JPH044376B2 - - Google Patents

Info

Publication number
JPH044376B2
JPH044376B2 JP2591184A JP2591184A JPH044376B2 JP H044376 B2 JPH044376 B2 JP H044376B2 JP 2591184 A JP2591184 A JP 2591184A JP 2591184 A JP2591184 A JP 2591184A JP H044376 B2 JPH044376 B2 JP H044376B2
Authority
JP
Japan
Prior art keywords
heated
output
shift register
sensor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2591184A
Other languages
Japanese (ja)
Other versions
JPS60169522A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2591184A priority Critical patent/JPS60169522A/en
Publication of JPS60169522A publication Critical patent/JPS60169522A/en
Publication of JPH044376B2 publication Critical patent/JPH044376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 この発明は、長い被加熱物を連続的に加熱して
いる加熱部の位置と、加熱さされた温度を測定す
るセンサの位置がずれて配置されている連続的加
熱装置の制御装置に関する。
Detailed Description of the Invention The present invention provides a continuous heating system in which the position of a heating part that continuously heats a long object to be heated and the position of a sensor that measures the temperature of the heated object are shifted from each other. The present invention relates to a control device for a device.

たとえば、電縫管のような溶接部分を有する管
は、溶接部分の材質が硬化しているために、焼鈍
処理を行なうことが常温加工を容易ならしめるた
め必要である。
For example, in a pipe having a welded part such as an electric resistance welded pipe, since the material of the welded part is hardened, it is necessary to perform an annealing treatment to facilitate normal temperature processing.

このような焼鈍処理は、第1図に示すように、
高周波電源3より高周波電力が印加されているコ
イル2中に電縫管1を連続的に通過させながら高
周波加熱することによつて行なつている。
Such annealing treatment is performed as shown in Fig. 1.
This is performed by high-frequency heating while continuously passing the electric resistance welded tube 1 through a coil 2 to which high-frequency power is applied from a high-frequency power source 3.

しかし、このような焼鈍処理工程においては、
最適な温度で焼屯しなければ、良い品質のものを
得ることができない。しかも、焼鈍時の温度を測
定しようとしても、高周波コイル2が邪魔になつ
て、高周波コイル2直下における焼鈍温度を測定
することは極めて困難であり、高周波コイル2の
出口付近にセンサ14を設けて、出口における温
度しか測定することができない。
However, in such an annealing process,
Good quality cannot be obtained unless it is baked at the optimum temperature. Moreover, even if one tries to measure the temperature during annealing, the high-frequency coil 2 gets in the way and it is extremely difficult to measure the annealing temperature directly below the high-frequency coil 2. Therefore, the sensor 14 is installed near the exit of the high-frequency coil 2. , only the temperature at the outlet can be measured.

このように、高周波コイル2の出口にセンサ1
4を設け、このセンサ14の温度出力が一定値を
保つように高周波電源3を制御する自動制御系を
設けても、高周波コイル2直下の加熱部とセンサ
14の温度測定部とが距離だけずれているいるた
めに、この距離Dを進行するのに要する時間tを
周期として、自動制御系がハンチングを起こすと
いう問題があつた。
In this way, the sensor 1 is placed at the outlet of the high frequency coil 2.
4 and an automatic control system that controls the high-frequency power supply 3 so that the temperature output of the sensor 14 remains constant, the heating section directly under the high-frequency coil 2 and the temperature measurement section of the sensor 14 may deviate by the distance. As a result, there was a problem in that the automatic control system caused hunting at intervals of the time t required to travel this distance D.

このようなハンチングを防ぐために、自動制御
系の帰還ループの時定数を大きくすることも考え
られるが、時定数を大きくするとレスポンスが悪
化するので好ましくない。
In order to prevent such hunting, it is possible to increase the time constant of the feedback loop of the automatic control system, but increasing the time constant deteriorates the response, which is not preferable.

そこで、この発明の制御装置は、このような問
題点を解決するために考えられたものであり、次
に、図面に基づいて詳細に説明する。
Therefore, the control device of the present invention was devised to solve such problems, and will be described in detail below with reference to the drawings.

第2図に示すように、電縫管1のように被加熱
物と、高周波電源3およびコイル2よりなる加熱
部と、光学的温度計4のようなセンサを具備した
焼鈍装置に適用した実施例について説明する。
As shown in FIG. 2, this embodiment is applied to an annealing device equipped with an object to be heated such as an electric resistance welded tube 1, a heating section consisting of a high frequency power source 3 and a coil 2, and a sensor such as an optical thermometer 4. Let's discuss an example.

高周波コイル2の出口付近に設けられた光学的
温度計4のアナログ出力Tは、温度設定器6のア
ナログ出力Sとともに比較回路5に導かれてお
り、比較回路5で得た2つのアナログ出力の偏差
S〜Tは、A/D変換器7に導かれてデジタル値
SD〜TDに変換される。さらに、N個のシフトレ
ジスタ8と、このシフトレジスタ8から出力する
Nビツトのデジタル値RDとA/D変換器7のデ
ジタル出力(SD〜TD)とを加減算するデジタル
加減算回路9と、このデジタル加減算回路9で得
たNビツトのデジタル出力(RD±SD〜TD)をN
個のシフトレジスタ8の各入力端子へ印加する回
路11と、デジタル加減算回路9のNビツトのデ
ジタル出力をアナログ出力Pに変換して高周波電
源3の制御入力に導くD/A変換器10とを備え
ている。
The analog output T of the optical thermometer 4 provided near the exit of the high-frequency coil 2 is led to the comparison circuit 5 together with the analog output S of the temperature setting device 6. The deviations S to T are converted into digital values by the A/D converter 7.
Converted to S D ~ T D. Further, N shift registers 8 and a digital addition/subtraction circuit 9 that adds and subtracts the N-bit digital value R D output from the shift registers 8 and the digital output (S D to T D ) of the A/D converter 7 are provided. , the N-bit digital output (R D ±S D ~ T D ) obtained from this digital addition/subtraction circuit 9 is
A circuit 11 that applies voltage to each input terminal of the shift registers 8, and a D/A converter 10 that converts the N-bit digital output of the digital addition/subtraction circuit 9 into an analog output P and leads it to the control input of the high frequency power supply 3. We are prepared.

一方、電縫管1が一定距離だけ進行するごとに
パルス出力を発生し、シフトレジスタ8のシフ
ト・パルス信号源として利用されるパルス発生器
12が設けられている。
On the other hand, a pulse generator 12 is provided which generates a pulse output every time the electric resistance welded tube 1 moves a certain distance and is used as a shift pulse signal source for the shift register 8.

このパルス発生器12のパルス繰返し周波数お
よびシフトレジスタ8のステージ数は、電縫管1
が、高周波コイル2で囲まれた部分Aより光学的
温度計4の視野Bまで距離Dを進行する間にシフ
トレジスタ8の入力端子へ印加されたデジタル値
が、その出力端子までシフトされるように選ばれ
ている。
The pulse repetition frequency of this pulse generator 12 and the number of stages of the shift register 8 are
The digital value applied to the input terminal of the shift register 8 is shifted to its output terminal while traveling a distance D from the part A surrounded by the high-frequency coil 2 to the field of view B of the optical thermometer 4. has been selected.

次に、以上のように構成されたこの発明の制御
装置の動作を説明する。
Next, the operation of the control device of the present invention configured as above will be explained.

運転開始時には、シフトレジスタ8の記憶内容
はすべて零であり、光学的温度計4の視野B内に
ある電縫管1の表面温度は低いので、光学的温度
計4の出力電圧Tは低く、焼鈍温度に設定された
温度設定器6の出力電圧Sと相違しており、比較
回路5で比較して両者の差電圧S〜Tを得る。こ
の差電圧は、A/D変換器7でデジタル値SD
TDに変換され、デジタル加減算回路9において
シフトレジスタ8のデジタル出力RDと加減算さ
れる。
At the start of operation, all the stored contents of the shift register 8 are zero, and the surface temperature of the ERW tube 1 within the field of view B of the optical thermometer 4 is low, so the output voltage T of the optical thermometer 4 is low. This is different from the output voltage S of the temperature setting device 6 which is set to the annealing temperature, and is compared by the comparator circuit 5 to obtain the difference voltage S to T between the two. This differential voltage is converted into a digital value S D ~
It is converted into T D and added to or subtracted from the digital output R D of the shift register 8 in the digital addition/subtraction circuit 9 .

このとき、光学的温度計4を出力電圧Tは、ほ
ほ零であり、シフトレジスタ8のデジタル出力
RDもほぼ零であるから、A/D変換器7の出力
SD〜TDは、ほぼSDであつて、デジタル加減算回
路9においては、何も加減算されることなく、そ
のままD/A変換器10へ導かれ、アナログ出力
(P、このときP=S)に変換されたのち高周波
電源3に印加され、そのアナログ出力に基づいて
高周波電源3の出力を制御し、制御された高周波
出力により電縫管1のコイル2で囲まれた部分A
が加熱される。
At this time, the output voltage T of the optical thermometer 4 is almost zero, and the digital output of the shift register 8
Since R D is also almost zero, the output of A/D converter 7
S D to T D are almost S D , and are guided as they are to the D/A converter 10 without any addition or subtraction in the digital addition/subtraction circuit 9, and are analog output (P, in this case P=S ) is applied to the high frequency power supply 3, and the output of the high frequency power supply 3 is controlled based on the analog output, and the controlled high frequency output is applied to the part A of the ERW pipe 1 surrounded by the coil 2.
is heated.

一方、デジタル加減算回路9のデジタル出力
(RD±SD〜TD)は、シフトレジスタ8の入力端子
へ帰還され、パルス発生器12からのシフト・パ
ルス信号によつて順次にシフトされ、コイル2で
囲まれた位置において加熱された部分Aが距離D
だけ進行して光学的温度計4の視野Bまで到達し
たとき、シフトレジスタ8の出力端子に現れる。
On the other hand, the digital output (R D ±S D ~T D ) of the digital adder/subtractor circuit 9 is fed back to the input terminal of the shift register 8, and is sequentially shifted by the shift pulse signal from the pulse generator 12, and is then input to the coil. The heated part A at the position surrounded by 2 is at a distance D
When it reaches the field of view B of the optical thermometer 4, it appears at the output terminal of the shift register 8.

コイル2で囲まれた位置において加熱された部
分Aが、光学的温度計4の視野Bまで到達する
と、光学的温度計4の出力電圧Tが上昇する。
When the heated portion A in the position surrounded by the coil 2 reaches the field of view B of the optical thermometer 4, the output voltage T of the optical thermometer 4 increases.

この光学的温度計4の出力電圧Tと温度設定器
6の出力電圧Sとの偏差S〜TをA/D変換器7
でデジタル値SD〜TDに変換したのち、シフトレ
ジスタ8の出力RDとともに加減算回路9へ導き、
シフトレジスタ8に記憶されていた加熱時の制御
量RDにA/D変換器7の出力SD〜TDを加減算す
るこによつて制御量PDにSD〜TDなる補正を加え、
この補正された制御量(RD±SD〜TD)をシフト
レジスタ8の入力端子へ帰還するとともに、D/
A変換器10でアナログ値Pに変換したのち高周
波電源3を印加され、この補正されたアナログ量
に基づいて高周波電源3の出力を制御し、制御さ
れたこの高周波出力によりコイル2で囲まれた部
分Aが加熱される。
The deviation S to T between the output voltage T of the optical thermometer 4 and the output voltage S of the temperature setting device 6 is detected by an A/D converter 7.
After converting it into digital values S D ~ T D , it is led to the addition/subtraction circuit 9 along with the output R D of the shift register 8.
By adding or subtracting the output S D to T D of the A/D converter 7 to the heating control amount R D stored in the shift register 8, a correction of S D to T D is added to the control amount P D. ,
This corrected control amount (R D ±S D ~ T D ) is fed back to the input terminal of the shift register 8, and the D/
After converting it into an analog value P with the A converter 10, the high frequency power source 3 is applied, and the output of the high frequency power source 3 is controlled based on this corrected analog amount, and the coil 2 is surrounded by the controlled high frequency output. Part A is heated.

このようにして加熱された部分Aが距離Dだけ
進行して光学温度計4の視野Bに到達するごと
に、加熱時の制御量をシフトレジスタ8の出力端
子へ出力させ、光学的温度計4の視野Bに到達し
たときの温度と設定温度との偏差S〜Tを求め、
偏差が生じたときには、この偏差によつてシフト
レジスタ8の出力を補正した値(RD±SD〜TD
により高周波電源3の出力を制御するのである。
Each time the portion A heated in this way advances by a distance D and reaches the field of view B of the optical thermometer 4, the control amount at the time of heating is outputted to the output terminal of the shift register 8, and the optical thermometer 4 Find the deviation S to T between the temperature when reaching field of view B and the set temperature,
When a deviation occurs, the output of the shift register 8 is corrected according to this deviation (R D ±S D ~ T D )
The output of the high frequency power supply 3 is controlled by this.

電縫管1がコイル2で囲まれた部分Aより光学
的温度計4の視野Bまで進行する期間を1周期と
すれば、シフトレジスタ8によつて各位相ごとの
加熱時の各制御量を順序に1周期づつずらせて出
力させ、光学的温度計4の視野Bにおける温度と
その加熱時の制御量とを対応させて制御を行なう
のである。
If the period during which the ERW tube 1 advances from the part A surrounded by the coil 2 to the field of view B of the optical thermometer 4 is defined as one cycle, each control amount during heating for each phase is controlled by the shift register 8. The output is sequentially shifted one cycle at a time, and control is performed by making the temperature in the field of view B of the optical thermometer 4 correspond to the control amount during heating.

なお、光学的温度計4の視野Bで測定される温
度は、高周波コイル2で囲まれた部分Bの温度よ
りも多少低下するが、この低下分は経験的に得て
予め補正すればよいのである。
Note that the temperature measured in the field of view B of the optical thermometer 4 will be slightly lower than the temperature in the area B surrounded by the high-frequency coil 2, but this decrease can be obtained empirically and corrected in advance. be.

以上で説明した実施例においては、N個のシフ
トレンジスタ8を用いてNビツトのデジタル値を
並列的にシフトさせているが、デジタル信号を直
並列変換する手段を併用することにより単一のシ
フトレジスタを用いてNビツトのデジタル値を直
列的にシフトさせてもよいのである。
In the embodiment described above, N shift range registers 8 are used to shift N-bit digital values in parallel, but by using means for converting digital signals from serial to parallel, a single shift range register 8 is used. A shift register may be used to serially shift the N-bit digital value.

電縫管1の焼鈍を例にあげてこの発明の制御装
置を説明したが、このほかに、綿材、管材、棒材
などの各種の長い材料の連続的加熱のように、加
熱部の位置と温度を測定するセンサの位置がずれ
て配置されている各種の加熱装置に適用すること
により、優れた効果を発揮することができる。
Although the control device of the present invention has been explained by taking an example of annealing the electric resistance welded pipe 1, it may also be applied to the position of the heating part, such as continuous heating of various long materials such as cotton material, pipe material, bar material, etc. Excellent effects can be achieved by applying the present invention to various heating devices in which the sensors for measuring temperature and temperature are disposed at different positions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の連続的加熱装置を示す概略
図、第2図は、この発明の連続的加熱装置の制御
装置の一実施例を示すブロツク図である。 1……被加熱物、2……高周波コイル、3……
高周波電源、4……センサ(光学的温度計)、5
……比較回路、6……設定器、7……A/D変換
器、8……シフトレジスタ、9……加減算回路、
10……D/A変換器、12……パルス発生器。
FIG. 1 is a schematic diagram showing a conventional continuous heating device, and FIG. 2 is a block diagram showing an embodiment of a control device for a continuous heating device according to the present invention. 1... Heated object, 2... High frequency coil, 3...
High frequency power supply, 4...Sensor (optical thermometer), 5
... Comparison circuit, 6 ... Setting device, 7 ... A/D converter, 8 ... Shift register, 9 ... Addition/subtraction circuit,
10...D/A converter, 12...Pulse generator.

Claims (1)

【特許請求の範囲】 1 長い被加熱物を連続的に加熱する加熱部と、
該加熱部より離れた位置にあつて上記被加熱物の
温度を測定するセンサと、該センサの出力に基づ
いて上記加熱部の出力を自動制御する制御手段と
を備えた長い被加熱物を連続的に加熱する連続的
加熱装置において、 上記長い被加熱物が一定距離だけ進行するごと
にパルス出力を発生するパルス発生器と、 上記長い被加熱物を加熱したときの各部分に対
する各制御量が順次に入力され、加熱された各部
分が上記センサに到達するごとに、対応する上記
制御量を順次に出力するように、上記パルス発生
器のパルス出力により上記各制御量がシフトされ
るシフトレジスタと、 上記センサによつて得た温度と設定値との偏差
に基づいて上記シフトレジスタの出力を補正する
補正手段と、 該補正された制御量を上記シフトレジスタの入
力および上記制御手段の入力に導く回路と、 を具備することを特徴とする連続的加熱装置の制
御装置。
[Claims] 1. A heating section that continuously heats a long object to be heated;
A long object to be heated is continuously heated, which is equipped with a sensor that is located at a distance from the heating section and measures the temperature of the object to be heated, and a control means that automatically controls the output of the heating section based on the output of the sensor. In a continuous heating device that heats the long object to be heated, the device includes a pulse generator that generates a pulse output every time the long object to be heated moves a certain distance, and a control amount for each part when heating the long object to be heated. a shift register in which each of the controlled variables is shifted by the pulse output of the pulse generator so that the corresponding controlled variable is sequentially input each time each heated portion reaches the sensor; and a correction means for correcting the output of the shift register based on the deviation between the temperature obtained by the sensor and the set value, and applying the corrected control amount to the input of the shift register and the input of the control means. 1. A control device for a continuous heating device, comprising: a circuit for guiding; and a control device for a continuous heating device.
JP2591184A 1984-02-14 1984-02-14 Control device for continuous working device Granted JPS60169522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2591184A JPS60169522A (en) 1984-02-14 1984-02-14 Control device for continuous working device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2591184A JPS60169522A (en) 1984-02-14 1984-02-14 Control device for continuous working device

Publications (2)

Publication Number Publication Date
JPS60169522A JPS60169522A (en) 1985-09-03
JPH044376B2 true JPH044376B2 (en) 1992-01-28

Family

ID=12178956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2591184A Granted JPS60169522A (en) 1984-02-14 1984-02-14 Control device for continuous working device

Country Status (1)

Country Link
JP (1) JPS60169522A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230936A (en) * 1984-04-28 1985-11-16 Seiichi Okuhara Controlling device for continuous heater
JPH0413812A (en) * 1990-04-28 1992-01-17 Fuji Denshi Kogyo Kk Method and apparatus for quenching and tempering ball screw with high frequency shifting
CN104131148B (en) * 2014-08-15 2016-06-08 苏州热工研究院有限公司 A kind of threeway supervisor's banjo fixing butt jointing local post weld heat treatment method

Also Published As

Publication number Publication date
JPS60169522A (en) 1985-09-03

Similar Documents

Publication Publication Date Title
GB1210432A (en) Improvements in and relating to electronic circuits for temperature control
JPH044376B2 (en)
JPH04231857A (en) Operating method of measuring circuit device for detecting component of combustible gas
JPS6234166Y2 (en)
JPH0441366B2 (en)
JP2519928B2 (en) Method for controlling heat quantity of laser heating device
US4899026A (en) Automatic cooking control system for a microwave oven
KR100186402B1 (en) Circuit and method of sensing and compensating food temperature in a microwave oven
JP3212835B2 (en) Discharge control method and apparatus for optical fiber fusion splicer
US20060102623A1 (en) Microwave oven and control method thereof
JPH0517289B2 (en)
KR950007096B1 (en) Auto cooking device of range
SU666444A1 (en) Temperature-measuring device
JPS63120316A (en) Temperature control method for heating device of traveling conductor
SU854643A1 (en) Method of automatic control of electric heating process
SU771913A1 (en) System for automatic control of electric ore heat-treating furnace
JPS6131949B2 (en)
JPS61258691A (en) Servo motor controller
SU1136032A2 (en) Device for measuring temperature
SU699358A1 (en) Noise thermometer
JPS6210702A (en) Program controller
JPH0537126Y2 (en)
SU998849A2 (en) Thickness gauge
SU1073042A1 (en) Apparatus for automatic regulation of high frequency welding
JPS62266386A (en) Temperature controller for lamp annealing furnace