ばれた少なくとも1つ
の核発生剤が主成分に対し3重量%以下の割合で
添加されてなる特許請求の範囲第1項記載のガラ
ス粉末焼結体の製造方法。 3 成形体の焼成の温度が1000℃以下である特許
請求の範囲第1項または第2項記載のガラス粉末
焼結体の製造方法。
[Claims] 1 SiO 2 48-63% by weight, Al 2 O 3 10-25% by weight, B 2
O 3 4-10% by weight, MgO 10-25% by weight (25% by weight
3 to 20% by weight of the MgO is BaO,
A method for producing a glass powder sintered body, comprising firing a molded body of powder of a glass composition substituted with at least one selected from the group consisting of SrO and CaO. 2 The glass composition contains TiO 2 , ZrO 2 , SnO 2 , P 2
The proportion of at least one nucleating agent selected from the group consisting of O 5 , ZnO, MoO 3 , Ta 2 O 5 , Nb 2 O 5 , As 2 O 3 and Li 2 O is 3% by weight or less based on the main component. A method for producing a glass powder sintered body according to claim 1, wherein the glass powder sintered body is added with: 3. The method for producing a glass powder sintered body according to claim 1 or 2, wherein the temperature of firing the molded body is 1000°C or less.
JP5734186A 1986-01-23 1986-03-15 Glass composition Granted JPS62216939A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5734186A JPS62216939A (en) 1986-03-15 1986-03-15 Glass composition
US07/004,198 US4764486A (en) 1986-01-23 1987-01-16 Sintered glass-powder product
DE19873701973 DE3701973A1 (en) 1986-01-23 1987-01-23 Sintered glass powder product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5734186A JPS62216939A (en) 1986-03-15 1986-03-15 Glass composition

Publications (2)

Publication Number Publication Date
JPS62216939A JPS62216939A (en) 1987-09-24
JPH0444614B2 true JPH0444614B2 (en) 1992-07-22

Family

ID=13052867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5734186A Granted JPS62216939A (en) 1986-01-23 1986-03-15 Glass composition

Country Status (1)

Country Link
JP (1) JPS62216939A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2852311B1 (en) * 2003-03-13 2005-04-15 GLASS YARNS FOR REINFORCING ORGANIC AND / OR INORGANIC MATERIALS, PROCESS FOR PRODUCING SAID GLASS YARN AND COMPOSITION THEREOF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946900A (en) * 1982-09-10 1984-03-16 株式会社荏原製作所 Method of burning radioactive waste
JPS5992943A (en) * 1982-11-15 1984-05-29 Ngk Spark Plug Co Ltd Crystallized glass material
JPS60141642A (en) * 1983-12-28 1985-07-26 Tdk Corp Low expansion glass having stability at high temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946900A (en) * 1982-09-10 1984-03-16 株式会社荏原製作所 Method of burning radioactive waste
JPS5992943A (en) * 1982-11-15 1984-05-29 Ngk Spark Plug Co Ltd Crystallized glass material
JPS60141642A (en) * 1983-12-28 1985-07-26 Tdk Corp Low expansion glass having stability at high temperature

Also Published As

Publication number Publication date
JPS62216939A (en) 1987-09-24

Similar Documents

Publication Publication Date Title
US4301324A (en) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
US4413061A (en) Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
US4749665A (en) Low temperature fired ceramics
JPH0343786B2 (en)
JPH04231363A (en) Conductive composition containing iolite and glass
JPS63107838A (en) Glass-ceramic sintered body
JPS62278145A (en) Sintered material of glass ceramic
JPH0617250B2 (en) Glass ceramic sintered body
JPH01141837A (en) Material for dielectric body for circuit substrate
JPH0617249B2 (en) Glass ceramic sintered body
JP2695587B2 (en) Glass ceramics composition
JPH0758454A (en) Glass ceramic multilayered substrate
JPS63295473A (en) Dielectric material for circuit board
JPH05116985A (en) Ceramic substrate
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JPH0444614B2 (en)
JPH0226798B2 (en)
JPS62252340A (en) Sintered glass and sintered glass ceramic
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JPS62123059A (en) Ceramic composition with surface smoothness
JPH0738214A (en) Glass ceramic board and manufacturing method
JP3125500B2 (en) Ceramic substrate
JPH0260236B2 (en)
JPH0444613B2 (en)
JP3047985B2 (en) Manufacturing method of multilayer ceramic wiring board

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees