JPH0444457B2 - - Google Patents

Info

Publication number
JPH0444457B2
JPH0444457B2 JP57130516A JP13051682A JPH0444457B2 JP H0444457 B2 JPH0444457 B2 JP H0444457B2 JP 57130516 A JP57130516 A JP 57130516A JP 13051682 A JP13051682 A JP 13051682A JP H0444457 B2 JPH0444457 B2 JP H0444457B2
Authority
JP
Japan
Prior art keywords
amount
ripple
original
light
ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57130516A
Other languages
Japanese (ja)
Other versions
JPS5922476A (en
Inventor
Yoshinori Abe
Masahiko Matsunawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP57130516A priority Critical patent/JPS5922476A/en
Publication of JPS5922476A publication Critical patent/JPS5922476A/en
Publication of JPH0444457B2 publication Critical patent/JPH0444457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Image Input (AREA)
  • Image Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【発明の詳細な説明】 本発明は複写機、フアクシミリなどにおける光
電変換素を用いた原稿読取り装置において、原稿
露光用光源の光量リツプルによる画像信号のリツ
プルを補正するリツプル補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ripple correction method for correcting ripples in an image signal due to light intensity ripples of a light source for exposing an original in an original reading device using a photoelectric conversion element in a copying machine, a facsimile, or the like.

記録すべき原稿をランプによつて露光し、その
反射光をミラーやレンズを含む光学系を通して
CCDやフオトダイオードアレイなどの光電変換
素子により電気信号に変換した後その電気信号を
用いてオプチカルフアイバー管や針状電極などに
より、感光体や誘電体上に静電潜像を形成し、こ
の静電潜像を現像して記録像を作る記録装置がす
でに知られ実用化されている。またCCDなどの
光電変換素子の出力を可変する方法として、光電
変換素子の受光面への電荷蓄積時間を受光面の照
度に応じて切替える方法が知られている。このよ
うな記録装置における原稿読取り装置に用いられ
るCCDなどの光電変換素子の出力は、露光用光
源としてAC電源で点灯する螢光灯などを用いた
場合は短い電荷蓄積時間で画像信号の読出しを繰
返して行なうと画像出力信号のレベルが変動して
しまう。すなわち第1図において、破線で示す波
形aは螢光灯を点灯する商用周波数(50Hzまたは
60Hz)のAC電源、実線で示す波形bは螢光灯の
光量、Cは原稿読取用のCCDの転送制御信号で
あり、転送制御信号の間隔が電荷蓄積時間を示
す。図において、斜線部分の面積が露光量を表わ
すので、画像出力信号のレベルが毎日変動してし
まうことが容易に理解できよう。そこで、露光用
光源としての螢光灯を点灯するAC電源として
20KHz程度の高周波電源を用いて各電荷蓄積時間
内の露光量をほぼ一定にする方法が考えられる。
The document to be recorded is exposed to light using a lamp, and the reflected light is passed through an optical system including mirrors and lenses.
After converting it into an electrical signal using a photoelectric conversion element such as a CCD or photodiode array, the electrical signal is used to form an electrostatic latent image on a photoconductor or dielectric material using an optical fiber tube or needle-like electrode. Recording devices that create recorded images by developing electrostatic latent images are already known and have been put into practical use. Furthermore, as a method of varying the output of a photoelectric conversion element such as a CCD, a method is known in which the charge accumulation time on the light receiving surface of the photoelectric conversion element is changed according to the illuminance of the light receiving surface. The output of a photoelectric conversion element such as a CCD used in the document reading device of such a recording device can read out an image signal in a short charge accumulation time when a fluorescent lamp or the like that is turned on by an AC power source is used as the light source for exposure. If this is repeated, the level of the image output signal will fluctuate. In other words, in Fig. 1, waveform a indicated by a broken line corresponds to the commercial frequency (50Hz or
60Hz) AC power supply, waveform b shown by a solid line is the light intensity of a fluorescent lamp, and C is a transfer control signal of a CCD for reading an original, and the interval between transfer control signals indicates the charge accumulation time. In the figure, since the area of the shaded portion represents the exposure amount, it is easy to understand that the level of the image output signal fluctuates every day. Therefore, as an AC power source to light up the fluorescent lamp used as the light source for exposure,
One possible method is to use a high frequency power source of about 20 KHz to keep the exposure amount approximately constant during each charge accumulation time.

たとえば20KHzの高周波電源を用いると、螢光
灯の光量変化の周期は、 1/20×103×2=25×10-6(s)=25(μs) となる。またCCDの画素数を2048、ビデオ周波
数を1MHzとすると、最小の電荷蓄積時間は、 1/1×106×2048=2048×10-6(s)=2.048(ms) となり、2.048(ms)の間に約82個の波が毎回入
ることになり画像出力信号のレベル変動はほとん
どなくなる。しかし、実際には20KHzの高周波電
源に商用周波数(50Hzまたは60Hz)が乗るため
に、画像出力信号のレベルが変動してしまうとい
う問題がある。
For example, if a high frequency power source of 20 KHz is used, the cycle of light intensity change of the fluorescent lamp is 1/20 x 10 3 x 2 = 25 x 10 -6 (s) = 25 (μs). Also, if the number of pixels of the CCD is 2048 and the video frequency is 1MHz, the minimum charge accumulation time is 1/1 × 10 6 × 2048 = 2048 × 10 -6 (s) = 2.048 (ms), which is 2.048 (ms). Approximately 82 waves enter each time during this period, so there is almost no level fluctuation in the image output signal. However, in reality, there is a problem in that the level of the image output signal fluctuates because the commercial frequency (50Hz or 60Hz) is applied to the 20KHz high-frequency power supply.

本発明は上記の点にかんがみてなされたもの
で、光電変換素子の出力信号をくり返し読み出す
原稿読取り装置において、原稿露光用光源の光量
を検知し、画像信号の変動に影響しない周波数分
について原稿画像の一主走査ごとに積分し、その
積分値からリツプル量のみを抽出し、このリツプ
ル量を一主走査の間保持し、このリツプル量に基
づいて、A/Dコンバータの基準電圧を設定する
ことによりリツプルの影響がなく量子化を行なう
ようにしたリツプル補正方法を提案するものであ
る。
The present invention has been made in view of the above-mentioned points.In a document reading device that repeatedly reads output signals from a photoelectric conversion element, the light intensity of a light source for document exposure is detected, and the document image is detected at a frequency that does not affect fluctuations in the image signal. Integrate for each main scan, extract only the ripple amount from the integrated value, hold this ripple amount for one main scan, and set the reference voltage of the A/D converter based on this ripple amount. This paper proposes a ripple correction method that performs quantization without the influence of ripples.

以下本発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第2図は、原稿台移動式の原稿読取り装置を有
する電子写真複写機の原稿読取り部の構成の一例
を概略的に示しており、原稿台1上に載置した原
稿2を螢光灯などのランプ3により露光し、原稿
2からの反射光をミラー4、レンズ5を介して光
電変換素子6に入射させ電気画像信号に変換す
る。この例ではランプ3の非画像領域(ランプの
長手方向一端の画像有効領域外の領域)に、光量
を検出するフオトダイオード等のセンサ7が設け
てある。
FIG. 2 schematically shows an example of the configuration of a document reading section of an electrophotographic copying machine having a document reading device with a movable document table. The reflected light from the document 2 is incident on a photoelectric conversion element 6 via a mirror 4 and a lens 5, and is converted into an electrical image signal. In this example, a sensor 7 such as a photodiode for detecting the amount of light is provided in a non-image area of the lamp 3 (an area outside the effective image area at one longitudinal end of the lamp).

ここで第2図を用いてリツプル補正の原理を説
明すると、センサ7によりランプ3の光量を検出
し光電変換素子6の出力変動に影響のない周波数
分を積分する。たとえばCCDの画素数を2048と
し、ビデオ周波数を1MHzとすれば、上で説明し
たように最小電荷蓄積時間は2.048msとなり、光
量リツプルの周期が2.048ms以下であれば、出力
変動に関係ない。この場合には周波数は約500Hz
となるので500Hz以上について積分すると、第3
図イに示すようになる。この信号からリツプル分
だけを抽出すると第3図ロに実線で示すようにな
る。光電子変換素子6としてCCDを用いた場合、
ある電荷蓄積時間に蓄積された電荷は第3図ハの
CCD転送制御信号によりアナログシフトレジス
タに移され、次の電荷蓄積時間内に画像信号とし
て出力される。そこで第3図ロのリツプル波形の
情報を同図に鎖線で示すレベルに保持する必要が
あり、本発明においてはそのリツプル波形を保持
し、レベル変換した後あらかじめ設定してある一
定電圧VCと加算して第3図ニに示すようなA/
Dコンバータの基準電圧VBを決定している。
Here, the principle of ripple correction will be explained with reference to FIG. 2. The sensor 7 detects the amount of light from the lamp 3, and integrates a frequency component that does not affect output fluctuations of the photoelectric conversion element 6. For example, if the number of pixels of a CCD is 2048 and the video frequency is 1MHz, the minimum charge accumulation time is 2.048ms as explained above, and as long as the period of light intensity ripple is 2.048ms or less, it has no effect on output fluctuations. In this case the frequency is approximately 500Hz
Therefore, if we integrate over 500Hz, we get the third
The result will be as shown in Figure A. If only the ripple component is extracted from this signal, it will be as shown by the solid line in FIG. 3B. When a CCD is used as the photoelectron conversion element 6,
The charge accumulated in a certain charge accumulation time is shown in Figure 3 (c).
It is transferred to an analog shift register by a CCD transfer control signal and output as an image signal within the next charge accumulation time. Therefore, it is necessary to maintain the ripple waveform information shown in Figure 3B at the level shown by the chain line in the same figure.In the present invention, the ripple waveform is held, and after level conversion, it is set to a preset constant voltage V C. Addition results in A/ as shown in Figure 3 D.
The reference voltage VB of the D converter is determined.

第4図は本発明によるリツプル補正方法を実施
する装置の一実施例を示しており、図において、
8はセンサ7からの信号を特定の周波数だけ積分
する積分回路、9は積分回路8からの信号のうち
リツプル分のみを抽出するためのリツプル抽出回
路、10はCCD転送制御信号に基づいて一走査
時間のホールド信号を出力するサンプルホールド
タイミング回路、11はサンプルホールドタイミ
ング回路10から出力されたホールド信号により
リツプル量をホールドするサンプルホールド回
路、12はホールドされたリツプル量を適切なレ
ベルにするためのレベル変換回路、13は後述す
るA/Dコンバータの量子化のための基準となる
一定電圧VCを発生する一定電圧発生器、14は
レベル変換回路12のリツプル量と基準電圧13
とを加算してリツプルに応じて後述するA/Dコ
ンバータの基準電圧VRを設定し出力するための
基準電圧設定回路、15は光電変換素子6からの
画像信号を量子化するためのA/Dコンバータで
ある。
FIG. 4 shows an embodiment of an apparatus for carrying out the ripple correction method according to the present invention, and in the figure,
8 is an integration circuit that integrates the signal from the sensor 7 by a specific frequency; 9 is a ripple extraction circuit that extracts only ripples from the signal from the integration circuit 8; 10 is a circuit that performs one scan based on the CCD transfer control signal. A sample-and-hold timing circuit outputs a time hold signal; 11 is a sample-and-hold circuit that holds the ripple amount using the hold signal output from the sample-and-hold timing circuit 10; and 12 is a sample-and-hold circuit that holds the ripple amount to an appropriate level. 13 is a constant voltage generator that generates a constant voltage V C that is a reference for quantization of the A/D converter, which will be described later; 14 is the ripple amount of the level conversion circuit 12 and the reference voltage 13;
15 is an A/ D converter for quantizing the image signal from the photoelectric conversion element 6; It is a D converter.

A/Dコンバータ15の基準電圧は第3図ニに
示すように、リツプル波形のレベルの高いところ
では大きく設定する。また、A/Dコンバータ1
5の分解能および光電変換素子6からの画像出力
信号のレベル変動の大きさにより量子化誤差を生
じないようにあらかじめ設定しておく。
As shown in FIG. 3D, the reference voltage of the A/D converter 15 is set to a large value where the level of the ripple waveform is high. In addition, A/D converter 1
It is set in advance so that quantization errors do not occur due to the resolution of 5 and the level fluctuation of the image output signal from the photoelectric conversion element 6.

なお、上記実施例では、センサ7からの信号を
画像出力信号の変動に影響しない周波数以上を積
分した信号からリツプル波形を抽出したが、各走
査ごとにセンサ7の信号の積分を行なつてこの信
号よりリツプル波形を抽出することも可能であ
る。
In the above embodiment, the ripple waveform is extracted from the signal obtained by integrating the signal from the sensor 7 over a frequency that does not affect fluctuations in the image output signal. It is also possible to extract a ripple waveform from a signal.

上記実施例ではランプ3の明るさを検出するセ
ンサ7は直接ランプ3に取付けた例を示したが、
センサはランプによる熱などの影響を防ぐために
光フアイバーを介してランプの光量を検出するよ
うにしてもよい。
In the above embodiment, the sensor 7 for detecting the brightness of the lamp 3 is attached directly to the lamp 3, but
The sensor may detect the amount of light from the lamp via an optical fiber in order to prevent the influence of heat from the lamp.

以上説明したように本発明においては、原稿露
光用光源の光量変化を検出し、この検出信号から
リツプル量を抽出し、このリツプル量を一主走査
の間保持し、このリツプル量に基づいて原稿読取
り画像出力信号の量子化する基準電圧を設定する
ようにしたので、リツプルに関係なく画像信号の
量子化が行なえる。本発明によれば画像信号を直
接補正していないので、補正による信号劣化がな
い。
As explained above, in the present invention, a change in the light intensity of a light source for exposing an original is detected, a ripple amount is extracted from this detection signal, this ripple amount is held for one main scan, and the original is scanned based on this ripple amount. Since the reference voltage for quantizing the read image output signal is set, the image signal can be quantized regardless of ripples. According to the present invention, since the image signal is not directly corrected, there is no signal deterioration due to correction.

なお、本発明は原稿からの反射光を直接光電変
換素子に入射る型式のほかに、フアイバを介して
原稿の光像を入射する型式のものでもよい。また
本発明の対象とするリツプルは商用周波数の変動
による電源リツプルのほかに電源電圧の変動など
によつて生ずる比較的短時間の光量変化も含む。
In addition to the type in which reflected light from an original is directly incident on the photoelectric conversion element, the present invention may be of a type in which an optical image of the original is incident through a fiber. Furthermore, the ripples that are the object of the present invention include not only power supply ripples caused by fluctuations in the commercial frequency, but also relatively short-term changes in light intensity caused by fluctuations in the power supply voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はリツプルによる光電変換素子の画像出
力信号レベルの変動を説明する図、第2図は電子
写真複写機の原稿読取り装置の概略構成図、第3
図は本発明によるリツプル補正方法を説明するた
めの各種信号波形図、第4図は本発明によるリツ
プル補正方法を実施する装置の一実施例のブロツ
ク線図である。 1…原稿台、2…原稿、3…ランプ、4…ミラ
ー、5…レンズ、6…光電変換素子、7…セン
サ、8…積分回路、9…リツプル抽出回路、10
…サンプルホールドタイミング回路、11…サン
プルホールド回路、12…レベル変換回路、13
…一定電圧発生器、14…基準電圧設定回路、1
5…A/Dコンバータ。
Fig. 1 is a diagram illustrating fluctuations in the image output signal level of a photoelectric conversion element due to ripples, Fig. 2 is a schematic configuration diagram of a document reading device of an electrophotographic copying machine, and Fig. 3
The figures are various signal waveform diagrams for explaining the ripple correction method according to the present invention, and FIG. 4 is a block diagram of an embodiment of an apparatus for carrying out the ripple correction method according to the present invention. DESCRIPTION OF SYMBOLS 1...Original table, 2...Original, 3...Lamp, 4...Mirror, 5...Lens, 6...Photoelectric conversion element, 7...Sensor, 8...Integrator circuit, 9...Ripple extraction circuit, 10
...Sample hold timing circuit, 11...Sample hold circuit, 12...Level conversion circuit, 13
...Constant voltage generator, 14...Reference voltage setting circuit, 1
5...A/D converter.

Claims (1)

【特許請求の範囲】[Claims] 1 原稿露光用光源により原稿を照射してその反
射光をCCDに入光し、該CCDに蓄積された電荷
を所定時間間隔で読み出し、読み出した電荷を順
次A/D変換して画像信号として出力する原稿読
取り装置において、商用交流電源を電源として前
記CCDの読み出し時間間隔より短い周期の高周
波で前記原稿露光用光源を駆動してその照射光量
を光量センサにより電気的に検出し、前記光量セ
ンサにより検出された照射光量を原稿画像の一主
走査ごとに積分し、該積分出力に基づいて前記商
用交流電源に起因するリツプル量を演算し、該リ
ツプル量を一主走査の間保持し、前記リツプル量
に基づいて原稿読取り画像信号を量子化するA/
D変換器の基準電圧を変化させることによりリツ
プル補正を行うことを特徴とするリツプル補正方
法。
1. Irradiate the original with a light source for exposing the original, enter the reflected light into the CCD, read the charges accumulated in the CCD at predetermined time intervals, sequentially A/D convert the read charges, and output them as image signals. In the document reading device, the document exposure light source is driven using a commercial AC power supply as a power source with a high frequency having a cycle shorter than the readout time interval of the CCD, and the amount of irradiated light is electrically detected by the light amount sensor. The detected amount of irradiation light is integrated for each main scan of the original image, the ripple amount caused by the commercial AC power source is calculated based on the integrated output, the ripple amount is held for one main scan, and the ripple amount is A/ Quantizes the original read image signal based on the amount
A ripple correction method characterized by performing ripple correction by changing a reference voltage of a D converter.
JP57130516A 1982-07-28 1982-07-28 Ripple correcting method Granted JPS5922476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130516A JPS5922476A (en) 1982-07-28 1982-07-28 Ripple correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130516A JPS5922476A (en) 1982-07-28 1982-07-28 Ripple correcting method

Publications (2)

Publication Number Publication Date
JPS5922476A JPS5922476A (en) 1984-02-04
JPH0444457B2 true JPH0444457B2 (en) 1992-07-21

Family

ID=15036158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130516A Granted JPS5922476A (en) 1982-07-28 1982-07-28 Ripple correcting method

Country Status (1)

Country Link
JP (1) JPS5922476A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160462A (en) * 1986-12-24 1988-07-04 Ricoh Co Ltd Reader

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023116A (en) * 1973-06-28 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023116A (en) * 1973-06-28 1975-03-12

Also Published As

Publication number Publication date
JPS5922476A (en) 1984-02-04

Similar Documents

Publication Publication Date Title
US5883987A (en) Image sensing system including a light source
JPH05297673A (en) Image forming device
JPH0444457B2 (en)
JP2515781B2 (en) Method and device for operating a radiation sensor
US4571573A (en) Apparatus for converting an analog signal to a binary signal
JP3183698B2 (en) Image reading device
JPS6259302B2 (en)
USRE40628E1 (en) Apparatus for reducing exposing time of an image processing system
JPH0354509B2 (en)
JP3117609B2 (en) Adjustment method of density detection device used in image forming apparatus
JPS6331355A (en) Copying device
JP3591183B2 (en) Afterimage detection method and afterimage detection device
JPH0132499B2 (en)
JP3314193B2 (en) Digital copier with document size detection function
KR100247991B1 (en) Printer and method of controlling synchronization of the start time of laser scanning
JP3144835B2 (en) Image forming apparatus and image forming method
JPS58223964A (en) Shading compensating circuit
JPH05114962A (en) Image forming device
JPS5941962A (en) Shading correcting device
JP2793093B2 (en) Image reading device
JPH0649007Y2 (en) Image reader
JPH10224574A (en) Image reader
JPS6253816B2 (en)
JPS63287161A (en) Picture reader
JPS5922481A (en) Ripple correcting device