JPH0444385A - Manufacture method of high frequency substrate - Google Patents

Manufacture method of high frequency substrate

Info

Publication number
JPH0444385A
JPH0444385A JP15338690A JP15338690A JPH0444385A JP H0444385 A JPH0444385 A JP H0444385A JP 15338690 A JP15338690 A JP 15338690A JP 15338690 A JP15338690 A JP 15338690A JP H0444385 A JPH0444385 A JP H0444385A
Authority
JP
Japan
Prior art keywords
sheet
hmwpe
temperature
porous
porous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15338690A
Other languages
Japanese (ja)
Inventor
Takao Sugawara
菅原 隆男
Yutaka Yamaguchi
豊 山口
Satoshi Tazaki
聡 田崎
Tomohisa Ota
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP15338690A priority Critical patent/JPH0444385A/en
Publication of JPH0444385A publication Critical patent/JPH0444385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To lower the value of tan delta and protect a substrate from warping or dimensional change by allowing the apparent density of a porous sheet to exceed a specified value, carrying out heat treatment for a crosslinked polymeric polyethylen sheet at or above a specified temperature, and then laminating metal foil or metal sheets on both sides or one side of this sheet. CONSTITUTION:A HMWPE porous sheet containing a cross linking agent is pressure- heated while its porous quality may be eliminated so that the apparent density of the porous sheet may exceed 80% of the genuine density. At the same time, the crosslinked polymeric polyethylene sheet obtained from cross linking processing is heat-treated at a temperature of 260 deg.C. Then, after the heat treatment, metal foil or metal sheets are laminated on both sides or one side of the sheet directly or indirectly by way of a bonding layer or a resin impregnated reinforcing layer. When the apparent density is less than 80% of the genuine density of HMWP, epsilonr or tan delta is lower and favorable, but the open cells remain so that liquid may penetrate into the sheet, which adversely affects the characteristic of a substrate where the porous quality is eliminated by a specified value and over and cross linked while the HMWP sheet is heat-treated at a temperature of 260 deg.C and over. More favorably, heat treatment is carried out at a temperature which ranges from 260 to 300 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波領域で使用される高周波用基板[従来の
技術] 最近の電子工業、通信工業の各分野において使用される
信号の周波数は次第に高周波の領域に移行し、従来多用
されていたキロ−・ルッの領域からメガヘルツやギガヘ
ル′ンの領域の方に重要性が移行している。これらの高
周波領域では信号速度や信号の損失の回路性能−・の影
響が大きく、使用する電気部品や積層板に対して高周波
領域での信号速度の向上、損失の低減が求められている
。積層板上の回路の信号速度は誘電体の比誘電′V=(
以下ε、と称す)に依存しており、ε、が低いほど信号
速度は速くなる。また信号の損失は誘電体のε1とta
nδ(δ:比誘電具用)に依存しており、ε、やtan
δが低いほど損失が少なくなる。このため高周波用基板
に使用される誘電体にはε、やむanδの低いものが要
求される。ε1やtanδの低い誘電体としてポリテト
ラフルオロエチレンやポリエチレンなどの樹脂をガラス
クロスに含浸させたものが用いられ、これに銅箔を積層
させた高周波用基板が一般的に使用されている。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-frequency substrate used in a high-frequency region [Prior Art] The frequency of signals used in recent electronic and communication industries has gradually increased. Moving into the high frequency range, importance is shifting from the conventional kilometer range to the megahertz and gigahertz range. In these high frequency ranges, signal speed and signal loss have a large effect on circuit performance, and there is a need for the electrical components and laminates used to increase signal speed and reduce loss in the high frequency range. The signal speed of the circuit on the laminate is determined by the relative permittivity of the dielectric 'V=(
(hereinafter referred to as ε), and the lower ε, the faster the signal speed. Also, the signal loss is caused by the dielectric's ε1 and ta.
It depends on nδ (δ: for dielectric devices), and ε, and tan
The lower the δ, the lower the loss. For this reason, dielectrics used in high frequency substrates are required to have low ε and anδ. A glass cloth impregnated with a resin such as polytetrafluoroethylene or polyethylene is used as a dielectric material with low ε1 and tan δ, and a high frequency board made of a copper foil laminated thereon is generally used.

ガラスクロスにポリテトラフルオロエチレンを含浸させ
た誘電体を用いたポリテトラフルオロエチレン/ガラス
クロス基板は、ポリテトラフルオロエチレンの高融点低
流動性のため、その製造に高温度で長時間の成形を要し
コストが高くなるという問題があった。一方ガラスクロ
スにポリエチレンを含浸させたポリエチレン/ガラスク
ロス基板はポリエチレンの融点が低いため、はんだ耐熱
性に劣る欠点があった。
Polytetrafluoroethylene/glass cloth substrates using a dielectric material made of glass cloth impregnated with polytetrafluoroethylene require long-time molding at high temperatures due to the high melting point and low fluidity of polytetrafluoroethylene. There was a problem that the cost was high. On the other hand, polyethylene/glass cloth substrates in which glass cloth is impregnated with polyethylene have a drawback of poor solder heat resistance because the melting point of polyethylene is low.

これらの点の改良のため例えば特開昭60−25352
8号公報に示されているように、ガラスクロスの両面に
ポリエチレンフィルムを配置して、加熱加圧してポリエ
チレンをガラスクロスに含浸させ、これを電子線により
架橋した後、銅箔を積層し基板を製造する方法や、特開
昭61−108202、特開昭61−277207、特
開昭61277208号公報に示されているように、ガ
ラスクロスにポリエチレンを加熱加圧し含浸させ、更に
ポリエチレンフィルムを重ねて熱圧着後、電子線により
ポリエチレンフィルムを架橋し、これに電子線により架
橋した超高分子量ポリエチレンフィルムと銅箔を積層し
て基板を製造する方法が提案されている。このようにポ
リエチレンの耐熱性改良には、基本的にポリエチレンを
架橋し、樹脂の流動性を低下させる手法がとられている
For improvement in these points, for example, Japanese Patent Application Laid-Open No. 60-25352
As shown in Publication No. 8, a polyethylene film is placed on both sides of a glass cloth, heated and pressed to impregnate the glass cloth with polyethylene, crosslinked with an electron beam, and then copper foil is laminated to form a substrate. As shown in JP-A-61-108202, JP-A-61-277207, and JP-A-61277208, glass cloth is impregnated with polyethylene by heating and pressurized, and then a polyethylene film is further layered. A method has been proposed in which a polyethylene film is cross-linked with an electron beam after thermocompression bonding, and a substrate is manufactured by laminating an ultra-high molecular weight polyethylene film cross-linked with an electron beam and a copper foil thereon. In this way, the heat resistance of polyethylene is basically improved by crosslinking the polyethylene to reduce the fluidity of the resin.

耐熱性改良の目的のためにはもともと樹脂の流動性が低
い超高分子量ポリエチレン(以下HMWPEと称するこ
とがある)を使用すればよいが、HMWPEはポリテト
ラフルオロエチレンと同様加熱溶融時の粘度が高いため
、通常の押出成形法や射出成形法が適合しにくいという
欠点があった。
For the purpose of improving heat resistance, it is sufficient to use ultra-high molecular weight polyethylene (hereinafter sometimes referred to as HMWPE), which has low resin fluidity, but like polytetrafluoroethylene, HMWPE has a low viscosity when melted by heating. Due to its high price, it has the disadvantage that ordinary extrusion molding methods and injection molding methods are difficult to adapt to.

このためHMWPEのシートやフィルムの成形法として
は、ポリテトラフルオロエチレンの場合と同様二重円筒
容器にHMWPEを投入しHMWPEの融点以上に加熱
加圧した後、徐冷しパイプ状のHMWPEのブロックを
成形し、これをスカイビングマシーンによりシートやフ
ィルムに切削スる方法が採用されている。しかし、この
方法ではHMWPEのブロック成形時にボイドが入らな
いよう温度や圧力を微妙に調整しなければならず、また
切削するときHMWPEのブロックの温度を切削に適す
るよう加温しなければならない等製造条件を厳しくコン
トロールする必要がある。またハツチ方式のため量産性
に劣る成形法であるという問題もある。
For this reason, the method for forming HMWPE sheets and films is as in the case of polytetrafluoroethylene: HMWPE is charged into a double cylindrical container, heated and pressurized to a temperature above the melting point of HMWPE, and then slowly cooled to form a pipe-shaped block of HMWPE. The method used is to form the material and cut it into sheets or films using a skiving machine. However, with this method, the temperature and pressure must be delicately adjusted to avoid voids when forming the HMWPE block, and the temperature of the HMWPE block must be heated to the appropriate temperature for cutting. Conditions need to be strictly controlled. Another problem is that the hatch method is a molding method that is not suitable for mass production.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは鋭意研究を重ねた結果、高周波用基板の誘
電体に主としてε、やtanδが小さく誘電特性の良好
な超高分子量ポリエチレン(HMWPE)からなるポリ
マーを用い、その成形加工性を改良するため、−旦HM
WPEの多孔質シートを製造し、更にこのシートを加熱
加圧して均一厚みのHMWPEのシートを成形すること
によりその目的を達成することを見出した。更に耐熱性
に著しく優れた高周波用基板とするためHMWPEを架
橋させる手段としてHMWPEの多孔質シートに架橋剤
を添加し、加熱加圧して多孔質シートのみかけ密度がH
M W P Eの真の密度の80%以上になるよう多孔
質を消失させると同時に架橋処理を行い架橋[(MWP
Eシートを成形し、この得られたソートに直接又は接着
層若しくは樹脂含浸補強層を介して金属箔又は金属板を
積層する高周波用基板の製造方法を提案した(特開平1
−248428号公報)。しかしながら得られた基板の
耐熱性は向上するものの、架橋剤を添加し架橋処理(過
酸化物架橋、ンラン架橋)した基板は、架橋しないもの
や電子線架橋したものに比べ、ε。
As a result of intensive research, the present inventors have improved the moldability of the high-frequency substrate by using a polymer made of ultra-high molecular weight polyethylene (HMWPE), which has small ε and tan δ and good dielectric properties, as the dielectric material of the high-frequency substrate. To do, -dan HM
It has been found that the object can be achieved by manufacturing a porous sheet of WPE and further heating and pressing this sheet to form a sheet of HMWPE having a uniform thickness. Furthermore, in order to make a high-frequency substrate with extremely excellent heat resistance, a crosslinking agent was added to the HMWPE porous sheet as a means of crosslinking the HMWPE, and the porous sheet was heated and pressed to increase the apparent density to HMWPE.
The porosity is eliminated so that the true density of MWP E becomes 80% or more, and at the same time a crosslinking treatment is performed to make the crosslinking [(MWP
We proposed a method for manufacturing a high-frequency substrate in which an E sheet is formed and a metal foil or metal plate is laminated on the obtained sort directly or via an adhesive layer or a resin-impregnated reinforcing layer (Japanese Patent Application Laid-Open No.
-248428). However, although the heat resistance of the obtained substrates is improved, the substrates that are crosslinked with a crosslinking agent (peroxide crosslinking, run crosslinking) have a higher ε than those that are not crosslinked or those that are crosslinked with electron beams.

はほぼ同しであるがtanδが高い値を示す傾向があっ
た。またHMWPEンートのみをはんだ浴等の260 
℃の温度雰囲気中にさらすと面方向に若干収縮し、厚み
方向には厚くなる結果が得られ、成形時の内部応力がH
MWPEシートに内在しており、これを基板に成形した
とき、反りや寸法変化を大きくしふくれの要因となる問
題が内在していた。
were almost the same, but tan δ tended to show a high value. In addition, only HMWPE components can be used in solder baths, etc.
When exposed to an atmosphere at a temperature of
This is inherent in the MWPE sheet, and when it is molded into a substrate, there is an inherent problem that it causes large warpage and dimensional changes, causing blistering.

本発明はtanδの値が著しく低く、成形時に基板に基
板のそりや寸法変化がなく、基板にふくれが発生しない
高周波用基板の製造方法を提供することを目的とするも
のである。
An object of the present invention is to provide a method for manufacturing a high-frequency substrate that has a significantly low tan δ value, does not warp or change dimensions during molding, and does not cause bulges on the substrate.

〔課題を解決するための手段] 本発明者らは、上記したHMWPEに架橋剤を添加し架
橋させたときのtanδの増加及び加熱時の寸法変化に
ついて検討した結果、架橋処理したHMWPEシートを
260°C以上の温度で熱処理することにより tan
δが著しく低下し、更に成形時に基板の寸法変化が低減
できることを見出し、この知見に基づいて本発明を完成
するに至った。
[Means for Solving the Problems] The present inventors investigated the increase in tan δ and the dimensional change upon heating when a crosslinking agent was added to the above-mentioned HMWPE and crosslinked it, and as a result, the crosslinked HMWPE sheet was By heat treatment at temperatures above °C, tan
It was discovered that δ was significantly reduced and dimensional changes in the substrate during molding could be reduced, and based on this knowledge, the present invention was completed.

すなわち本発明は架橋剤を含むHMWPEの多孔質シー
トを加熱加圧して多孔質シートのみかけ密度が真の密度
の80%以上になるよう多孔質を消失させると同時に架
橋処理を行って得られた架橋超高分子量ポリエチレンシ
ートを260°C以上の温度で熱処理した後、このシー
トの両面あるいは片面に直接又は接着層若しくは樹脂含
浸補強層を介して金属箔若しくは金属板を積層すること
を特徴とする高周波用基板の製造方法を提供するもので
ある。
That is, the present invention was obtained by heat-pressing a porous sheet of HMWPE containing a crosslinking agent to eliminate porosity and simultaneously perform a crosslinking treatment so that the apparent density of the porous sheet becomes 80% or more of the true density. It is characterized by heat-treating a cross-linked ultra-high molecular weight polyethylene sheet at a temperature of 260°C or higher, and then laminating metal foil or metal plate on both sides or one side of the sheet, either directly or via an adhesive layer or a resin-impregnated reinforcing layer. A method for manufacturing a high frequency substrate is provided.

本発明の超高分子量ポリエチレンの多孔質シートに用い
られるHMWPEは、チーグラー法重合技術により製造
され、その平均分子量は粘度法による測定で100万〜
500万と一般のポリエチレンの2万〜20万に比べて
極めて大きい分子量をもつものである。例えば、三井石
油化学工業(ハイゼックスミリオン、ミペロン)、旭化
成工業(サンチック)、西独ヘキスト社(HO3TAL
EN、GtJR) 、米国パーキュレス社(HI FA
X、1000)などで上布しているものが好適に用いら
れる。
The HMWPE used in the ultra-high molecular weight polyethylene porous sheet of the present invention is produced by Ziegler polymerization technology, and its average molecular weight is 1 million to 100% as measured by the viscosity method.
It has an extremely large molecular weight of 5 million, compared to 20,000 to 200,000 for general polyethylene. For example, Mitsui Petrochemical Industries (Hyzex Million, Miperon), Asahi Kasei (Santic), West German Hoechst (HO3TAL),
EN, GtJR), U.S. Percules Inc. (HI FA)
X, 1000) or the like is preferably used.

HMWPEの多孔質シートはHMWPE粉末粒子を焼結
させ、粒子同士を融着により接合し、厚み0.5〜5a
nのシートに成形したものである。接合した粒子の外側
には空気の連続層が存在する。
HMWPE porous sheets are made by sintering HMWPE powder particles, joining the particles by fusion, and forming a sheet with a thickness of 0.5 to 5 mm.
It is molded into a sheet of n. There is a continuous layer of air outside the bonded particles.

HMWPEの多孔質シートの製造法は、例えばフィルム
、金属ベルトなどの基材上にHMWPEの粉末粒子を投
入し、これをロールやバーによりそれらと基材との間隔
を一定に保つようにして得た間隔に通しHMWPEの粉
末粒子を一定厚みに賦形させ、更に加熱炉に通し粒子同
士を加熱焼結させて、HMWPEの多孔質シートを連続
して成形する方法がある。このとき、HMWPE粉末粒
子に接着剤をコートしたり、接着性を有する粒子や安定
剤、難燃剤、着色剤などを添加することもできる。
A method for manufacturing a porous sheet of HMWPE is to place HMWPE powder particles onto a base material such as a film or a metal belt, and then use rolls or bars to maintain a constant distance between them and the base material. There is a method of continuously forming a porous sheet of HMWPE by passing the HMWPE powder particles through a heating furnace to form them into a constant thickness, and then passing them through a heating furnace to heat and sinter the particles. At this time, the HMWPE powder particles may be coated with an adhesive, or particles having adhesive properties, a stabilizer, a flame retardant, a coloring agent, etc. may be added.

HMWPE粉末は平均粒子径が0. OO1〜1胴であ
るものが好ましい。得られるHMWPEの多孔質シート
の表面が平滑になるためには、平均粒子径が0.0 O
1〜0.1 trmであるものが特に好ましい。
HMWPE powder has an average particle size of 0. It is preferable that the cylinder has OO1 to 1. In order for the surface of the obtained HMWPE porous sheet to be smooth, the average particle diameter must be 0.0 O.
1 to 0.1 trm is particularly preferred.

HMWPEの多孔質シートは、粉末粒子同士の融着によ
り気泡構造をとっており、その気泡構造は連続気泡とな
っている。このとき更に焼結を進行させると、融着が進
み、ついには独立気泡を少量含むシートになる。しかし
本発明では加熱加圧により多孔質を消失させるので、加
熱加圧時に気泡を抜は易くするため気泡構造は連続気泡
であることが好ましい。連続気泡の気泡構造を得るため
には、焼結時の加熱温度や加熱時間を調整し、11M 
W P Eの多孔質シートのみかけ密度がHMWPE粉
末粒子の真の密度の80%未満になるようにすればよい
。HM W P Eの多孔質シートの厚みは(1)式で
求められるので、間隔を調整し所望の厚み乙こするとよ
い。
A porous sheet of HMWPE has a cellular structure due to the fusion of powder particles, and the cellular structure is open cells. At this time, if the sintering is further progressed, the fusion progresses and the sheet finally becomes a sheet containing a small amount of closed cells. However, in the present invention, since the porosity is eliminated by heating and pressurizing, it is preferable that the cell structure is an open cell structure so that bubbles can be easily removed during heating and pressurizing. In order to obtain an open cell structure, adjust the heating temperature and heating time during sintering, and
The apparent density of the porous sheet of WPE may be less than 80% of the true density of the HMWPE powder particles. Since the thickness of the porous sheet of HM W P E is determined by equation (1), it is advisable to adjust the spacing to obtain the desired thickness.

HMWPEの多孔質シートの厚み −((得ようとする)(M W P E誘電体ソートの
厚み)x (]iMWPEの真の密度))/(HMWP
E多孔質シートのみがけ密度)寸法変化を考慮し、面方
向に収縮し厚め方向は収縮した分だけ厚みが増えるとす
ると(1)式の右辺に(1−寸法収縮率)XI/2を乗
しるとよい。
Thickness of porous sheet of HMWPE - ((tried to obtain) (thickness of M W P E dielectric sort) x (] iMWPE true density)) / (HMWP
Considering the dimensional change (E porous sheet polishing density) and assuming that it shrinks in the surface direction and increases in thickness in the thick direction by the amount of shrinkage, multiply the right side of equation (1) by (1 - dimensional shrinkage rate) XI/2. It's good to know.

架橋剤はポリエチレンを架橋させるものであり、ポリエ
チレンの架橋方法として通常行われている過酸化物架橋
法、シラン架橋法により架橋させるものである。
The crosslinking agent crosslinks polyethylene, and is crosslinked by a peroxide crosslinking method or a silane crosslinking method, which are commonly used as methods for crosslinking polyethylene.

例えば、過酸化物架橋法ではanラジカル部位を発生さ
せる有機過酸化物を添加すればよい。有機過酸化物の一
例として2,5−ジメチル−25−ジ(t−ブチルパー
オキシ)ヘキシン−3、メチルエチルケトンパーオキサ
イド、t−ブチルペルオキシ−2−エチルヘキサノエー
ト、クメンヒドロパーオキサイド、2,5−ジメチル−
2゜5−ジ(t−ブチルパーオキシ)ヘキサン、6゜6
.9.9−テトラメチル−3−メチル−3−n−ブチル
−1,2,4,5−テトラオキシシクロノナン、ジクミ
ルパーオキサイド、t−ブチルペルオキシパーベンゾエ
ート、t−ブチルパーオキシイソプロピルカーボネート
等が挙げられる。また有機過酸化物とジビニルベンゼン
、トリアリルシアヌレート、トリアリルイソシアヌレー
ト、トリメチロールプロパントリアクリレート、p、P
ジベンゾイルキノンジオキシム等の如き多官能性化合物
(架橋助剤)を併用してもよい。
For example, in the peroxide crosslinking method, an organic peroxide that generates an radical site may be added. Examples of organic peroxides include 2,5-dimethyl-25-di(t-butylperoxy)hexyne-3, methyl ethyl ketone peroxide, t-butylperoxy-2-ethylhexanoate, cumene hydroperoxide, 2, 5-dimethyl-
2゜5-di(t-butylperoxy)hexane, 6゜6
.. 9.9-Tetramethyl-3-methyl-3-n-butyl-1,2,4,5-tetraoxycyclononane, dicumyl peroxide, t-butylperoxyperbenzoate, t-butylperoxyisopropyl carbonate, etc. can be mentioned. In addition, organic peroxides and divinylbenzene, triallyl cyanurate, triallyl isocyanurate, trimethylolpropane triacrylate, p, P
A polyfunctional compound (crosslinking aid) such as dibenzoylquinone dioxime may be used in combination.

シラン架橋法では一般式RR’5iYz(式中Rは一価
のオレフィン性不飽和炭化水素基、Yはハイドロカーボ
ンオキシ基の如き加水分解し得る有機基、R′は脂肪性
不飽和基を含まない一価の炭化水素基、基Y又は水素で
ある。)で表されるシラン化合物及び遊離ラジカル部位
を発生させる有機過酸化物を添加すればよい。更に上記
した多官能性化合物やシラノール化縮合触媒を添加して
もよい。シラン化合物としてはビニルトリエトキシシラ
ン、ビニルトリメトキシシラン、T−メタアクリロキシ
プロピルトリメトキシシラン、ビニル(β−メトキシエ
トキシ)シランなどがある。
In the silane crosslinking method, the general formula RR'5iYz (where R is a monovalent olefinic unsaturated hydrocarbon group, Y is a hydrolyzable organic group such as a hydrocarbonoxy group, and R' includes an aliphatic unsaturated group) is used. A silane compound represented by a monovalent hydrocarbon group, a group Y, or hydrogen) and an organic peroxide that generates a free radical site may be added. Furthermore, the above-mentioned polyfunctional compound or silanolization condensation catalyst may be added. Examples of the silane compound include vinyltriethoxysilane, vinyltrimethoxysilane, T-methacryloxypropyltrimethoxysilane, and vinyl(β-methoxyethoxy)silane.

必要に応じてシラノール化縮合触媒としてジブチル錫ジ
ラウレート、ジブチル錫ジアセテート、ジブチル錫ジオ
クトエートなどが用いられる。
If necessary, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin dioctoate, etc. are used as a silanolization condensation catalyst.

これらのポリエチレンを架橋させる架橋剤のHMWPE
の多孔質シートへの添加は、例えば有機溶剤に溶解した
架橋剤溶液をHMWPEの多孔質シート上にふりかける
か又は架橋剤溶液中にHMWPEの多孔質シートを浸漬
させ、その後有機溶剤を乾燥除去することにより行われ
る。このときHMWPEの多孔質シートの空隙率は(2
)式で示されるので、この空隙を埋めるだけの量の有機
溶剤に架橋剤の必要量を溶解又は分散させ、これをHM
WPEの多孔質シート上にふりかけるか又はこの中にH
MWPEの多孔質シートを浸漬して多孔質シート表面に
付着した余分の溶剤溶液又は分散液を2本の丸棒に挟み
しごき落とすように引き上げ 乾燥するとよい。更にP
E粉末粒子に架橋剤を添加しVブレンダー ヘンシェル
ミキサー等で混合後、HMWPEの多孔質シートを成形
する方法でもよい。
HMWPE is a crosslinking agent that crosslinks these polyethylenes.
The addition to the porous sheet can be carried out, for example, by sprinkling a crosslinking agent solution dissolved in an organic solvent onto the porous sheet of HMWPE, or by immersing the porous sheet of HMWPE in the crosslinking agent solution, and then drying and removing the organic solvent. This is done by At this time, the porosity of the HMWPE porous sheet is (2
), so the necessary amount of crosslinking agent is dissolved or dispersed in an amount of organic solvent that is sufficient to fill the voids, and this is HM
Sprinkle it on the WPE porous sheet or add H into it.
It is preferable to soak a porous sheet of MWPE, remove the excess solvent solution or dispersion adhering to the surface of the porous sheet between two round rods, and pull it up to dry it. Furthermore, P
A method may also be used in which a crosslinking agent is added to E powder particles, mixed with a V blender, Henschel mixer, etc., and then a porous sheet of HMWPE is formed.

空隙率−1−((HMWPEの多孔質シートのみかけ密
度/(HMWPEの真の密度))架橋処理は、基本的に
過酸化物架橋では加熱により架橋を行わせるものであり
、シラン架橋法では加熱によりポリエチレンにシラン化
合物をグラフトする処理をいう。シラン架橋法ではこの
後水分の存在下に更に架橋反応を行わせる工程が必要と
なる。
Porosity - 1 - ((apparent density of porous sheet of HMWPE/(true density of HMWPE)) The crosslinking process is basically performed by heating in the peroxide crosslinking method, and in the silane crosslinking method. This refers to a process in which a silane compound is grafted onto polyethylene by heating.The silane crosslinking method requires a subsequent step of further carrying out a crosslinking reaction in the presence of moisture.

架橋の程度を示すキシレン不溶分(ゲル分率、架橋度)
の測定は、試料約0.3gを200メツシ二のステンレ
ス金網に入れ、沸騰キシレン中で16時間抽出処理後、
ステンレス金網に残ったキシレン不溶分を測定すること
で行う。
Xylene insoluble content (gel fraction, degree of crosslinking) indicating the degree of crosslinking
For the measurement, approximately 0.3 g of the sample was placed in a 200 mesh stainless steel wire mesh, and after extraction treatment in boiling xylene for 16 hours,
This is done by measuring the xylene insoluble content remaining on the stainless wire mesh.

架橋剤を含むHMWPEの多孔質シートを加熱加圧して
多孔質シートのみかけ密度がHMWPEの真の密度の8
0%以上になるよう多孔質を消失させると同時に架橋処
理を行いHMWPEンートをシーする方法は、有機過酸
化物の分解温度以上の温度に加熱温度を設定しプレス等
により圧縮成形を行えばよい。一般に有機過酸化物の半
減期分解温度で半′$i期分解時間の約3倍以上加熱す
るとよい。
A porous sheet of HMWPE containing a cross-linking agent is heated and pressed until the apparent density of the porous sheet is 8, which is the true density of HMWPE.
To eliminate porosity and simultaneously perform crosslinking treatment to seal HMWPE to 0% or more, it is possible to set the heating temperature to a temperature higher than the decomposition temperature of the organic peroxide and perform compression molding using a press or the like. . Generally, it is preferable to heat the organic peroxide at its half-life decomposition temperature, which is about three times longer than the half-life decomposition time.

HMWPEの多孔質シートを加熱加圧して、多孔質シー
トのみかけ密度がHMWPEの真の密度の80%以上に
なるよう多孔質を消失させるには、多孔質シートを加熱
加圧により融着させ密度を高めることにより行う。特開
平124842号公報で開示したように多孔質を消失さ
せるのは、HMWPEの多孔質シートのみかけ密度がH
MWPEの真の密度の80%未満では、シートのε1や
tanδが低く好ましいが、HMWPEシート中に連続
気泡が残り、エツチング、スルーホールメツキ等の処理
において液のシート中へのしみ込みが住し基板特性に悪
影響を及ぼすので、総合的な基板特性を向上させるため
である。
In order to eliminate porosity by heating and pressing a porous sheet of HMWPE so that the apparent density of the porous sheet becomes 80% or more of the true density of HMWPE, the porous sheet is fused by heating and pressing to increase the density. This is done by increasing the As disclosed in JP-A-124842, porosity disappears when the apparent density of the porous sheet of HMWPE is H.
If the true density of MWPE is less than 80%, it is preferable that the sheet has a low ε1 and tan δ, but open cells remain in the HMWPE sheet and liquid may seep into the sheet during processes such as etching and through-hole plating. This is to improve the overall substrate characteristics since it has a negative effect on the substrate characteristics.

加熱加圧成形の加熱加圧条件は、加熱温度130〜25
0°C1印加圧力20〜80 kg/c+fl (0,
2〜7.8MPa)、印加時間2〜10分間とすること
が好ましい。また加熱加圧は、HMWPEの多孔質シー
トをステンレス製の鏡板等で挟み、均一な条件で加熱加
圧することが好ましい。このとき同時に架橋が完了する
が、シラン架橋法の場合加熱加圧成形して得られたシー
ト中のシラン化合物グラフト化物を水分の存在下に架橋
反応を進めて架橋を完了させる。この架橋条件は20〜
80°Cで行うことが好ましい。
The heating and pressing conditions for heating and pressing molding are a heating temperature of 130 to 25
0°C1 applied pressure 20-80 kg/c+fl (0,
2 to 7.8 MPa) and the application time is preferably 2 to 10 minutes. In addition, it is preferable that the HMWPE porous sheet is sandwiched between stainless steel end plates or the like and heated and pressed under uniform conditions. At this time, crosslinking is completed at the same time, but in the case of the silane crosslinking method, the crosslinking reaction of the silane compound grafted product in the sheet obtained by heating and pressure molding is carried out in the presence of moisture to complete the crosslinking. This crosslinking condition is 20~
Preferably, the temperature is 80°C.

多孔質がある値以上に消失し架橋したHMWPEシート
は、260°C以上、好ましくは260〜300°Cの
温度で熱処理する。熱処理は、HMWPEシートを加熱
雰囲気中にさらし、内在する内部応力や架橋剤の分解残
渣、未反応物を除去することを目的とする。
The HMWPE sheet, which has lost porosity above a certain value and is crosslinked, is heat treated at a temperature of 260°C or higher, preferably 260-300°C. The purpose of the heat treatment is to expose the HMWPE sheet to a heated atmosphere to remove inherent internal stress, decomposition residues of the crosslinking agent, and unreacted substances.

基板にかかる最高温度は、部品接続のはんだ温度であり
通常は260°Cで行われている。そのため加熱雰囲気
温度は260°C以上にし熱処理時間は、架橋HMWP
Eシートの加熱雰囲気温度までの昇温や軟化のために5
秒以上要するので5秒以上とし、内部応力の緩和や架橋
剤の分解残渣、未反応物の除去を行うのが好ましい。こ
の温度では揮発分はごく短時間で除去される。PEは2
00°C以上では酸化劣化が開始するので無酸素雰囲気
中、例えば窒素などのガスで置換したオーブン中での気
体加熱、シリコーンオイルや溶融塩、溶融金属等の加熱
媒体中で行うのが好ましい。しかしHMWPEのわずか
な酸化は接着層又は樹脂含浸補強層との密着力を高める
のに好ましいので表面層の多少の酸化はあってもよい。
The maximum temperature applied to the board is the soldering temperature for connecting components, which is usually 260°C. Therefore, the heating atmosphere temperature should be 260°C or higher and the heat treatment time should be
5 to raise the temperature of the E-sheet to the heating atmosphere temperature and soften it.
Since it takes at least 5 seconds, it is preferable to use at least 5 seconds to relieve internal stress and remove decomposition residues of the crosslinking agent and unreacted substances. At this temperature, volatile components are removed in a very short time. PE is 2
Since oxidative deterioration begins at temperatures above 00°C, it is preferable to perform gas heating in an oxygen-free atmosphere, for example in an oven purged with a gas such as nitrogen, or in a heating medium such as silicone oil, molten salt, or molten metal. However, since a slight oxidation of HMWPE is preferable for increasing the adhesion with the adhesive layer or resin-impregnated reinforcing layer, some oxidation of the surface layer is acceptable.

内部応力の緩和の目的から熱処理後の冷却はHMWPE
シートに応力がかからないようシートを固定することな
くフリーの状態にする。例えばハツチ方式では当て板の
上に載せたり、連続方式では間隔を狭くしたローラーコ
ンヘア等を用いて冷却するとよい。熱処理温度の上限は
、PEの分解温度、着火、発火温度がおよそ330°C
以上であることから、この温度以下で処理することが好
ましい。特に260〜300°Cが好ましい。
HMWPE is used for cooling after heat treatment to relieve internal stress.
To make a sheet free without fixing it so that no stress is applied to the sheet. For example, in the hatch method, cooling may be carried out by placing the material on a patch plate, or in the continuous method, cooling may be performed using roller conhairs with narrow intervals. The upper limit of heat treatment temperature is PE decomposition temperature, ignition, and ignition temperature of approximately 330°C.
Because of the above, it is preferable to perform the treatment at a temperature below this temperature. Particularly preferred is 260 to 300°C.

次いで、260°C以上の温度で熱処理したHMWPE
ンートにシー又は接着層若しくは樹脂含浸補強層を介し
て金属箔若しくは金属板を積層して高周波用基板とする
Then, HMWPE was heat treated at a temperature of 260°C or higher.
A high-frequency substrate is obtained by laminating a metal foil or a metal plate on the base via a sheet, an adhesive layer, or a resin-impregnated reinforcing layer.

積層する金属箔、金属板の例としては、金、銀、銅、ア
ルミニウム、ニッケル、ステンレス、鉄、鉄合金、銅合
金などが挙げられる。好ましくは銅箔、アルミニウム箔
、アルミニウム板、鉄合金板である。金属箔、金属板の
厚みは10〜50μmが好ましい。
Examples of metal foils and metal plates to be laminated include gold, silver, copper, aluminum, nickel, stainless steel, iron, iron alloy, copper alloy, and the like. Preferred are copper foil, aluminum foil, aluminum plate, and iron alloy plate. The thickness of the metal foil or metal plate is preferably 10 to 50 μm.

接着層はHMWPEシート、金属箔又は金属板等の高周
波基板中の眉間の接着を強固にするためのものである。
The adhesive layer is for strengthening glabellar adhesion in a high frequency substrate such as a HMWPE sheet, metal foil or metal plate.

接着層の構造中に極性基を多数含むと誘電体のε1やt
anδが高くなることがある。
If the structure of the adhesive layer contains many polar groups, the dielectric's ε1 and t
anδ may become high.

そのような場合、接着層の厚みは必要最小限にすること
が望ましい。
In such cases, it is desirable to minimize the thickness of the adhesive layer.

接着層としては接着剤、接着フィルム等が用いられるが
、接着剤としては、例えばアクリル樹脂、ポリエステル
樹脂、ポリウレタン樹脂、フェノール樹脂、エポキシ樹
脂、クロロプレンゴム、ニトリルゴム、エポキシフェノ
ール、ブチラールフェノール、ニトリルフェノール等が
挙げられる。また、接着フィルムとしては、(1)エチ
レン−酢酸ビニル共重合体、エチレン−アクリル酸エス
テル共重合体、エチレン−アクリル酸共重合体、エチレ
ン−マレイン酸共重合体、エチレン−無水マレイン酸グ
ラフト化共重合体、エチレン−メククリル酸グリシジル
ー酢酸ビニル三元共重合体、アイオノマー重合体などの
ように、ポリオレフィンにα、β−不飽和カルボン酸、
そのエステル、その無水物若しくはその金属塩又は飽和
有機カルボン酸を通常の共重合体若しくはグラフト共重
合させて得た共重合体、(It)ポリオレフィンと前記
(I)の共重合体の混合物、(Ilりポリオレフィンに
粘着付与側等を配合した接着性配合物のフィルムを挙げ
ることができる。接着層はその配合中に架橋し得る基を
有し、電離性放射線、有機過酸化物、シラン化合物等に
より架橋するものが好ましい。
Adhesives, adhesive films, etc. are used as the adhesive layer, and examples of adhesives include acrylic resin, polyester resin, polyurethane resin, phenol resin, epoxy resin, chloroprene rubber, nitrile rubber, epoxy phenol, butyral phenol, and nitrile phenol. etc. In addition, as adhesive films, (1) ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, ethylene-acrylic acid copolymer, ethylene-maleic acid copolymer, ethylene-maleic anhydride grafted α,β-unsaturated carboxylic acid,
A copolymer obtained by conventional copolymerization or graft copolymerization of its ester, anhydride, or metal salt thereof, or a saturated organic carboxylic acid, (It) a mixture of a polyolefin and the copolymer of (I), ( An example is a film of an adhesive composition in which a tackifying side, etc. is blended into a polyolefin.The adhesive layer has a crosslinkable group in its composition, and is free from ionizing radiation, organic peroxides, silane compounds, etc. Preferably, those that are crosslinked by

更に、HMWPEシートに直接又は接着剤を介して樹脂
含浸補強層と金属箔又は金属板を積層成形することが好
ましい。積層成形条件は前記多孔質シートの加熱加圧条
件と同様である。
Furthermore, it is preferable to laminate a resin-impregnated reinforcing layer and a metal foil or metal plate on the HMWPE sheet directly or via an adhesive. The lamination molding conditions are the same as the heating and pressing conditions for the porous sheet.

樹脂含浸補強層としては、基板に通常用いられているガ
ラスクロス、ガラス不織布、プラスチック繊維の織布、
不織布等の補強剤に硬化性樹脂フェスを含浸乾燥させた
ものが用いられる。
As the resin-impregnated reinforcing layer, glass cloth, glass nonwoven fabric, plastic fiber woven fabric, etc., which are usually used for substrates, can be used.
A nonwoven fabric or other reinforcing agent impregnated with a curable resin face and dried is used.

樹脂としては、ポリエステル樹脂、エポキシ樹脂、フェ
ノール樹脂、メラミン樹脂、ジアリルフタレート樹脂、
ポリイミド樹脂、ビスマレイミド・トリアジン樹脂、P
PO樹脂若しくはPPS樹脂と架橋性ポリマー又は架橋
性モノマーとの樹脂組成物を挙げることができ、好まし
くはε、やtanδが比較的低いポリエステル樹脂、エ
ポキシ樹脂、ポリイミド樹脂が用いられる。
Examples of resins include polyester resin, epoxy resin, phenol resin, melamine resin, diallyl phthalate resin,
Polyimide resin, bismaleimide/triazine resin, P
Examples include resin compositions of PO resins or PPS resins and crosslinkable polymers or crosslinkable monomers, and preferably polyester resins, epoxy resins, and polyimide resins with relatively low ε and tan δ are used.

〔作用〕[Effect]

tanδを高くする要因は、PEを架橋するときに用い
た架橋剤の分解残渣や未反応物であり、これらを除去す
るためには架橋PEシートを高温雰囲気中で飛散除去す
ればよいが、分子量が5〜20万の通常のPEを用い、
これを架橋しPEシートとし、260°C以上の温度で
自由変形を起こすように無機質の微粉末を塗布した平ら
な板の上で熱処理したとき、架橋PEシートは透明でゴ
ム弾性を示し、いびつに変形し厚みむらが生じ冷却して
もその形状を保持する。これに金属箔を接着剤を介して
積層した場合、いびつな変形はある程度修正できるもの
の厚みむらや変形は金属箔を通して判別できる外観や厚
み精度の悪いものとなる。
The factors that increase tan δ are decomposition residues and unreacted substances of the crosslinking agent used when crosslinking PE, and in order to remove these, the crosslinked PE sheet can be scattered and removed in a high temperature atmosphere, but the molecular weight Using normal PE with a value of 50,000 to 200,000,
When this was cross-linked to form a PE sheet and heat treated on a flat plate coated with fine inorganic powder to cause free deformation at a temperature of 260°C or higher, the cross-linked PE sheet was transparent, exhibited rubber elasticity, and showed no distortion. It retains its shape even when it is deformed and becomes uneven in thickness and cooled. If metal foil is laminated on this via an adhesive, distorted deformation can be corrected to some extent, but thickness unevenness and deformation will result in poor appearance and thickness accuracy that can be discerned through the metal foil.

一方HMWPEの多孔質シートを多孔質の消失と同時に
架橋処理したHMWPEシートは、上記と同様に260
°C以上の温度で熱処理しても寸法変化(収縮)が生し
るがいびつな変形や厚みむらを生じることはなかった。
On the other hand, the HMWPE sheet obtained by crosslinking the HMWPE porous sheet at the same time as the porosity disappears has a 260%
Although dimensional changes (shrinkage) occurred even when heat-treated at a temperature higher than °C, no distorted deformation or thickness unevenness occurred.

この差異は、架橋PEを成形するときの方法による違い
と思われる。分子量が5〜20万の通常のPEの場合、
過酸化物架橋による架橋PEシートは有機過酸化物が分
解しない温度で押出機等でPEに混合した後ペレット化
するかTダイでシート化したり、押出機先端付近からT
ダイにかけ有機化酸化物を分解し直接架橋PEシートを
成形する方法。ペレットは更にプレス等で圧縮成形しペ
レットのシート化と架橋を同時に行ったり、−旦PEシ
ートに成形し、これを更に加熱加圧して架橋PEシート
を成形する方法が行われている。これら一連の工程で、
PEに有機過酸化物を混合し架橋PEシートを成形する
場合、PEを流動化しなければならず、その際に内部応
力が架橋PEシートに内在する。特に加熱加圧し有機過
酸化物の分解温度以上の温度で架橋PEシートを成形す
る場合、架橋されつつ高粘度となったPEが流動される
ので内部応力が発生しやすくなる。
This difference seems to be due to the method used to mold the crosslinked PE. In the case of normal PE with a molecular weight of 50,000 to 200,000,
Cross-linked PE sheets created by peroxide cross-linking are mixed with PE in an extruder at a temperature that does not decompose the organic peroxide, and then pelletized or formed into a sheet with a T-die, or a T-die is formed near the tip of the extruder.
A method of directly molding a crosslinked PE sheet by decomposing the organic oxide using a die. The pellets are further compression-molded using a press or the like to form the pellets into a sheet and cross-linked at the same time, or the pellets are first formed into a PE sheet and then further heated and pressed to form a cross-linked PE sheet. In this series of steps,
When a crosslinked PE sheet is formed by mixing an organic peroxide with PE, the PE must be fluidized, and at this time internal stress is inherent in the crosslinked PE sheet. In particular, when a crosslinked PE sheet is molded under heat and pressure at a temperature higher than the decomposition temperature of the organic peroxide, internal stress is likely to occur because the crosslinked PE that has become highly viscous is fluidized.

HMWPEの多孔質シートの場合は、PEシートの面方
向の流動はほとんど無く厚み方向にのみ厚みが減少し、
焼結多孔質シートを構成する粉末粒子が多孔質の空隙を
埋めるように作用し、使用したPE粉末粒子内のPEは
ほとんど流動することなく融着されソート化されるとと
もに架橋されるので内部応力は低くなる。このため従来
用いられていない260°C以上という高温度の熱処理
においてシートが大きく変形するようなことはなく厚み
むらも生しない。そしてこの温度では架橋剤の分解残渣
や未反応物が短時間で飛散除去されるのでtanδの値
が著しく低くなる。
In the case of HMWPE porous sheets, there is almost no flow in the plane direction of the PE sheet, and the thickness decreases only in the thickness direction.
The powder particles that make up the sintered porous sheet act to fill the porous voids, and the PE in the PE powder particles used is fused, sorted, and crosslinked with almost no flow, reducing internal stress. becomes lower. Therefore, the sheet will not be significantly deformed during heat treatment at a high temperature of 260° C. or higher, which has not been used in the past, and no thickness unevenness will occur. At this temperature, decomposition residues of the crosslinking agent and unreacted substances are scattered and removed in a short time, so that the value of tan δ becomes extremely low.

260°C未満での熱処理では架橋剤の分解残渣や未反
応物の飛散に長時間を要し、長時間処理にすることによ
りPEの劣化や熱処理媒体とPEの表面がなしみ、例え
ばはんだ等の金属溶融塩やシリコーンオイル等の熱媒体
ではPEの表面にそれらが多量に付着し分離作業が煩雑
となる。更に架橋PEシートの内部応力の緩和で十分で
なく基板の寸法安定性を向上させるため、例えば寸法安
定性の良好なガラスクロスにエポキシ樹脂を含浸させた
樹脂含浸補強層の分率を増やさなければならず、その結
果ε、やtanδの増加を招いてしまう。
Heat treatment at temperatures below 260°C requires a long time for the decomposition residue of the crosslinking agent and unreacted substances to scatter, and long-term treatment may cause deterioration of the PE or staining of the heat treatment medium and the surface of the PE, such as solder, etc. When using heat media such as molten metal salt or silicone oil, a large amount of them adheres to the surface of PE, making the separation work complicated. Furthermore, in order to improve the dimensional stability of the substrate because the internal stress relaxation of the crosslinked PE sheet is not sufficient, it is necessary to increase the proportion of the resin-impregnated reinforcing layer, which is made by impregnating a glass cloth with good dimensional stability with an epoxy resin, for example. As a result, ε and tan δ increase.

更にこの基板を使用し回路加工を施しプリント配線基板
として使用中架橋剤の分解残渣や未反応物が徐々に飛散
し誘電特性が変化するので好ましくなくなる。
Further, when this substrate is used for circuit processing and used as a printed wiring board, decomposition residues of the crosslinking agent and unreacted substances gradually scatter and the dielectric properties change, making it undesirable.

〔実施例〕〔Example〕

実施例1 第1図に示す装置を用い、厚さ50μmのポリエステル
フィルム(SLタイプ、帝人株式会社)基材1をステン
レススチールベルト2に沿わし、手鼻型コーター3でH
MWPE粉末4(ミペロンXM220、平均粒子径0.
03mm、融点136°C1嵩密度0.4g/d、ポリ
エチレンの真の密度0.94g/cr1、三井石油化学
工業株式会社商品名)を1の基材上に0.8 mmの厚
みに賦形し5の加熱炉(160°C)で加熱焼結を行い
みかけ密度0.5g/Cl1lのHMWPEの多孔質シ
ートを得た。
Example 1 Using the apparatus shown in FIG. 1, a polyester film (SL type, Teijin Ltd.) base material 1 with a thickness of 50 μm was placed along a stainless steel belt 2, and coated with a hand-nose coater 3.
MWPE powder 4 (Miperon XM220, average particle size 0.
03mm, melting point 136°C1, bulk density 0.4g/d, true density of polyethylene 0.94g/cr1, Mitsui Petrochemical Industries Co., Ltd. trade name) was formed to a thickness of 0.8 mm on the base material 1. The mixture was heated and sintered in a heating furnace (160° C.) to obtain a porous sheet of HMWPE with an apparent density of 0.5 g/1 liter of Cl.

架橋剤として有機過酸化物t−ブチルクミルパーオキサ
イドを用い、この有機過酸化物を多孔質シート100重
量部に対し0.6重量部になるように多孔質シートの空
隙が埋まるよう計算した量のトルエンに溶解し、この溶
液を多孔質シートに均一にふりかけ、風乾後100°C
の乾燥器中で5分間乾燥した。この多孔質シートを2枚
重ね、更に離型用の厚さ50μmのポリイミドフィルム
を介してステンレス製の鏡板で挟み、200″C120
kg/cd(2,0NPa)のプレス条件で5分間加熱
加圧し、多孔質が消失した厚さ0.85m、密度0゜9
3g/cdのHMWPEの過酸化物架橋シートを得た。
Using organic peroxide t-butylcumyl peroxide as a crosslinking agent, the amount of organic peroxide calculated to fill the voids in the porous sheet is 0.6 parts by weight per 100 parts by weight of the porous sheet. of toluene, sprinkle this solution uniformly on a porous sheet, air dry it, and then heat it at 100°C.
It was dried in a dryer for 5 minutes. Two of these porous sheets were stacked and sandwiched between stainless steel mirror plates with a 50 μm thick polyimide film for mold release in between.
Heated and pressurized for 5 minutes under pressing conditions of kg/cd (2.0 NPa), and the porosity disappeared, thickness 0.85 m, density 0°9
A peroxide crosslinked sheet of HMWPE with a weight of 3 g/cd was obtained.

このシートのキシレン不溶分は38重■%であった。こ
の過酸化物架橋シートを更に上記のステンレス製の鏡板
に挟んだまま300°Cに加熱したプレスで40kCg
/cd (3,9MPa) 、2分間加熱加圧後15秒
間圧力を解放し、更に1分間加熱加圧後圧力を解放し、
スレンレス鏡板ごと別の冷却専用のプレスに移し圧力を
加えないままプレス面に接触させて室温まで冷却し熱処
理を行った。
The xylene insoluble content of this sheet was 38% by weight. This peroxide cross-linked sheet was further sandwiched between the stainless steel end plates mentioned above and was heated to 300°C in a press to give a weight of 40kC.
/cd (3.9 MPa), after heating and pressurizing for 2 minutes, releasing the pressure for 15 seconds, and after heating and pressuring for another 1 minute, releasing the pressure,
The stainless steel end plate was transferred to a separate cooling-only press and brought into contact with the press surface without applying pressure to cool it to room temperature and perform heat treatment.

次にこのHMWPEシートの両面に、接着層として10
Mr a dの電子線を照射した50μmのアトマーN
EO60(三井石油化学工業株式会社商品名、直鎖低密
度ポリエチレングラフト化物)のフィルム(キシレン不
溶分、70重四%)を設け、この接着層を介して片面に
厚さ35μmの電解銅箔を、他面に厚さIIIIIll
のアルミニウム板を積層し、200″C120kg/c
+11の条件で加熱加圧して、高周波用基板を得た。
Next, on both sides of this HMWPE sheet, an adhesive layer of 10
50 μm attomer N irradiated with Mr a d electron beam
A film of EO60 (trade name of Mitsui Petrochemical Industries, Ltd., linear low-density polyethylene grafted product) (xylene insoluble content, 70% by weight) was provided, and an electrolytic copper foil with a thickness of 35 μm was applied to one side via this adhesive layer. , thickness IIIll on the other side
Laminated aluminum plates of 200"C120kg/c
A high frequency substrate was obtained by heating and pressing under conditions of +11.

比較例1 実施例1において過酸化物架橋HMWPEソートを30
0°Cで熱処理しなかったほかは実施例1と同様にして
高周波用基板を得た。
Comparative Example 1 Peroxide crosslinked HMWPE sorting in Example 1
A high frequency substrate was obtained in the same manner as in Example 1 except that the heat treatment at 0°C was not performed.

実施例2 実施例1で得たHMWPEの多孔質シー)100重量部
に対し有機過酸化物として25−ジメチル−2,5−ジ
(t−ブチルパーオキシ)ヘキシン−3を0.2重量部
、シラン化合物としてビニルトリエトキシシランを1重
量部及びシラノール化縮合触媒としてジブチル錫ジラウ
レートを0.05重量部を、多孔質シートの空隙が埋ま
るよう計算した量のトルエンに溶解させた。これを多孔
質ソートに均一になるようふりかけ、風乾後100°C
の乾燥器中で5分間乾燥した。この多孔質シートを2枚
重ね、離型用の厚さ50μmのポリイミドフィルムを介
してステンレス製の鏡板で挟み、200″C140kg
/cffl (3,9MPa)の条件で5分間加熱加圧
し、厚さ0.85mmの多孔質が消失した誘電体密度0
.93 g /c+IlのHMWPEのンラン架橋処理
シートを得た。次にこのノートを80°Cの温水中に3
時間浸漬し架橋させ、95°Cの乾燥器中で1時間乾燥
させシラン架橋HMWPEシートを得た。
Example 2 0.2 parts by weight of 25-dimethyl-2,5-di(t-butylperoxy)hexyne-3 was added as an organic peroxide to 100 parts by weight of the HMWPE porous sheet obtained in Example 1. 1 part by weight of vinyltriethoxysilane as a silane compound and 0.05 part by weight of dibutyltin dilaurate as a silanolization condensation catalyst were dissolved in toluene in an amount calculated to fill the voids in the porous sheet. Sprinkle this evenly on the porous sort, and after air-dry it at 100°C.
It was dried in a dryer for 5 minutes. Two of these porous sheets were stacked and sandwiched between stainless steel end plates with a 50 μm thick polyimide film for mold release in between, and a 200"C140kg
/cffl (3.9MPa) for 5 minutes under heat and pressure to create a dielectric with a thickness of 0.85mm and porosity disappearing.
.. A run-crosslinked sheet of HMWPE with a weight of 93 g/c+Il was obtained. Next, place this notebook in warm water at 80°C for 3 minutes.
It was immersed for an hour to crosslink, and then dried in a dryer at 95°C for 1 hour to obtain a silane crosslinked HMWPE sheet.

このシートのキシレン不溶分は62重置%であった。こ
のシラン架橋HMWPEシートを270°Cに加熱した
シリコーンオイル浴に10秒間浸漬(熱処理)した後、
シート表面に付着したシリコーンオイルをトルエン中で
数回洗浄し、115°Cで5分間乾燥し除去した。次に
このHMWPEシ−トの両面に接着層として10Mr 
a dの電子線を照射した50μmのアトマーNEO6
0のフィルムを設け、この接着層を介して片面に厚さ3
5μmの電解銅箔を、他面に厚さ1閣のアルミニウム板
を積層し、200°C,20kg/cd (2,0MP
a)の条件で加熱加圧して高周波用基板を得た。
The xylene insoluble content of this sheet was 62% by weight. After immersing this silane crosslinked HMWPE sheet in a silicone oil bath heated to 270°C for 10 seconds (heat treatment),
The silicone oil adhering to the sheet surface was removed by washing it several times in toluene and drying it at 115°C for 5 minutes. Next, on both sides of this HMWPE sheet, 10 Mr.
50 μm attomer NEO6 irradiated with electron beams a and d
A film with a thickness of 3 is provided on one side through this adhesive layer.
A 5 μm electrolytic copper foil was laminated on the other side with an aluminum plate 1 cm thick, 200°C, 20 kg/cd (2,0 MP
A high frequency substrate was obtained by heating and pressing under the conditions of a).

比較例2 実施例2においてシラン架橋HMWPEシートを270
°Cに加熱したシリコーンオイル浴中に浸漬しなかった
ほかは実施例2と同様にして高周波用基板を得た。
Comparative Example 2 In Example 2, the silane crosslinked HMWPE sheet was
A high frequency substrate was obtained in the same manner as in Example 2, except that the substrate was not immersed in a silicone oil bath heated to .degree.

実施例3 実施例1と同様にして得た過酸化物架橋シートを270
℃に加熱したシリコーンオイル浴に10秒間浸漬(熱処
理)した後、シート表面に付着したシリコーンオイルを
トルエン中で数回洗浄し、115℃で5分間乾燥し除去
した。そして次に示す配合物を厚さ60μmのガラスク
ロスに含浸乾燥させ、樹脂含浸補強層を得た。配合物は
ポリフェニレンオキサイド:PPO534J(エンジニ
アリングプラスチック株式会社商品名)100重量部、
末端アクリロイル基変性1.4−ポリブタジェン: R
−45ACR(出光石油化学株式会社商品名)40fi
量部、トリアリルイソシアヌレート20重量部及びパー
ヘキシン25  B:2゜5−ジメチル−2,5−ジ(
t−ブチルパーオキシ)ヘキシン−3(日本油脂株式会
社商品名)2重量部をトルエンに溶解させトルエンの2
0重量%溶液として使用した。
Example 3 A peroxide crosslinked sheet obtained in the same manner as in Example 1 was
After being immersed in a silicone oil bath heated to 115° C. for 10 seconds (heat treatment), the silicone oil adhering to the sheet surface was washed several times in toluene and was removed by drying at 115° C. for 5 minutes. Then, a glass cloth having a thickness of 60 μm was impregnated with the following formulation and dried to obtain a resin-impregnated reinforcing layer. The compound is polyphenylene oxide: 100 parts by weight of PPO534J (product name of Engineering Plastics Co., Ltd.);
Terminal acryloyl group-modified 1,4-polybutadiene: R
-45ACR (Product name of Idemitsu Petrochemical Co., Ltd.) 40fi
parts by weight, 20 parts by weight of triallylisocyanurate and 25 parts by weight of perhexine B: 2°5-dimethyl-2,5-di(
Dissolve 2 parts by weight of t-butylperoxy)hexyne-3 (trade name of NOF Corporation) in toluene and add 2 parts by weight of toluene.
It was used as a 0% by weight solution.

前記過酸化物架橋の熱処理したシートの両面に前記した
樹脂含浸補強層を介して厚さ35μmの銅箔を積層し、
220°C140kg/d(3,9MPa)の条件で1
5分間加熱加圧し、誘電体厚さ1゜08m+の高周波用
基板を得た。
Copper foil with a thickness of 35 μm is laminated on both sides of the peroxide-crosslinked heat-treated sheet via the resin-impregnated reinforcing layer,
1 at 220°C and 140kg/d (3.9MPa)
The mixture was heated and pressed for 5 minutes to obtain a high frequency substrate with a dielectric thickness of 1°08 m+.

比較例3 実施例3において過酸化物架橋HMWPEシートを熱処
理しなかったほかは実施例3と同様にして高周波用基板
を得た。
Comparative Example 3 A high frequency substrate was obtained in the same manner as in Example 3 except that the peroxide crosslinked HMWPE sheet was not heat treated.

第1表 以上実施例1〜3、比較例1〜3で得られた高周波用基
板のε1、tanδを測定し、その結果をまとめて第1
表に示した。また実施例1〜3、比較例1〜3で得られ
た高周波用基板の銅箔及びアルミニウム板を塩化第二鉄
塩酸溶液でエツチングし水洗乾燥後、得られた誘電体シ
ートを260°Cのはんだ浴に20秒間フロートしたと
きの誘電体シートの厚み変化を測定し、その結果も第1
表に示した。
The ε1 and tan δ of the high frequency substrates obtained in Table 1 and above Examples 1 to 3 and Comparative Examples 1 to 3 were measured, and the results were summarized in Table 1.
Shown in the table. Further, the copper foil and aluminum plate of the high frequency substrate obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were etched with a ferric chloride hydrochloric acid solution, washed with water, and dried, and the resulting dielectric sheet was heated at 260°C. We measured the change in the thickness of the dielectric sheet when it was floated in a solder bath for 20 seconds, and the results also showed that
Shown in the table.

°1厚み変化(%) ×100 実施例4.5及び比較例4〜6 実施例2と同様にして得たシラン架i)(MWPEシー
トを用い、シリコーンオイル浴の温度と浸漬時間を種々
変えたこと以外実施例2と同様にして高周波用基板を得
た。この基板を260 ℃のはんだ浴に20秒間フロー
トさせ、ふくれの有無を調べた。また基板の金属をエツ
チング除去し第1表と同様にtanδや厚み変化を測定
しその結果を第2表に示した。
°1 Thickness change (%) × 100 Example 4.5 and Comparative Examples 4 to 6 Silane frame i) obtained in the same manner as Example 2 (using a MWPE sheet, varying the temperature of the silicone oil bath and the immersion time) Except for the above, a high frequency substrate was obtained in the same manner as in Example 2. This substrate was floated in a solder bath at 260° C. for 20 seconds, and the presence or absence of blisters was examined. The metal on the substrate was also etched away, and the results shown in Table 1 were obtained. Similarly, tan δ and thickness change were measured and the results are shown in Table 2.

以上実施例1〜5で得られた高周波用基板のtanδは
、比較例1〜6で得られた基板よりいずれも低くなり、
熱処理した効果があられれている。
The tan δ of the high frequency substrates obtained in Examples 1 to 5 is lower than that of the substrates obtained in Comparative Examples 1 to 6,
The effect of heat treatment is visible.

また高周波用基板の誘電体の寸法変化に起因する厚み変
化も著しく減少する。 tanδの値が約半分になった
ことにより微弱な信号をより損失が少なく伝送できる。
Furthermore, changes in thickness due to changes in dimensions of the dielectric of the high-frequency substrate are also significantly reduced. By reducing the value of tan δ to about half, weak signals can be transmitted with less loss.

参考として通常用いられているPE(スミ力セン Fl
ol、M I 0.3 g/ 10m1n、住友化学工
業株式会社)に実施例1で用いた有機過酸化物を押出機
により0.6重量部混練した後、更にこれをステンレス
製の鏡板に挟み0.85閣のスペーサーを介して200
°C120kg/cj(2,OMPa)、5分間加熱加
圧して得た過酸化物架橋PEシート(キシレン不溶分6
5重量%)を270°Cに加熱したシリコーン浴に10
秒間浸漬してみたが、シリコーン浴からシートを引き上
げるとき、このシートは保持している部分が伸びてしま
い変形し厚みが不均一となってしまった。
PE (Sumi Rikisen Fl) which is usually used as a reference
0.6 parts by weight of the organic peroxide used in Example 1 was kneaded with an extruder using an extruder, and then this was further sandwiched between stainless steel mirror plates. 200 through 0.85 cabinet spacer
Peroxide crosslinked PE sheet obtained by heating and pressurizing at 120 kg/cj (2, OMPa) for 5 minutes (xylene insoluble content: 6
5% by weight) in a silicone bath heated to 270°C.
I tried dipping it for a second, but when I pulled the sheet out of the silicone bath, the part that was holding the sheet stretched and deformed, making the thickness uneven.

一方HMWPEシートの方が伸びや変形することはなか
った。
On the other hand, the HMWPE sheet did not stretch or deform.

〔発明の効果〕〔Effect of the invention〕

本発明のように従来用いられていない260°C以上の
高温度で架橋HMWPEシートを熱処理することにより
、架橋剤の分解残渣や未反応物を除去することができt
anδの値を著しく低くすZことができる。また内部応
力を緩和するので、はんだ等の高温度にさらされたとき
の寸法変化が著しく低減されるとともに揮発分が少なく
なるのでふくれが生しなくなる。
By heat-treating the cross-linked HMWPE sheet at a high temperature of 260°C or higher, which has not been used conventionally, as in the present invention, decomposition residues of the cross-linking agent and unreacted substances can be removed.
The value of an δ can be significantly reduced. Furthermore, since internal stress is relaxed, dimensional changes in solder and the like when exposed to high temperatures are significantly reduced, and since the volatile content is reduced, blistering does not occur.

本発明によらない熱処理しないHMWPEシートを用い
た高周波用基板では回路成形後、架橋剤の分解残渣や未
反応物が経時的に飛散し、その結果誘電特性が経時的に
変化しインピーダンス等の回路設計パラメーターが変化
するので好ましくない。本発明ではこのようなことがな
く好適である。
In a high-frequency board using an HMWPE sheet that is not heat-treated (not according to the present invention), after circuit molding, decomposition residues of the crosslinking agent and unreacted substances scatter over time, and as a result, the dielectric properties change over time, causing circuit impedance etc. This is not preferable because the design parameters change. In the present invention, this problem does not occur and the present invention is suitable.

またガラスクロスのような補強層に樹脂を含浸して得ら
れる樹脂含浸補強層を積層することにより基板の反りや
強度及び表面硬度を改善することができるとともに、こ
れを介して外気と遮断する構成でははんだ等の高温雰囲
気中でのPEの酸化を防止でき、酸化によるε、やta
nδの値が高くなるのを抑制することができる。
In addition, by laminating a resin-impregnated reinforcing layer obtained by impregnating a reinforcing layer such as glass cloth with resin, it is possible to improve the warpage, strength, and surface hardness of the board, and it is also possible to isolate it from the outside air through this layer. can prevent oxidation of PE in high-temperature atmospheres such as soldering, and reduce ε, and ta due to oxidation.
It is possible to suppress the value of nδ from increasing.

【図面の簡単な説明】 第1図は超高分子量ポリエチレン(HMWPE)の多孔
質シート連続成形装置の説明図を表す。 符号の説明 I材2  ステンレススチールベルト 手鼻型コーター 超高分子量ポリエチレン粉末 加熱炉 第 図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of an apparatus for continuously forming a porous sheet of ultra-high molecular weight polyethylene (HMWPE). Explanation of symbols I material 2 Stainless steel belt hand-nose type coater Ultra-high molecular weight polyethylene powder heating furnace Diagram

Claims (1)

【特許請求の範囲】[Claims] 1.架橋剤を含む超高分子量ポリエチレンの多孔質シー
トを加熱加圧成形して多孔質シートのみかけ密度が超高
分子量ポリエチレンの真の密度の80%以上になるよう
多孔質を消失させると同時に架橋処理を行って得られた
架橋超高分子量ポリエチレンシートを260℃以上の温
度で熱処理した後、このシートの両面あるいは片面に直
接又は接着層若しくは樹脂含浸補強層を介して金属箔若
しくは金属板を積層することを特徴とする高周波用基板
の製造方法。
1. A porous sheet of ultra-high molecular weight polyethylene containing a cross-linking agent is heated and pressure-molded to eliminate the porosity and at the same time undergo cross-linking treatment so that the apparent density of the porous sheet becomes 80% or more of the true density of the ultra-high molecular weight polyethylene. After heat-treating the crosslinked ultra-high molecular weight polyethylene sheet obtained by performing this process at a temperature of 260°C or higher, metal foil or metal plate is laminated on both sides or one side of this sheet directly or via an adhesive layer or a resin-impregnated reinforcing layer. A method of manufacturing a high frequency substrate, characterized in that:
JP15338690A 1990-06-12 1990-06-12 Manufacture method of high frequency substrate Pending JPH0444385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15338690A JPH0444385A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15338690A JPH0444385A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Publications (1)

Publication Number Publication Date
JPH0444385A true JPH0444385A (en) 1992-02-14

Family

ID=15561349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15338690A Pending JPH0444385A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Country Status (1)

Country Link
JP (1) JPH0444385A (en)

Similar Documents

Publication Publication Date Title
US4064030A (en) Process for surface treating molded articles of fluorine resins
JP7378494B2 (en) Copolymer and laminate containing the same
WO2016035894A1 (en) Method for manufacturing surface-modified molded article, and method for manufacturing composite using surface-modified molded article
JP7428815B2 (en) Composition and cured product thereof
US6569943B2 (en) Vinyl-terminated polybutadiene and butadiene-styrene copolymers containing urethane and/or ester residues, and the electrical laminates obtained therefrom
CN113348208B (en) Dispersion liquid
CN114656893A (en) Low dielectric adhesive film material based on maleic anhydride functionalized styrene-butadiene rubber and application thereof
CN112789320A (en) Dispersion liquid and method for producing metal foil with resin
US4155826A (en) Process for surface treating molded articles of fluorine resins
CN114729156A (en) Shaped dielectric component crosslinked by irradiation and method of making same
CN108382047A (en) A kind of hot melt preparation method of copper-clad plate
JPWO2020059606A1 (en) Laminates, printed circuit boards and their manufacturing methods
JPWO2019142747A1 (en) Manufacturing method of metal leaf with resin
JPH0444385A (en) Manufacture method of high frequency substrate
CN109760398B (en) Combination mode of high-frequency copper-clad plate fluorine-containing resin prepreg
CN107636070B (en) Resin composition, resin laminate, and resin-laminated metal foil
CN115746763A (en) Modified epoxy adhesive, preparation method thereof, prepreg and flexible copper clad laminate
JPH03109792A (en) Manufacture of board for high frequency
JPH02502804A (en) Novel polymer/metal laminates and their manufacturing methods
JPH03109791A (en) Manufacture of board for high frequency
TW202020222A (en) Method for producing molded body having metal pattern
JPS593991A (en) Printed circuit board
JP3396952B2 (en) Thermally crosslinkable cyclic olefin resin composition and crosslinked product thereof
JPH0444384A (en) Manufacture method of high frequency substrate
WO2022258785A1 (en) Composite films for mobile electronic device components