JPH0444384A - Manufacture method of high frequency substrate - Google Patents

Manufacture method of high frequency substrate

Info

Publication number
JPH0444384A
JPH0444384A JP15338590A JP15338590A JPH0444384A JP H0444384 A JPH0444384 A JP H0444384A JP 15338590 A JP15338590 A JP 15338590A JP 15338590 A JP15338590 A JP 15338590A JP H0444384 A JPH0444384 A JP H0444384A
Authority
JP
Japan
Prior art keywords
pps
hmwpe
sheet
laminated
polyphenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15338590A
Other languages
Japanese (ja)
Inventor
Takao Sugawara
菅原 隆男
Yutaka Yamaguchi
豊 山口
Satoshi Tazaki
聡 田崎
Tomohisa Ota
共久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP15338590A priority Critical patent/JPH0444384A/en
Publication of JPH0444384A publication Critical patent/JPH0444384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To lower epsilonr or tan delta and enhance resistance to high temperature and nonflammability by laminating metal foil or metal sheet on both sides or one side of a dielectric sheet which comprises a specified weight of polyphenylene sulfide film and superpolymeric polyethylene. CONSTITUTION:Metal foil or metal sheets are lamianted on both sides or one side of a dielectric sheet where polyphenylene sulfide films and superpolymeric polyethylene-made porous sheets are laminated so that the polyphenylene sulfide may range from 10 to 90 wt.% while the superpolymetic polyethylene may range from 90 to 10 wt.%. Or similarly, metal foil or metal sheets are laminated on both sides or one side of a dielectric sheet where polyphenylene sulfide powder ranging from 1 to 90 wt.% is mixed with superpolymeric polyethylene powder ranging from 90 to 10 wt.% and the mixture is calcined and molded so that the sheet may be porous. Then, after laminated, both the dielectric sheets are heated and pressure-molded. A PPS films 1 and HMPE porous sheets are further laminated and a bonding layer 4 is also laminated. Then, copper foil is laminated as metal foil 3 on the farthest layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高周波領域で使用される高周波用基板及びその
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high frequency substrate used in a high frequency region and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

最近の電子工業、通信工業の各分野において使用される
信号の周波数は次第に高周波の領域に移行し、従来多用
されていたキロヘルツの領域からメガヘルツやギガヘル
ツの領域の方に重要性が移行している。これらの高周波
領域では信号速度や信号の損失の回路性能への影響が大
きく、使用する電気部品や積層板に対して高周波領域で
の信号速度の向上、損失の低減が求められている。積層
板上の回路の信号速度は誘電体の比誘電率(以下ε、と
称す)に依存しており、ε、が低いほど信号速度は速く
なる。また信号の損失は誘電体のε、とtanδ(δ:
誘電損角)に依存しており、ε1やtanδが低いほど
損失が少なくなる。このため高周波用基板に使用される
誘電体にはε、やtanδの低いものが要求される。ε
、やtanδの低い誘電体としてポリテトラフルオロエ
チレンやポリエチレンなどの樹脂をガラスクロスに含浸
させたものが用いられ、これに銅箔を積層させた高周波
用基板が一般的に使用されている。
Recently, the frequency of signals used in the electronics and communication industries has gradually shifted to the high frequency range, and the importance has shifted from the kilohertz range, which has traditionally been widely used, to the megahertz and gigahertz ranges. . In these high frequency ranges, the signal speed and signal loss have a large effect on circuit performance, and the electrical components and laminates used are required to improve signal speed and reduce loss in the high frequency range. The signal speed of the circuit on the laminated board depends on the dielectric constant (hereinafter referred to as ε) of the dielectric, and the lower ε is, the faster the signal speed is. In addition, the signal loss is caused by the dielectric's ε and tan δ (δ:
(dielectric loss angle), and the lower ε1 and tanδ, the lower the loss. For this reason, dielectrics used in high frequency substrates are required to have low ε and tan δ. ε
A glass cloth impregnated with a resin such as polytetrafluoroethylene or polyethylene is used as a dielectric material having a low value of .

またεrやtanδはポリテトラフルオロエチレンやポ
リエチレンよりも少し高いが、その優れた耐熱性のため
ポリフェニレンサルファイドを誘電体とした高周波用基
板も知られている。
Although εr and tan δ are slightly higher than polytetrafluoroethylene or polyethylene, high-frequency substrates using polyphenylene sulfide as a dielectric are also known because of its excellent heat resistance.

C発明が解決しようとする課題〕 ガラスクロスにポリテトラフルオロエチレンを含浸させ
た誘電体を用いたポリテトラフルオロエチレン/ガラス
クロス基板は、ポリテトラフルオロエチレンの高融点低
流動性のため、その製造に高温度で長時間の成形を要し
コストが高くなるという問題があった。一方ガラスクロ
スにポリエチレンを含浸させたポリエチレン/ガラスク
ロス基板はポリエチレンの融点が低いため、はんだ耐熱
性及び難燃性に劣る欠点があった。
Problem to be solved by the invention C] A polytetrafluoroethylene/glass cloth substrate using a dielectric material made by impregnating glass cloth with polytetrafluoroethylene is difficult to manufacture due to the high melting point and low fluidity of polytetrafluoroethylene. However, there was a problem in that molding at high temperatures and for a long time was required, resulting in high costs. On the other hand, a polyethylene/glass cloth substrate in which glass cloth is impregnated with polyethylene has a drawback of poor solder heat resistance and flame retardancy because the melting point of polyethylene is low.

またポリフェニレンサルファイド(以下PPSと称する
ことがある)を誘電体とした基板は、PPSのもろさを
解消するため補強剤としてガラス短繊維を40重量%程
度添加し用いるのが一般的であり、ガラス繊維のε1や
tanδは高くこれと複合化するためε、やtanδが
PPS単独ノ場合よりも更に高くなり、高周波用基板と
してはε1やtanδが高くなりすぎる欠点があった。
In addition, for substrates made of polyphenylene sulfide (hereinafter sometimes referred to as PPS) as a dielectric, it is common to add about 40% by weight of short glass fibers as a reinforcing agent to eliminate the brittleness of PPS. Since ε1 and tan δ of PPS are high and combined with these, ε and tan δ become even higher than in the case of PPS alone, which has the disadvantage that ε1 and tan δ are too high for use as a high frequency substrate.

本発明は、ε、やtanδが低く、耐熱性に優れ難燃性
の改良された高周波用基板及びその製造方法を提供する
ことを目的とするものである。
An object of the present invention is to provide a high-frequency substrate having low ε and tan δ, excellent heat resistance, and improved flame retardancy, and a method for manufacturing the same.

〔課題を解決するための手段] 本発明者らは、ε7やtanδが低く、耐熱性に優れ難
燃性の改良された高周波用基板及びその製造方法につい
て鋭意検討した結果、ポリフェニレンサルファイド10
〜90重量%及び超高分子量ポリエチレン(以下HMW
PEと称することがある)90〜10重量%からなる誘
電体シートの両面又は片面に金属箔又は金属板を積層す
ることにより上記問題点が解決されることを見出し、こ
の知見に基づいて本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive study on a high-frequency substrate with low ε7 and tan δ, excellent heat resistance, and improved flame retardancy, and a method for manufacturing the same, the present inventors discovered that polyphenylene sulfide 10
~90% by weight and ultra-high molecular weight polyethylene (hereinafter referred to as HMW)
It has been discovered that the above problem can be solved by laminating metal foil or metal plate on both sides or one side of a dielectric sheet consisting of 90 to 10% by weight (sometimes referred to as PE), and based on this knowledge, the present invention has been developed. I was able to complete it.

すなわち、本発明はポリフェニレンサルファイド10〜
90重蓋%及び超高分子量ボリュチレン90〜10重量
%からなる誘電体シートの両面又は片面に金属箔又は金
属板を積層したことを特徴とする高周波用基板を提供す
るものである。
That is, the present invention provides polyphenylene sulfide 10 to
The present invention provides a high frequency substrate characterized in that a metal foil or metal plate is laminated on both or one side of a dielectric sheet made of 90% by weight and 90 to 10% by weight of ultra-high molecular weight volutelene.

本発明の高周波用基板は、例えば.ポリフェニレンサル
ファイドフイルムと超高分子量ポリエチレンの多孔質シ
ートとをポリフェニレンサルファイドが10〜90重量
%、超高分子量ポリエチレンが90〜10重量%になる
ように積層した誘電体シート、あるいはポリフェニレン
サルファイド粉末10〜90重量%と超高分子量ポリエ
チレン粉末90〜10重量%とを混合し、多孔質になる
ように焼結させ成形した誘電体シートの両面又は片面に
金属箔又は金属板を積層し、加熱加圧成形することによ
り製造することができる。
The high frequency substrate of the present invention includes, for example. A dielectric sheet in which a polyphenylene sulfide film and a porous sheet of ultra-high molecular weight polyethylene are laminated such that polyphenylene sulfide is 10 to 90% by weight and ultra-high molecular weight polyethylene is 90 to 10% by weight, or polyphenylene sulfide powder is 10 to 90% by weight. % by weight and 90 to 10% by weight of ultra-high molecular weight polyethylene powder, sintered and formed into a porous dielectric sheet, laminated with metal foil or a metal plate on both sides or one side, and heated and pressed. It can be manufactured by

本発明を図面を用いて説明する。第1図〜第4図は、本
発明の高周波用基板の積層構成例を示したもので、第1
図と第2図はPPSフィルム1(第1図、第2図ともに
6枚)とHMWPEの多孔質シート2(第1図では1枚
、第2図では2枚)を積層し更に第2図では接着層4を
積層し最外層に金属箔3としてm箔を積層したものであ
る。
The present invention will be explained using the drawings. Figures 1 to 4 show examples of the laminated structure of the high frequency substrate of the present invention.
Figures 1 and 2 show that PPS film 1 (6 sheets in both Figures 1 and 2) and HMWPE porous sheet 2 (1 sheet in Figure 1, 2 sheets in Figure 2) are laminated, and then In this case, an adhesive layer 4 is laminated, and m foil is laminated as the metal foil 3 on the outermost layer.

第3図と第4図は、PPS粉末とHMWPE粉末とを混
合し焼結させ成形した多孔質シート(以下PPS−HM
WPEシートと称することがある)5(第3図では1枚
、第4図では2枚)と第4図では樹脂含浸補強層6(第
4図では3枚)を積層し更に最外層に金属箔3として銅
箔を積層したものである。このように本発明の誘電体シ
ートはPPSフィルム、HMWPEシート、p p S
−HMWPEシートを接着層、樹脂含浸補強層を介しで
あるいは介さずして複数枚積層したものであってもよい
Figures 3 and 4 show porous sheets (hereinafter referred to as PPS-HM) made by mixing PPS powder and HMWPE powder and sintering and forming the mixture.
(sometimes referred to as WPE sheet) 5 (one sheet in Figure 3, two sheets in Figure 4) and a resin-impregnated reinforcing layer 6 (three sheets in Figure 4) are laminated, and the outermost layer is a metal layer. The foil 3 is made by laminating copper foil. In this way, the dielectric sheet of the present invention can be applied to PPS film, HMWPE sheet, ppS
- A plurality of HMWPE sheets may be laminated with or without an adhesive layer or a resin-impregnated reinforcing layer.

そして次にこれら第1図〜第4図に示した構成に積層し
たものをプレス等で加熱加圧成形し高周波用基板を製造
する。
Then, the laminated structure shown in FIGS. 1 to 4 is heated and pressure-molded using a press or the like to produce a high-frequency substrate.

本発明において用いられるPPSフィルムは、PPSを
一軸又は二軸延伸して作製されるもので、例えば東し株
式会社より市販されている二軸延伸したPPSフィルム
、商品名「トレリナj等が好適に用いられる。フィルム
の厚みは10〜100μmであればよく、PPSが10
〜90重量%とHMWPEが10〜90重量%の範囲内
の目的とする重量比になるようフィルムの厚みを組み合
わせるとよい。誘電体シートの厚みは通常0.5〜5閣
とする。PPSフィルムは表面張力が低く密着性に劣る
欠点があるので、フィルムはプラズマ処理、コロナ処理
等を施し表面張力を高めたものを使用した方がよい。
The PPS film used in the present invention is produced by uniaxially or biaxially stretching PPS. For example, a biaxially stretched PPS film commercially available from Toshi Co., Ltd. under the trade name "Torelina j" is preferably used. The thickness of the film may be 10 to 100 μm, and the PPS is 10
The thickness of the film may be combined to give a desired weight ratio in the range of 10 to 90% by weight of HMWPE and 10 to 90% by weight of HMWPE. The thickness of the dielectric sheet is usually 0.5 to 5 mm. Since PPS film has the disadvantage of low surface tension and poor adhesion, it is better to use a film that has been subjected to plasma treatment, corona treatment, etc. to increase its surface tension.

本発明において用いられる超高分子量ポリエチレン(H
MWPE)の多孔質シートやHMWPE粉末に用いられ
るHMWPEは、チーグラー法重合技術により製造され
、その平均分子量は粘廣法による測定で100万〜50
0万と一般のポリエチレンの2万〜20万に比べて極め
て大きい分子量をもつものである。例えば、三井石油化
学工業(ハイゼックスミリオン、ミペロン)、旭化成工
業(サンチック)、西独ヘキスト社(HO3TALEN
、GUR)、米国パーキュレス社(HIFAX、100
0)などで上布しているものが好適に用いられる。
Ultra-high molecular weight polyethylene (H
HMWPE used for porous sheets (MWPE) and HMWPE powder is produced by Ziegler polymerization technology, and its average molecular weight is 1 million to 50,000 as measured by the Kikohiro method.
It has a molecular weight of 0,000,000, which is extremely large compared to the 20,000 to 200,000 of general polyethylene. For example, Mitsui Petrochemical Industries (HIZEX MILLION, MIPERON), Asahi Kasei (Santic), West German Hoechst (HO3TALEN),
, GUR), Percules Inc. (HIFAX, 100
0) etc. are preferably used.

HMWPEの多孔質シートはHMWPE粉末粒子を焼結
させ、粒子同士を融着により接合し、厚み0.5〜5m
のシートに成形したものである。接合した粒子の外側に
は空気の連続層が存在する。
HMWPE porous sheets are made by sintering HMWPE powder particles and bonding the particles together by fusion, with a thickness of 0.5 to 5 m.
It is molded into a sheet. There is a continuous layer of air outside the bonded particles.

HMWPEの多孔質シートの製造法は、例えばフィルム
、金属ヘルドなどの基材上にHMWPEの粉末粒子を投
入し、これをロールやバーによりそれらと基材との間隔
を一定に保つようにして得た間隔に通しHMWPEの粉
末粒子を一定厚みに賦形させ、更に加熱炉に通し粒子同
士を加熱焼結させて、HMWPEの多孔質シートを連続
して成形する方法がある。このとき、HMWPE粉末粒
子に接着剤をコートしたり、接着性を有する粒子や安定
剤、架橋剤、難燃剤、着色剤などを添加することもでき
る。
A method for producing a porous HMWPE sheet is to deposit HMWPE powder particles onto a base material such as a film or metal heald, and then use rolls or bars to maintain a constant distance between them and the base material. There is a method of continuously forming a porous sheet of HMWPE by passing the HMWPE powder particles through a heating furnace to form them into a constant thickness, and then passing them through a heating furnace to heat and sinter the particles. At this time, the HMWPE powder particles may be coated with an adhesive, or particles having adhesive properties, a stabilizer, a crosslinking agent, a flame retardant, a coloring agent, etc. may be added.

本発明において用いられるHMWPE粉末は平均粒子径
がO,OO1〜1mmであるものが好ましい。
The HMWPE powder used in the present invention preferably has an average particle diameter of 1 to 1 mm.

得られるHMWPEの多孔質シートの表記が平滑になる
ためには、平均粒子径が0.001〜0.1mmである
ものが特に好ましい。
In order to obtain a smooth HMWPE porous sheet, it is particularly preferable that the average particle diameter is 0.001 to 0.1 mm.

本発明において用いられるPPS粉末は平均粒子径が0
. OO1〜1mmであるものが好ましい。PPS粉末
とHMWPE粉末を混合し焼結させて得られる多孔質シ
ートの表面が平滑になるためには、PPSの平均粒子径
もo、oot〜0.1mmであるものが特に好ましい。
The PPS powder used in the present invention has an average particle size of 0.
.. Preferably, OO is 1 to 1 mm. In order to have a smooth surface of the porous sheet obtained by mixing and sintering PPS powder and HMWPE powder, it is particularly preferable that the average particle diameter of PPS is from o,oot to 0.1 mm.

PPS粉末とHMWPE粉末との混合は、ヘンンエルミ
キサー、■ブレンダー等で行えばよく、焼結させた多孔
質シートの成形は、HMWPEの多孔質シートの成形と
同様な方法で行えばよい。
The PPS powder and the HMWPE powder may be mixed using a Hennel mixer, a blender, etc., and the sintered porous sheet may be formed in the same manner as the HMWPE porous sheet is formed.

PPSの割合を10〜90重量%、HMWPEの割合を
90〜10重量%とした理由は、PPSが10重量%未
満では難燃性の改良効果がほとんどなく、PPSが90
重量%を超えるとPPS自身がもろいため加熱加圧成形
し基板に成形しても誘電体にひびが入ったり割れたりし
て基板としての性能を発揮できないためである。
The reason why the proportion of PPS is 10 to 90% by weight and the proportion of HMWPE is 90 to 10% by weight is that if PPS is less than 10% by weight, there is almost no flame retardant improvement effect;
This is because if it exceeds % by weight, the PPS itself is brittle, and even if it is heated and pressed to form a substrate, the dielectric will crack or break and the substrate will not be able to exhibit its performance.

誘電体シートに積層する金属箔、金属板の例としては、
金、銀、銅、アルミニウム、ニッケル、ステンレス、鉄
、鉄合金、銅合金などが挙げられる。好ましくはw4箔
、アルミニウム箔、アルミニウム板、鉄合金板である。
Examples of metal foils and metal plates laminated on dielectric sheets include:
Examples include gold, silver, copper, aluminum, nickel, stainless steel, iron, iron alloys, copper alloys, etc. Preferred are W4 foil, aluminum foil, aluminum plate, and iron alloy plate.

厚み10〜508mのものが好適に用いられる。Thicknesses of 10 to 508 m are preferably used.

接着層は、PPS、HMWPE、金属箔又は金属板及び
樹脂含浸補強層等の高周波用基板中での眉間の接着を強
固にするためのものである。接着層の構造中に極性基を
多数含むと誘電体のε、やtanδが高くなることがあ
る。そのような場合、接着層の厚みは必要最小限にする
ことが望ましい。
The adhesive layer is for strengthening glabella adhesion in a high frequency substrate such as PPS, HMWPE, metal foil or metal plate, and resin-impregnated reinforcing layer. If the structure of the adhesive layer contains a large number of polar groups, the ε and tan δ of the dielectric may become high. In such cases, it is desirable to minimize the thickness of the adhesive layer.

接着層としては接着剤、接着フィルム等が用いられるが
、このような接着剤としては、例えばアクリル樹脂、ポ
リエステル樹脂、ポリウレタン樹脂、フェノール樹脂、
エポキシ樹脂、クロロプレンゴム、ニトリルゴム、エポ
キシフェノール、フチラールフェノール、ニトリルフェ
ノール等が挙げられる。また、接着フィルムとしては、
(1)エチレン−酢酸ビニル共重合体、エチレン−アク
リル酸エステル共重合体、エチレン−アクリル酸共重合
体、エチレン−マレイン酸共重合体、エチレン−無水マ
レイン酸グラフト化共重合体、エチレン−メタクリル酸
グリシジル−酢酸ビニル三元共重合体、アイオノマー重
合体などのように、ポリオレフィンにα、β−不飽和カ
ルボン酸、そのエステル、その無水物若しくはその金属
塩又は飽和有機カルボン酸を通常の共重合若しくはグラ
フト共重合させて得た共重合体、(n)ポリオレフィン
と前記(1)の共重合体の混合物、(III)ポリオレ
フィンに粘着付与剤等を配合した接着性配合物のフィル
ムを挙げることができる。接着層はその配合中に架橋し
得る基を有し、電離性放射線、有機過酸化物、シラン化
合物等により架橋するものが好ましい。
Adhesives, adhesive films, etc. are used as the adhesive layer, and examples of such adhesives include acrylic resins, polyester resins, polyurethane resins, phenolic resins,
Examples include epoxy resin, chloroprene rubber, nitrile rubber, epoxy phenol, phthyral phenol, nitrile phenol, and the like. In addition, as an adhesive film,
(1) Ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, ethylene-acrylic acid copolymer, ethylene-maleic acid copolymer, ethylene-maleic anhydride grafted copolymer, ethylene-methacrylic Conventional copolymerization of α,β-unsaturated carboxylic acid, its ester, its anhydride, or its metal salt, or saturated organic carboxylic acid to polyolefin, such as glycidyl acid-vinyl acetate terpolymer, ionomer polymer, etc. Alternatively, examples include a copolymer obtained by graft copolymerization, (n) a mixture of a polyolefin and the copolymer of the above (1), and (III) a film of an adhesive compound containing a polyolefin and a tackifier, etc. can. The adhesive layer preferably has a crosslinkable group in its formulation and is crosslinked by ionizing radiation, an organic peroxide, a silane compound, or the like.

樹脂含浸補強層としては、基板に通常用いられているガ
ラスクロス、ガラス不織布、プラスチック繊維の織布、
不織布等の補強剤に樹脂フェスを含浸乾燥させたものが
用いられる。樹脂としては、ポリエステル樹脂、エポキ
シ樹脂、フェノール樹脂、メラミン樹脂、ジアリルフタ
レート樹脂、ポリイミド樹脂、ビスマレイミド・トリア
ジン樹脂、PPO樹脂若しくはPPS樹脂と架橋性ポリ
マー又は架橋性モノマーとの樹脂組成物を挙げることが
でき、好ましくはε、やtanδが比較的低いポリエス
テル樹脂、エポキシ樹脂、ポリイミド樹脂が用いられる
As the resin-impregnated reinforcing layer, glass cloth, glass nonwoven fabric, plastic fiber woven fabric, etc., which are usually used for substrates, can be used.
Non-woven fabric or other reinforcing agent impregnated with resin face and dried is used. Examples of resins include resin compositions of polyester resins, epoxy resins, phenol resins, melamine resins, diallyl phthalate resins, polyimide resins, bismaleimide triazine resins, PPO resins, or PPS resins and crosslinkable polymers or crosslinkable monomers. Preferably, polyester resins, epoxy resins, and polyimide resins having relatively low ε and tan δ are used.

本発明における加熱加圧成形の加熱加圧条件は、加熱温
度150〜330°C1印加圧力10〜100kgf/
cm (1,0〜9.8MPa) 、印加時間2〜10
分間とすることが好ましい。また加熱加圧はステンレス
製の鏡板等で挾み、均一な条件で加熱加圧することが好
ましい。この際HMWPEの多孔質シート及びPPSと
HMWPEを混合して得た多孔質シートのみかけ密度が
HMWPEやPPSとHMWPE混合物の真の密度の8
0%以上になるよう多孔質を消失させることが望ましい
、これは多孔質シートのみかけ密度が真の密度の80%
未満では、シートのε、やtanδは低く好ましいがシ
ート中に気泡が残り、エツチング、スルーホールメツキ
等の処理において液のシート中へのしみ込みが生し基板
特性に悪影響を及ぼすためである。
The heating and pressing conditions for heating and pressing in the present invention are heating temperature: 150 to 330°C, applied pressure: 10 to 100 kgf/
cm (1.0~9.8MPa), application time 2~10
It is preferable to set it as minutes. In addition, it is preferable to heat and press under uniform conditions by sandwiching between stainless steel mirror plates or the like. At this time, the apparent density of the porous sheet of HMWPE and the porous sheet obtained by mixing PPS and HMWPE is 8% of the true density of HMWPE or the mixture of PPS and HMWPE.
It is desirable to eliminate porosity so that the apparent density of the porous sheet is 80% of the true density.
If it is less than 1, the ε and tan δ of the sheet are preferably low, but air bubbles remain in the sheet, and liquid may seep into the sheet during etching, through-hole plating, etc., which will adversely affect the substrate properties.

〔作用〕[Effect]

ε、やtanδが小さく誘電特性に優れたポリエチレン
の耐熱性改良には、基本的にポリエチレンを架橋し、樹
脂の流動性を低下させる手法がとられている。
In order to improve the heat resistance of polyethylene, which has small ε and tan δ and excellent dielectric properties, a method is basically used to crosslink the polyethylene and reduce the fluidity of the resin.

耐熱性改良の目的のためにはもともと樹脂の流動性が低
いHMWPEを使用すればよいが、HMWPEはポリテ
トラフルオロエチレンと同様加熱溶融時の粘度が高いた
め、通常の押出成形法や射出成形法が適合しにくいとい
う欠点がある。
For the purpose of improving heat resistance, it is sufficient to use HMWPE, which has low resin fluidity, but like polytetrafluoroethylene, HMWPE has a high viscosity when heated and melted, so it is difficult to use ordinary extrusion molding or injection molding. The disadvantage is that it is difficult to adapt.

HMWPEは、一般の2〜2o万の分子量をもつ一般の
ポリエチレンに比べその低流動性のため耐熱性は向上す
るが、成形加工性に劣ったり難燃性に欠点があった。そ
の成形加工性を改良するためHMWPEの多孔質シート
を用い加熱加圧してHMWPEのシートとすることがで
きる。このときHMWPEの多孔質シートは、厚み方向
にのみ圧縮され粒子同士が融着して多孔質が消失したH
MWPEのシートとなる。このことはプレス温度330
°C1印加圧力40kgf/ail (3,9MPa)
の高温高圧の条件下で10分間HMWPEの多孔質シー
ト(厚さ約1m+)をプレス成形しても厚み方向に多孔
質が消失した分薄くなるので横(面)方向への流動は観
察されないことかられかる。
HMWPE has improved heat resistance due to its low fluidity compared to general polyethylene having a molecular weight of 20,000 to 20,000, but has poor moldability and flame retardancy. In order to improve its moldability, a porous sheet of HMWPE can be heated and pressed to form an HMWPE sheet. At this time, the HMWPE porous sheet was compressed only in the thickness direction, and the particles fused together and the porosity disappeared.
It becomes a sheet of MWPE. This means that the press temperature is 330
°C1 applied pressure 40kgf/ail (3.9MPa)
Even if a porous sheet of HMWPE (approximately 1 m+ in thickness) is press-formed for 10 minutes under the high temperature and high pressure conditions of Kararekaru.

一方PPSは、それ自身耐熱性と難燃性を有するが、ε
1やtanδはHMWPEより高く樹脂単独では非常に
硬くもろい樹脂である。しかも融点より15°C高い3
00°C付近では非常に粘度が低く流動性の高い樹脂で
ある。
On the other hand, PPS itself has heat resistance and flame retardancy, but ε
1 and tan δ are higher than those of HMWPE, and the resin alone is extremely hard and brittle. Moreover, it is 15°C higher than the melting point3
It is a resin with very low viscosity and high fluidity at around 00°C.

本発明のようにPPSフィルムとHMWPEの多孔質シ
ートを積層し、これに金属箔又は金属板を積層し加熱加
圧成形することにより、加熱され粘度が低くなったPP
Sが加圧によりHMWPEの多孔質シート中の空隙を埋
めるよう流動しつつ、孔中の空隙がつぶされPPSとH
MWPEの混合した層を有したシートが形成される。こ
れにより難燃性に劣るHMWPEが難燃性と耐熱性に優
れたPPSと複合化されることにより難燃性が改良され
更に耐熱性が著しく向上される。そしてPPSのもろさ
がHMWPEと複合化されることにより改良されしかも
PPSとHMWPEの接着性はお互いの樹脂のアンカリ
ング効果により顕著に良好となる。
As in the present invention, a PPS film and a porous sheet of HMWPE are laminated, a metal foil or a metal plate is laminated thereon, and the PP is heated and its viscosity is lowered by heating and pressure forming.
As S flows to fill the voids in the HMWPE porous sheet under pressure, the voids in the pores are crushed and PPS and H
A sheet is formed with a mixed layer of MWPE. As a result, HMWPE, which has poor flame retardancy, is combined with PPS, which has excellent flame retardancy and heat resistance, thereby improving flame retardancy and significantly improving heat resistance. The brittleness of PPS is improved by combining it with HMWPE, and the adhesion between PPS and HMWPE is significantly improved due to the anchoring effect of the two resins.

PPS粉末とHMWPE粉末を混合し多孔質になるよう
に焼結させ成形した誘電体シートを加熱加圧により成形
したシートは、PPSフィルムを使用しなくてもよく上
記と同様な効果が得られる。
A sheet formed by heating and pressing a dielectric sheet formed by mixing PPS powder and HMWPE powder and sintering the mixture to become porous can obtain the same effect as described above without using a PPS film.

得られた基板の誘電体のε、やtanδはHM W P
EとPPSの混合比率に応じてHMWPEとPPSの間
の値となる。PPSを誘電体とした場合は、そのもろさ
を改良するためガラス繊維若しくは無機充填剤を添加し
ていたが、充填剤の誘電特性は一般的にPPS単独のε
、やtanδよりも高く、結果的にPPS単独よりもε
、やtanδの値が高くなる。PPSとHMWPEを複
合化することシこより、そのε、やtanδはPPSに
充填剤を添加する必要がなく更にHMWPEの低εr 
、m tanδのため著しく低い値とすることができる
The dielectric ε and tan δ of the obtained substrate are HM W P
The value will be between HMWPE and PPS depending on the mixing ratio of E and PPS. When PPS is used as a dielectric, glass fiber or inorganic filler is added to improve its brittleness, but the dielectric properties of the filler are generally the same as those of PPS alone.
, and tan δ, and as a result, ε is higher than PPS alone.
, and the value of tan δ becomes high. By combining PPS and HMWPE, its ε and tan δ do not need to add fillers to PPS, and HMWPE has a low εr.
, m tan δ can be set to a significantly lower value.

〔実施例〕〔Example〕

実施例1 第5図に示す装置を用い、厚さ50umのポリエステル
フィルム(SLタイプ、帝人株式会社)基材7をステン
レススチールベルト8に沿わし、牛鼻型コーター9でH
MWPE粉末10(ミペロンXM220、平均粒子径0
.03閣、融点136°C1嵩密度0.4g/c+j、
ポリエチレンの真の密度o、94g/C4、三井石油化
学工業株式会社商品名)を7の基材上に0.47mの厚
みに賦形し11の加熱炉(160°C)で加熱焼結を行
いみかけ密度0.5g/cdのHMWPEの多孔質シー
トを得た。
Example 1 Using the apparatus shown in FIG. 5, a polyester film (SL type, Teijin Ltd.) base material 7 with a thickness of 50 um was placed along a stainless steel belt 8, and coated with a cow-nose coater 9.
MWPE powder 10 (Miperon XM220, average particle size 0
.. 03 Kaku, melting point 136°C1 bulk density 0.4g/c+j,
The true density of polyethylene (O, 94 g/C4, trade name of Mitsui Petrochemical Industries, Ltd.) was formed to a thickness of 0.47 m on the base material No. 7, and heated and sintered in a heating furnace (160°C) No. 11. A porous sheet of HMWPE with an apparent density of 0.5 g/cd was obtained.

第2図に示した構成になるようこの多孔質シート2枚を
用い、その間に厚さ50μmのPPSフィルム、トレリ
ナ3030 (東し株式会社商品名)を6枚重ねて挾ん
だ。そして多孔質シートの外側に、接着層として10M
r a dの電子線を照射した50μmのアトマーNE
O60(三井石油化学工業株式会社商品名、直鎖低密度
ポリエチレングラフト化物)のフィルム(熱キシレン不
溶分、70重量%)を設け、この接着層を介して片面に
厚さ35μmの電解銅箔を積層し、これらを厚さ2鵬の
ステンレス鏡板に挟み、プレスにより300°C120
kg/cTA(2,OMPa) 、5分間加熱加圧して
誘電体シート厚み0.85mmの高周波用基板を得た。
Two of these porous sheets were used to obtain the configuration shown in FIG. 2, and six 50 μm thick PPS films, Torelina 3030 (trade name, Toshi Co., Ltd.), were stacked and sandwiched between them. Then, on the outside of the porous sheet, 10M was applied as an adhesive layer.
50 μm attomer NE irradiated with r a d electron beam
A film of O60 (trade name of Mitsui Petrochemical Industries, Ltd., linear low-density polyethylene grafted product) (thermal xylene insoluble content, 70% by weight) was provided, and an electrolytic copper foil with a thickness of 35 μm was applied to one side via this adhesive layer. Laminated, sandwiched between 2mm thick stainless steel mirror plates, and heated at 300°C120 using a press.
kg/cTA (2, OMPa) for 5 minutes under heat and pressure to obtain a high frequency substrate with a dielectric sheet thickness of 0.85 mm.

この組成はPP347重量%、HMWPE53重量%で
ある。これと同様にして多孔質シートの枚数やPPSフ
ィルムの枚数を変えて得られた高周波用基板の誘電特性
(測定周波数12GH2)を測定して第6図に示した。
The composition is 347% by weight of PP and 53% by weight of HMWPE. In the same manner, the dielectric properties (measurement frequency: 12GH2) of high frequency substrates obtained by changing the number of porous sheets and the number of PPS films were measured and are shown in FIG.

またUL94HB規格の燃焼試験を行い第7図にPPS
とhMWPEの組成比による燃焼速度を示した。試験片
の厚さが3.05mm未満であるので燃焼速度63.5
 aon/分以下でtJL94HBに適合する。
We also conducted a combustion test according to the UL94HB standard, and the PPS shown in Figure 7
The combustion rate according to the composition ratio of hMWPE is shown. Since the thickness of the test piece is less than 3.05 mm, the burning rate is 63.5
Compatible with tJL94HB at less than aon/min.

実施例2 PPS粉末としてトープレフPPS  T−1(株式会
社トーブレン商品名、平均粒子径50μm、嵩密度0.
27〜0.30 g/cd、真の密度1.36 g/C
d) 、HMWPE粉末としてミペロンXM−220を
用い、これらをPPSとHMWPEがそれぞれ50重量
%になるよう配合しヘンシェルミキサーを用いて混合し
た。そしてフィルム基材を用いず直接にステンレススチ
ールベルト上で焼結させること以外第5図と同じ装置で
焼結させ、みかけ密度0.7g/c+aで厚さ1.15
mmの焼結シートを得た。この焼結シートを厚さ211
IIlのステンレス鏡板に厚さ0.7 tmのスペーサ
ーとともに挟み300°C,20kg/cdl (2,
0MPa) 、5分間加熱加圧して厚さ0.7閣、密度
1.15g/cnのPPSとHMWPEの複合シートを
得た。このシートの両側に樹脂含浸補強層として厚さ6
0μmのガラスクロスにエポキシ樹脂を含浸したプリプ
レグと銅箔を積層し170°C120kg/ctl (
2,0MPa)、90分間プレスし高周波用基板を得た
。これと同様にしてPPSとHMWPEの混合比を変え
て得られた複合シート(エポキシプリプレグと銅箔の積
層なし)の誘電特性とUL94HB規格の燃焼試験を行
い第6図と第7図に示した。
Example 2 PPS powder was Toplef PPS T-1 (trade name of Toblen Co., Ltd., average particle diameter 50 μm, bulk density 0.
27-0.30 g/cd, true density 1.36 g/c
d) Miperon XM-220 was used as HMWPE powder, and these were blended so that PPS and HMWPE were each 50% by weight and mixed using a Henschel mixer. Then, it was sintered using the same equipment as in Figure 5 except that it was sintered directly on a stainless steel belt without using a film base material, and the apparent density was 0.7 g/c + a and the thickness was 1.15.
A sintered sheet of mm was obtained. This sintered sheet has a thickness of 211 mm.
Sandwiched between IIl stainless steel mirror plates with a 0.7 tm thick spacer at 300°C, 20kg/cdl (2,
0 MPa) and was heated and pressed for 5 minutes to obtain a composite sheet of PPS and HMWPE having a thickness of 0.7 mm and a density of 1.15 g/cm. A resin-impregnated reinforcing layer on both sides of this sheet with a thickness of 6
Prepreg impregnated with epoxy resin and copper foil are laminated on 0μm glass cloth at 170°C at 120kg/ctl (
2.0 MPa) for 90 minutes to obtain a high frequency substrate. Similarly, dielectric properties and UL94HB standard combustion tests were conducted on composite sheets obtained by changing the mixing ratio of PPS and HMWPE (without lamination of epoxy prepreg and copper foil), and the results are shown in Figures 6 and 7. .

比較例1 実施例1と同様にして得たHMWPEの多孔質シートを
厚さ2mのステンレス鏡板に挟みプレスにより180°
C120kg/all (2,OMPa)、5分間加熱
加圧し密度0.93g/cfll、厚み0.47mmの
HMWPEシートを得た。このシート2枚を用い実施例
1と同じように厚さ50μmのPPSフィルムを6枚重
ねて挟み、更にHMWPEシートの外側に接着層として
電子線照射したアトマーNEO60と35μmの銅箔を
設け、加熱加圧して誘電体厚み0.85閣の高周波用基
板を得た。得られた基板は実施例1で得られた基板と異
なりPPSシート層とHMWPEシート層の界面から容
易に剥がすことができた。銅箔と接着層、接着層とHM
WPEシート層との接着は良好であった。
Comparative Example 1 A porous sheet of HMWPE obtained in the same manner as in Example 1 was sandwiched between 2 m thick stainless steel mirror plates and pressed at 180°.
A HMWPE sheet having a density of 0.93 g/cfll and a thickness of 0.47 mm was obtained by heating and pressing C120 kg/all (2, OMPa) for 5 minutes. Using two of these sheets, six 50 μm thick PPS films were stacked and sandwiched in the same way as in Example 1, and furthermore, Atmer NEO 60 irradiated with electron beam and 35 μm copper foil were provided as an adhesive layer on the outside of the HMWPE sheet, and heated. Pressure was applied to obtain a high frequency substrate with a dielectric thickness of 0.85 mm. Unlike the substrate obtained in Example 1, the obtained substrate could be easily peeled off from the interface between the PPS sheet layer and the HMWPE sheet layer. Copper foil and adhesive layer, adhesive layer and HM
Adhesion to the WPE sheet layer was good.

比較例2 PPS粉末(トープレンPPS  T−1)を用い、こ
れを厚さ2鵬のステンレス鏡板上においた厚さ0.7閣
のスペーサー中に投入し、これらの上にステンレス鏡板
を乗せ、300°C120kg/ctA(2,OMPa
)、5分間プレスして厚さ0.7■のPPSシートを作
製しようとした。しかし冷却後ステンレス鏡板を除いた
とき既にPPSは細かく割れており、PPS単独のシー
トは得ることができなかった。同様にしてPPSとHM
WPEの組成比をそれぞれ90重量%と10重量%とす
ることにより得られた複合化シートでは割れは発生しな
かった。
Comparative Example 2 Using PPS powder (Toprene PPS T-1), it was put into a 0.7 mm thick spacer placed on a 2 mm thick stainless steel head plate, and the stainless steel head plate was placed on top of the 300 mm thick spacer. °C120kg/ctA (2,OMPa
), an attempt was made to produce a PPS sheet with a thickness of 0.7 cm by pressing for 5 minutes. However, when the stainless steel head plate was removed after cooling, the PPS had already broken into small pieces, and a sheet made of PPS alone could not be obtained. Similarly, PPS and HM
No cracking occurred in the composite sheets obtained by setting the composition ratio of WPE to 90% by weight and 10% by weight, respectively.

以上実施例1.2及び比較例1.2で得られた高周波用
基板を比較して第1表に示した。
Table 1 shows a comparison of the high frequency substrates obtained in Example 1.2 and Comparative Example 1.2.

本発明によると第7図に示したようにPPSとHMWP
Eの組成比をPPS 10重量%以上にすることにより
HMWPE単独での難燃性の欠点を改良することができ
る。また比較例2で示したようにPPS単独でのもろさ
をHMWPEIO重量%以上とすることで改良すること
ができる。そしてHMWPEの多孔質シートとPPSフ
ィルムを用いることにより、HMWPEの加熱溶融時の
粘度が高いことによる成形性の難点が改良され、PPS
単独でのもろさや接着性が改良される。またPPS粉末
とHMWPE粉末を混合し焼結により多孔質シートに成
形した後、加熱加圧により成形する方法でも上記と同様
な効果が得られる。
According to the present invention, as shown in FIG.
By setting the composition ratio of E to 10% by weight or more of PPS, the drawback of flame retardancy of HMWPE alone can be improved. Further, as shown in Comparative Example 2, the brittleness of PPS alone can be improved by increasing the amount by weight of HMWPEIO. By using a porous sheet of HMWPE and a PPS film, the difficulty in moldability due to the high viscosity of HMWPE when melted by heating has been improved, and PPS
Independent brittleness and adhesion are improved. The same effect as described above can also be obtained by mixing PPS powder and HMWPE powder, forming a porous sheet by sintering, and then forming the sheet by heating and pressing.

〔発明の効果〕〔Effect of the invention〕

本発明の高周波用基板はε、やtanδが低く、耐熱性
及び難燃性に優れている。また、本発明の高周波基板の
製造方法は成形性に優れ容易に本発明の高周波用基板を
製造することができる。
The high frequency substrate of the present invention has low ε and tan δ, and has excellent heat resistance and flame retardancy. Further, the method for manufacturing a high frequency substrate of the present invention has excellent moldability and can easily manufacture the high frequency substrate of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図は、本発明の高周波基板の構成例を示
す断面図、第5図は、多孔質シート連続成形装置の説明
図、第6図はポリフェニレンサルファイド(PPS)と
超高分子量ポリエチレン(HMWPE)の組成比による
誘電特性(比誘電率ε7、誘電正接tanδ)を示すグ
ラフ、第7図はポリフェニレンサルファイド(PPS)
と超高分子量ポリエチレン(HMWPE)の組成比によ
るUL94HB規格による燃焼速度を示すグラフである
。 符号の説明 1 ポリフェニレンサルファイド(PPS)フィルム 2 超高分子量ポリエチレン(HMWPE)多孔質シー
ト 3 金属箔      4 接着層 5 ポリフェニレンサルファイド(PPS)と超高分子
量ポリエチレン(HMWPE)の混合多孔質シート 樹脂含浸補強層  7 基材 ステンレススチールヘルド プラスチック粉末 10  手鼻型コーター加熱炉 づゴ゛・−ミ ーー;倉 第2図 第4図 第5図 6 ↑ぞ4恥を号2(ヒナ中ジ4し−−PP”/HMW
PE (WL%) 第6図 第7 図
Figures 1 to 4 are cross-sectional views showing examples of the structure of the high-frequency substrate of the present invention, Figure 5 is an explanatory diagram of a continuous porous sheet forming device, and Figure 6 is a diagram showing polyphenylene sulfide (PPS) and ultra-high molecular weight A graph showing the dielectric properties (relative dielectric constant ε7, dielectric loss tangent tan δ) depending on the composition ratio of polyethylene (HMWPE). Figure 7 shows polyphenylene sulfide (PPS).
It is a graph showing the burning rate according to the UL94HB standard depending on the composition ratio of ultra-high molecular weight polyethylene (HMWPE). Explanation of symbols 1 Polyphenylene sulfide (PPS) film 2 Ultra-high molecular weight polyethylene (HMWPE) porous sheet 3 Metal foil 4 Adhesive layer 5 Mixed porous sheet of polyphenylene sulfide (PPS) and ultra-high molecular weight polyethylene (HMWPE) resin-impregnated reinforcing layer 7 Base material Stainless Steel Held Plastic Powder 10 Hand-nose type coater heating furnace... /HMW
PE (WL%) Figure 6 Figure 7

Claims (5)

【特許請求の範囲】[Claims] 1.ポリフェニレンサルファイド10〜90重量%及び
超高分子量ポリエチレン90〜10重量%からなる誘電
体シートの両面又は片面に金属箔又は金属板を積層した
ことを特徴とする高周波用基板。
1. A high frequency substrate comprising a dielectric sheet made of 10 to 90% by weight of polyphenylene sulfide and 90 to 10% by weight of ultra-high molecular weight polyethylene, with metal foil or a metal plate laminated on both or one side of the dielectric sheet.
2.請求項1記載の誘電体シートの両面又は片面に接着
層又は樹脂含浸補強層を介して金属箔又は金属板を積層
成形してなることを特徴とする高周波用基板。
2. A high frequency substrate comprising a metal foil or a metal plate laminated on both or one side of the dielectric sheet according to claim 1 with an adhesive layer or a resin-impregnated reinforcing layer interposed therebetween.
3.ポリフェニレンサルファイドフイルムと超高分子量
ポリエチレンの多孔質シートとをポリフェニレンサルフ
ァイドが10〜90重量%、超高分子量ポリエチレンが
90〜10重量%になるように積層した誘電体シートの
両面又は片面に金属箔又は金属板を積層し、加熱加圧成
形することを特徴とする高周波用基板の製造方法。
3. A dielectric sheet is made by laminating a polyphenylene sulfide film and a porous sheet of ultra-high molecular weight polyethylene so that the polyphenylene sulfide content is 10 to 90% by weight and the ultra-high molecular weight polyethylene content is 90 to 10% by weight. Metal foil or A method for manufacturing a high frequency substrate, which is characterized by laminating metal plates and forming them under heat and pressure.
4.ポリフェニレンサルファイド粉末10〜90重量%
と超高分子量ポリエチレン粉末90〜10重量%とを混
合し、多孔質になるように焼結させ成形した誘電体シー
トの両面又は片面に金属箔又は金属板を積層し、加熱加
圧成形することを特徴とする高周波用基板の製造方法。
4. Polyphenylene sulfide powder 10-90% by weight
and 90 to 10% by weight of ultra-high molecular weight polyethylene powder, sintered and formed into a porous dielectric sheet, laminated with metal foil or metal plate on both sides or one side, and heated and press-molded. A method for manufacturing a high frequency substrate, characterized by:
5.請求項3又は4記載の誘電体シートの両面又は片面
に接着層又は樹脂含浸補強層を介して金属箔又は金属板
を積層し、加熱加圧成形することを特徴とする高周波用
基板の製造方法。
5. A method for producing a high-frequency substrate, comprising laminating metal foil or a metal plate on both sides or one side of the dielectric sheet according to claim 3 or 4 via an adhesive layer or a resin-impregnated reinforcing layer, and then heating and press-molding the same. .
JP15338590A 1990-06-12 1990-06-12 Manufacture method of high frequency substrate Pending JPH0444384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15338590A JPH0444384A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15338590A JPH0444384A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Publications (1)

Publication Number Publication Date
JPH0444384A true JPH0444384A (en) 1992-02-14

Family

ID=15561326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15338590A Pending JPH0444384A (en) 1990-06-12 1990-06-12 Manufacture method of high frequency substrate

Country Status (1)

Country Link
JP (1) JPH0444384A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007387A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Porous molded article and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007387A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Porous molded article and method for producing the same

Similar Documents

Publication Publication Date Title
KR102628572B1 (en) Method for producing fluororesin films and laminates, and heat press laminates
KR101575944B1 (en) Composite material, high-frequency circuit baseboard made therefrom and production method thereof
KR102097222B1 (en) Resin composition, metal laminate and printed circuit board using the same, and method for manufacturing the metal laminate
TWI826452B (en) Method for manufacturing resin-coated metal foil, resin-coated metal foil, laminate and printed circuit board
WO2010038772A1 (en) Rf tag and method for producing same
CN108141967A (en) The manufacturing method of wiring substrate
CN112109391B (en) Metal foil laminate and method for producing the same
TW201538532A (en) Crosslinked fluoropolymer circuit materials, circuit laminates, and methods of manufacture thereof
KR20210018190A (en) Dispersion, method for manufacturing metal foil with resin, and method for manufacturing printed board
JPWO2019230568A1 (en) Manufacturing method of metal leaf with resin and metal leaf with resin
CN112703107B (en) Laminate, printed board, and method for producing same
JPS63159443A (en) Laminate
JPH0444384A (en) Manufacture method of high frequency substrate
JPH05299796A (en) Multi-layer printed wiring board adhesive sheet and metal clad laminated board using the sheet
CN113580702B (en) Liquid crystal polymer film and preparation method and application thereof
JPH04188691A (en) Manufacture of high frequency board
JPS63315228A (en) Manufacture of polyolefin metallic laminated sheet
EP4352138A1 (en) Composite films for mobile electronic device components
CN117500866A (en) Composite film for mobile electronic device components
KR20150037527A (en) Preparation method of flexible metal laminate
JPH0818178A (en) Production of high frequency circuit board
CN118325261A (en) Composite material
JPH03109792A (en) Manufacture of board for high frequency
JPH0521950A (en) Manufacture of board for high-frequency circuit
JPS60251276A (en) Formation of metallic layer on resin substrate