JP3212835B2 - Discharge control method and apparatus for optical fiber fusion splicer - Google Patents

Discharge control method and apparatus for optical fiber fusion splicer

Info

Publication number
JP3212835B2
JP3212835B2 JP14903795A JP14903795A JP3212835B2 JP 3212835 B2 JP3212835 B2 JP 3212835B2 JP 14903795 A JP14903795 A JP 14903795A JP 14903795 A JP14903795 A JP 14903795A JP 3212835 B2 JP3212835 B2 JP 3212835B2
Authority
JP
Japan
Prior art keywords
discharge
impedance
voltage
optical fiber
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14903795A
Other languages
Japanese (ja)
Other versions
JPH095559A (en
Inventor
秀和 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP14903795A priority Critical patent/JP3212835B2/en
Publication of JPH095559A publication Critical patent/JPH095559A/en
Application granted granted Critical
Publication of JP3212835B2 publication Critical patent/JP3212835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ融着接続機
における放電制御方法と、それに用いる装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge control method in an optical fiber fusion splicer and an apparatus used for the method.

【0002】[0002]

【従来の技術】光ファイバ融着接続機において、光ファ
イバの端面を溶融させる気中放電の発生熱量は、その発
熱抵抗体である空気の状態によって変化する。したがっ
て最適な放電発熱量を得るためには、空気の状態によっ
て放電条件を補正する必要がある。
2. Description of the Related Art In an optical fiber fusion splicer, the amount of heat generated in the aerial discharge for melting the end face of an optical fiber varies depending on the state of air serving as a heating resistor. Therefore, it is necessary to correct the discharge conditions depending on the state of the air in order to obtain the optimal discharge heat generation.

【0003】このため従来は図4のような放電制御装置
が用いられていた。図4において、11は融着接続すべ
き光ファイバ、13は放電電極、15は放電用電源であ
る。この装置は、最適な放電発熱量を得るため、放電用
電源15を次のように制御している。
For this reason, a discharge control device as shown in FIG. 4 has conventionally been used. In FIG. 4, 11 is an optical fiber to be fusion-spliced, 13 is a discharge electrode, and 15 is a power supply for discharge. In this apparatus, the discharge power supply 15 is controlled as follows in order to obtain an optimal discharge heat generation amount.

【0004】まず空気の状態を表す気圧、温度、湿度な
どの各種パラメータをセンサー17a、17b、17c
・・・で検出する。次に相関係数演算器19で、各パラ
メータの変化と放電発熱量の変化との相関係数を求め
る。演算器19には予め実験により求めた条件式が組み
込まれている。次に相関係数と目標値21から演算器2
3で補正値を求め、その補正値を前回の放電条件に加算
器25で加算して、次回の放電発熱量が最適となるよう
に放電用電源15の放電条件を定める。従来はこのよう
にして放電発熱量が最適になるように制御していた。
First, various parameters representing the state of air, such as atmospheric pressure, temperature, and humidity, are measured by sensors 17a, 17b, and 17c.
... Next, a correlation coefficient calculator 19 calculates a correlation coefficient between the change in each parameter and the change in the amount of heat generated by discharge. The arithmetic unit 19 incorporates conditional expressions obtained in advance by experiments. Next, the computing unit 2 is calculated from the correlation coefficient and the target value 21.
In step 3, a correction value is obtained, and the correction value is added to the previous discharge condition by the adder 25, and the discharge condition of the discharge power supply 15 is determined so that the next discharge heat generation amount is optimized. Conventionally, control has been performed in such a manner as to optimize the amount of heat generated by discharge.

【0005】[0005]

【発明が解決しようとする課題】従来の放電制御は、空
気の状態を検出し、それに基づいて放電条件を補正する
という手段をとっている。このため空気の状態を検出す
るのに多数のセンサーが必要となる。また放電発熱量
は、電極の劣化や電極への異物の付着などによっても変
化するため、空気の状態を検出するだけでは、空気以外
の要因による放電発熱量の変化には対応できない。
The conventional discharge control employs means for detecting the state of air and correcting the discharge condition based on the detected state. Therefore, a large number of sensors are required to detect the air condition. In addition, since the amount of heat generated by discharge also changes due to deterioration of the electrodes and the attachment of foreign matter to the electrodes, it is not possible to cope with a change in the amount of heat generated by discharge only due to factors other than air.

【0006】本発明の目的は、多数のセンサーを必要と
せず、しかも放電に影響する全てのパラメータの変化に
対応して適正に放電発熱量を制御できる融着接続機の放
電制御方法および装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method and apparatus for controlling a discharge of a fusion splicer which does not require a large number of sensors and which can appropriately control the amount of generated heat in response to changes in all parameters affecting the discharge. To provide.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
本発明は、放電電極および放電用電源を含む回路の放電
電圧および放電電流を検出し、その検出値から放電電極
間のインピーダンスを算出し、算出したインピーダンス
の変化に応じてその後の放電強度を補正することを特徴
とするものである。
According to the present invention, a discharge voltage and a discharge current of a circuit including a discharge electrode and a discharge power supply are detected, and an impedance between the discharge electrodes is calculated from the detected values. , Wherein the subsequent discharge intensity is corrected according to the calculated change in impedance.

【0008】[0008]

【作用】放電中の電極間のインピーダンスには、空気の
状態、電極の表面状態など全パラメータの影響が集約さ
れているから、このインピーダンスを求め、それにより
目標値を補正して放電用電源を制御すれば、放電に影響
を及ぼす全てのパラメータの変化に対応した適正な放電
制御を行うことが可能となる。
[Function] Since the effects of all parameters such as air condition and electrode surface condition are integrated in the impedance between the electrodes during discharge, this impedance is obtained, and the target value is corrected by using the impedance. If controlled, it becomes possible to perform appropriate discharge control corresponding to changes in all parameters that affect discharge.

【0009】[0009]

【実施例】図1は本発明の一実施例を示す。11は光フ
ァイバ、13は放電電極、15は放電用電源である。こ
の装置は、放電電極13と放電用電源15を含む回路の
放電電圧および放電電流を検出する検出器27を備えて
いる。この検出器27で検出した放電電圧および放電電
流の値をインピーダンス演算器29に入力し、そこで放
電電極間のインピーダンスを算出する。このインピーダ
ンスはその時の空気の状態、放電電極の状態など放電に
影響を与える全てのパラメータの影響を受けたものとな
る。
FIG. 1 shows an embodiment of the present invention. 11 is an optical fiber, 13 is a discharge electrode, and 15 is a power supply for discharge. This device includes a detector 27 that detects a discharge voltage and a discharge current of a circuit including the discharge electrode 13 and the discharge power supply 15. The values of the discharge voltage and the discharge current detected by the detector 27 are input to an impedance calculator 29, where the impedance between the discharge electrodes is calculated. This impedance is affected by all parameters that affect the discharge, such as the state of the air and the state of the discharge electrode at that time.

【0010】次に算出されたインピーダンスと放電強度
の目標値31から演算器33で補正値を求め、その補正
値を前回の放電条件に加算器35で加算して、次回の放
電発熱量が最適となるように放電用電源15の放電条件
を定める。このようにすれば放電に影響する全パラメー
タの変化を取り込んだ適正な放電制御を行うことができ
る。
Next, a correction value is obtained by the calculator 33 from the calculated impedance and the target value 31 of the discharge intensity, and the correction value is added to the previous discharge condition by the adder 35, so that the next discharge heat generation is optimized. The discharge condition of the discharge power supply 15 is determined so that This makes it possible to perform appropriate discharge control taking into account changes in all parameters that affect discharge.

【0011】図2および図3は本発明のさらに具体的な
実施例を示す。この装置は放電回路と放電制御回路とか
ら構成されている。放電中の電極間のインピーダンスを
G、放電回路のインピーダンス(ZG 以外の全てのイ
ンピーダンス)をZS とすると、放電回路は図2の上段
のように表せる。インピーダンスZS は放電回路の固有
値であり、インピーダンスZG は空気の状態や電極の表
面状態などにより変化する値である。放電用電源15は
外部からの制御信号によって放電電圧および放電電流を
変えられるものである。
FIGS. 2 and 3 show a more specific embodiment of the present invention. This device comprises a discharge circuit and a discharge control circuit. Assuming that the impedance between the electrodes during discharge is Z G and the impedance of the discharge circuit (all impedances other than Z G ) is Z S , the discharge circuit can be expressed as shown in the upper part of FIG. The impedance Z S is a characteristic value of the discharge circuit, and the impedance Z G is a value that changes depending on the state of air, the surface state of the electrode, and the like. The discharge power supply 15 can change a discharge voltage and a discharge current by a control signal from the outside.

【0012】一方、放電制御回路は、放電回路の電圧波
形vと電流波形iを検出する検出器27を備えている。
検出器27で検出された電圧波形v、電流波形iはそれ
ぞれA/D変換器AD1、AD2に入力され、そこでデ
ジタル符号化される。演算回路ALUは、デジタル符号
化された電圧波形と電流波形から放電電極間のインピー
ダンスを求め、目標値31に向けて放電用電源15を制
御する電圧制御信号と電流制御信号を作成する。このた
め演算回路ALUでは次のような演算が行われる。
On the other hand, the discharge control circuit has a detector 27 for detecting a voltage waveform v and a current waveform i of the discharge circuit.
The voltage waveform v and the current waveform i detected by the detector 27 are input to A / D converters AD1 and AD2, respectively, where they are digitally encoded. The arithmetic circuit ALU calculates the impedance between the discharge electrodes from the digitally encoded voltage waveform and current waveform, and creates a voltage control signal and a current control signal for controlling the discharge power supply 15 toward the target value 31. Therefore, the following operation is performed in the arithmetic circuit ALU.

【0013】 放電回路に取り付けられた検出器27
は図3のような電圧波形vと電流波形iを検出する。演
算回路ALUには、この波形がデジタル符号化されて入
力されるので、その値を順次比較することによりピーク
値を見つけ出す。これにより電圧の最大値v0 と、電流
の最大値i0 と、電圧に対する電流の位相遅れΔφを得
る。
Detector 27 attached to discharge circuit
Detects a voltage waveform v and a current waveform i as shown in FIG. Since this waveform is digitally encoded and input to the arithmetic circuit ALU, the peak value is found by sequentially comparing the values. As a result, a maximum value v 0 of the voltage, a maximum value i 0 of the current, and a phase delay Δφ of the current with respect to the voltage are obtained.

【0014】 電圧波形vと電流波形iの統計処理に
より、電圧の実効値Vと電流の実効値Iを算出する。 電圧の実効値Vと電流の実効値Iから、放電中の放
電回路の全インピーダンスの絶対値|Z|(=|ZS
G |)を算出する。
An effective value V of the voltage and an effective value I of the current are calculated by statistical processing of the voltage waveform v and the current waveform i. From the effective value V of the voltage and the effective value I of the current, the absolute value of the total impedance | Z | (= | Z S +
Z G |) is calculated.

【0015】[0015]

【数1】 |Z|=V/I| Z | = V / I

【0016】 このインピーダンスの絶対値|Z|
と、電圧に対する電流の遅れΔφより、放電回路のイン
ピーダンスの抵抗成分Rとリアクタンス成分Xを求め
る。
The absolute value of this impedance | Z |
Then, the resistance component R and the reactance component X of the impedance of the discharge circuit are obtained from the current delay Δφ with respect to the voltage.

【0017】[0017]

【数2】 R=|Z|cos Δφ X=|Z|si
n Δφ
R = | Z | cos Δφ X = | Z | si
n Δφ

【0018】 放電回路のインピーダンスの抵抗成分
Rとリアクタンス成分Xより、放電中の電極間のインピ
ーダンスの抵抗成分RG とリアクタンス成分XG を求め
る。
From the resistance component R and the reactance component X of the impedance of the discharge circuit, a resistance component R G and a reactance component X G of the impedance between the electrodes during discharge are obtained.

【0019】[0019]

【数3】 RG =R−RS G =X−XS [Number 3] R G = R-R S X G = X-X S

【0020】 放電中の電極間のインピーダンスの抵
抗成分RG とリアクタンス成分XGから、放電中の電極
間に供給される電力PG を求める。
[0020] From the resistance component R G and the reactance component X G of the impedance between the electrodes during discharge, it obtains the power P G to be supplied between the electrodes during discharge.

【0021】[0021]

【数4】 |ZG |=√(RG 2 +XG 2 | Z G | = √ (R G 2 + X G 2 )

【0022】[0022]

【数5】 PG =|ZG |I2 cos Δφ 〔又はPG =|ZG |(V2 /|Z|2 )cos Δφ〕P G = | Z G | I 2 cos Δφ [or P G = | Z G | (V 2 / | Z | 2 ) cos Δφ]

【0023】 放電中の電極間に供給される電力PG
と目標電力PGOを比較する。比較の結果、両者が一致し
た場合は補正指令を出さない。 比較の結果、両者が一致しなかった場合には、電流
および電圧の一方または双方の補正指令を出す。それぞ
れの実効値は目標電力PGOから以下の演算で求める。数
6式は電流で補正する場合、数7式は電圧で補正する場
合、数8式は電流、電圧で補正する場合である。
Power P G supplied between electrodes during discharge
And the target power P GO . As a result of the comparison, if they match, no correction command is issued. If the two do not match as a result of the comparison, a correction command for one or both of the current and the voltage is issued. Each effective value is obtained from the target power P GO by the following calculation. Equation (6) is for correction with current, Equation (7) is for correction with voltage, and Equation (8) is for correction with current and voltage.

【0024】[0024]

【数6】 I0 =√{PGO/(|ZG |cos Δφ)}I 0 = {P GO / (| Z G | cos Δφ)}

【0025】[0025]

【数7】 V0 =√{|Z|2 GO/(|ZG |cos
Δφ)}
V 0 = √ {| Z | 2 P GO / (| Z G | cos
Δφ)}

【0026】[0026]

【数8】 I0 0 =√{|Z|PGO/(|ZG |co
s Δφ)} 演算回路ALUでは以上のようにして電圧制御信号およ
び電流制御信号を作成する。作成された信号はそれぞれ
D/A変換器DA1、DA2でアナログ信号化され、電
圧制御信号VCO、電流制御信号ICOとして放電用電源1
5に入力される。放電用電源15はこれによって次回の
放電強度が適正になるように制御される。
I 0 V 0 = √ {| Z | P GO / (| Z G | co
s Δφ)} The arithmetic circuit ALU creates the voltage control signal and the current control signal as described above. The generated signals are converted into analog signals by D / A converters DA1 and DA2, respectively, and are used as a voltage control signal V CO and a current control signal ICO as a discharge power source 1.
5 is input. The discharge power supply 15 is thereby controlled so that the next discharge intensity is appropriate.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、空
気の状態や電極の表面状態など全てのパラメータの変化
の影響を受ける放電電流と放電電圧を検出し、そこから
放電電極間のインピーダンスを求めて、放電条件の制御
を行うため、全てのパラメータの変化に忠実に対応する
ことができ、適正な放電発熱量制御を行うことができ
る。
As described above, according to the present invention, a discharge current and a discharge voltage which are affected by changes in all parameters such as an air state and an electrode surface state are detected, and the impedance between the discharge electrodes is detected therefrom. , And control of the discharge conditions is performed, so that it is possible to faithfully cope with changes in all parameters, and to perform appropriate discharge heat generation control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る放電制御装置の一実施例を示す
概略構成図。
FIG. 1 is a schematic configuration diagram showing an embodiment of a discharge control device according to the present invention.

【図2】 本発明のさらに具体的な実施例を示す回路ブ
ロック図。
FIG. 2 is a circuit block diagram showing a more specific embodiment of the present invention.

【図3】 放電電圧波形と放電電流波形を示すグラフ。FIG. 3 is a graph showing a discharge voltage waveform and a discharge current waveform.

【図4】 従来の放電制御装置を示す概略構成図。FIG. 4 is a schematic configuration diagram showing a conventional discharge control device.

【符号の説明】[Explanation of symbols]

11:光ファイバ 13:放電電極 15:放電用電源 27:検出器 29:インピーダンス演算器 31:目標値 33:演算器 35:加算器 ZG :放電中の電極間のインピーダンス ZS :放電回路のインピーダンス(ZG 以外の全てのイ
ンピーダンス) AD1、AD2:A/D変換器 ALU:演算器 DA1、DA2:D/A変換器
11: Optical fiber 13: Discharge electrode 15: Power supply for discharge 27: Detector 29: Impedance calculator 31: Target value 33: Calculator 35: Adder Z G : Impedance between electrodes during discharge Z S : Discharge circuit Impedance (all impedances other than Z G ) AD1, AD2: A / D converter ALU: Arithmetic unit DA1, DA2: D / A converter

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電電極および放電用電源を含む回路の放
電電圧および放電電流を検出し、その検出値から放電電
極間のインピーダンスを算出し、算出したインピーダン
スの変化に応じてその後の放電強度を補正することを特
徴とする光ファイバ融着接続機の放電制御方法。
1. A discharge voltage and a discharge current of a circuit including a discharge electrode and a discharge power supply are detected, an impedance between the discharge electrodes is calculated from the detected values, and a subsequent discharge intensity is calculated according to a change in the calculated impedance. A discharge control method for an optical fiber fusion splicer, wherein the correction is performed.
【請求項2】放電電極および放電用電源を含む回路の放
電電圧および放電電流を検出する検出手段と、その検出
値から放電電極間のインピーダンスを算出する演算手段
と、算出したインピーダンスの変化に応じて放電強度を
補正する補正手段とを備えることを特徴とする光ファイ
バ融着接続機の放電制御装置。
A detecting means for detecting a discharge voltage and a discharge current of a circuit including a discharge electrode and a power supply for discharge; a calculating means for calculating an impedance between the discharge electrodes from the detected values; A discharge control device for an optical fiber fusion splicer, comprising: a correction unit that corrects a discharge intensity by using a control unit.
JP14903795A 1995-06-15 1995-06-15 Discharge control method and apparatus for optical fiber fusion splicer Expired - Lifetime JP3212835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14903795A JP3212835B2 (en) 1995-06-15 1995-06-15 Discharge control method and apparatus for optical fiber fusion splicer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14903795A JP3212835B2 (en) 1995-06-15 1995-06-15 Discharge control method and apparatus for optical fiber fusion splicer

Publications (2)

Publication Number Publication Date
JPH095559A JPH095559A (en) 1997-01-10
JP3212835B2 true JP3212835B2 (en) 2001-09-25

Family

ID=15466284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14903795A Expired - Lifetime JP3212835B2 (en) 1995-06-15 1995-06-15 Discharge control method and apparatus for optical fiber fusion splicer

Country Status (1)

Country Link
JP (1) JP3212835B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11075444B2 (en) 2017-11-28 2021-07-27 Samsung Electronics Co., Ltd. Antenna and electronic device comprising the antenna
US11228105B2 (en) 2017-11-28 2022-01-18 Samsung Electronics Co., Ltd Electronic device comprising antenna
KR102582482B1 (en) * 2019-06-26 2023-09-22 비보 모바일 커뮤니케이션 컴퍼니 리미티드 Display modules and mobile terminals
KR102589917B1 (en) * 2017-11-01 2023-10-17 삼성전자주식회사 An electronic device comprising an antenna

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19712780A1 (en) * 1997-03-26 1998-10-01 Siemens Ag Method and device for connecting at least two optical fibers by means of arc welding
JPWO2021221115A1 (en) * 2020-04-30 2021-11-04

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589917B1 (en) * 2017-11-01 2023-10-17 삼성전자주식회사 An electronic device comprising an antenna
US11075444B2 (en) 2017-11-28 2021-07-27 Samsung Electronics Co., Ltd. Antenna and electronic device comprising the antenna
US11228105B2 (en) 2017-11-28 2022-01-18 Samsung Electronics Co., Ltd Electronic device comprising antenna
KR102582482B1 (en) * 2019-06-26 2023-09-22 비보 모바일 커뮤니케이션 컴퍼니 리미티드 Display modules and mobile terminals

Also Published As

Publication number Publication date
JPH095559A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
JP3212835B2 (en) Discharge control method and apparatus for optical fiber fusion splicer
JPH03201103A (en) Composite control circuit
JPS61189579A (en) Exposure adjusting device for copying machine
JP3115307B2 (en) Coordinate input device and coordinate detection method
JP2638690B2 (en) Optical fiber fusion splicer
JPH11289792A (en) Inverter device
JPH0934561A (en) Load voltage stabilizing power unit
JPS63243763A (en) Gas rate sensor
JP3240025B2 (en) Measuring device for moisture content of foundry sand
JP3403286B2 (en) Discharge control method for optical fiber fusion splicer
JPH11254159A (en) Semiconductor laser heating device for optical fiber output
JP2001133488A (en) Ac voltage-measuring device and method
KR100308056B1 (en) Apparatus and method for magnetic field
JP3573101B2 (en) Power control method and power control device
SU1098703A1 (en) Device for guiding welding torch along welded joint
JP2571019B2 (en) Traveling wave tube power amplifier
JPS6340867A (en) Amplitude value operation apparatus
JP3167186B2 (en) Consumable electrode arc welding method
JPH0496686A (en) Current control method for induction motor
JPH042947A (en) Method for compensating output of photoelectric sensor
JP3167187B2 (en) Consumable electrode arc welding method
JP4462709B2 (en) Offset correction method
JPS63211420A (en) Finger touch type coordinate output device
JPH05251944A (en) Calibration circuit for operational amplifier
JP2633027B2 (en) Current control method for induction motor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term