JPH0443390B2 - - Google Patents

Info

Publication number
JPH0443390B2
JPH0443390B2 JP59114396A JP11439684A JPH0443390B2 JP H0443390 B2 JPH0443390 B2 JP H0443390B2 JP 59114396 A JP59114396 A JP 59114396A JP 11439684 A JP11439684 A JP 11439684A JP H0443390 B2 JPH0443390 B2 JP H0443390B2
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
positive electrode
liquid
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59114396A
Other languages
Japanese (ja)
Other versions
JPS60258869A (en
Inventor
Takashi Hashimoto
Yasuo Ando
Kenichiro Jinnai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP59114396A priority Critical patent/JPS60258869A/en
Priority to US06/739,224 priority patent/US4614693A/en
Priority to CA000482814A priority patent/CA1244078A/en
Priority to EP85303945A priority patent/EP0165000B1/en
Priority to AT85303945T priority patent/ATE66545T1/en
Priority to DE8585303945T priority patent/DE3583825D1/en
Publication of JPS60258869A publication Critical patent/JPS60258869A/en
Publication of JPH0443390B2 publication Critical patent/JPH0443390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、電解液循環型金属−ハロゲン二次電
池に係り、特に充電深度を高め、かつ電圧効率、
電気量効率等電池のエネルギー密度を大ならしめ
た電解液循環型金属−ハロゲン二次電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an electrolyte circulation type metal-halogen secondary battery, and in particular improves the depth of charging, improves voltage efficiency,
The present invention relates to an electrolyte circulation type metal-halogen secondary battery that increases the energy density of the battery such as electrical efficiency.

B 発明の概要 電解液循環型金属−ハロゲン二次電池の充電深
度を高め、かつ電池のエネルギー密度を大ならし
めるために、正極室内の液圧を負極室内の液圧よ
りも循環手段によつて相対的に高くするようにし
たものである。
B. Summary of the Invention In order to increase the depth of charge of an electrolyte circulation type metal-halogen secondary battery and to increase the energy density of the battery, the liquid pressure in the positive electrode chamber is lowered by the circulation means than the liquid pressure in the negative electrode chamber. It is designed to be relatively high.

C 従来の技術 従来の電解液循環型金属−ハロゲン二次電池
は、その一例を第3図の電解液循環型亜鉛−臭素
二次電池に示す如く、単セル1をイオン交換膜又
は多孔質膜からなる隔膜4で負極室2と正極室3
とに分離し、前記両室に各々電解液を循環させる
ための送液管7,8及び返送管11,12により
連結されて負極液槽5、正極液槽6を設け、臭化
亜鉛(ZnBr2)の電解液を各々循環させるように
したものである。尚、2′は負極、3′は正極、
9,10は送液ポンプである。
C. Prior Art A conventional electrolyte circulation type metal-halogen secondary battery, as shown in the electrolyte circulation type zinc-bromine secondary battery in FIG. A diaphragm 4 consisting of a negative electrode chamber 2 and a positive electrode chamber 3
A negative electrode liquid tank 5 and a positive electrode liquid tank 6 are provided, which are connected by liquid sending pipes 7, 8 and return pipes 11, 12 for circulating the electrolytic solution in both chambers, respectively. 2 ) The electrolyte solution is circulated in each case. In addition, 2' is a negative electrode, 3' is a positive electrode,
9 and 10 are liquid feeding pumps.

この場合の電解液循環型金属−ハロゲン二次電
池とは、特願昭58−22362号に開示した比表面積
100m2/g以上の多孔質導電板状からなる電極を
臭素活物質側電極として用いたものであつて、遊
離臭素又はイオン状態の臭素と長時間接触してい
ても変質の起りにくいことを特徴としている。
In this case, the electrolyte circulation type metal-halogen secondary battery has a specific surface area as disclosed in Japanese Patent Application No. 1982-22362.
An electrode made of a porous conductive plate with a size of 100 m 2 /g or more is used as the electrode on the bromine active material side, and is characterized by being unlikely to undergo deterioration even if it is in contact with free bromine or ionic bromine for a long time. It is said that

さて、第3図の従来の電解液循環型金属−ハロ
ゲン二次電池は、負極液槽5と正極液槽6の液容
量が略等しく、各液槽内には略同量の電解液を入
れ、電池を運転していた。
Now, in the conventional electrolyte circulating type metal-halogen secondary battery shown in Fig. 3, the negative electrode liquid tank 5 and the positive electrode liquid tank 6 have approximately the same liquid capacity, and each tank contains approximately the same amount of electrolyte. , was driving the battery.

この従来の亜鉛−臭素電池の単電池で、電極面
積:1600cm2、両極液槽容量:900ml、各液相に
3mol/ZnBr2+1mol/Q−Brを796mlを入れ
(但し、Q−Brは1molの臭素錯化物)、32Aで6
時間充電を行つたとすると、充電開始から5時間
後には負極液内に水素発泡がみられた。
This conventional zinc-bromine cell has an electrode area of 1600 cm 2 , a bipolar tank capacity of 900 ml, and a battery for each liquid phase.
Add 796 ml of 3 mol/ZnBr 2 + 1 mol/Q-Br (however, Q-Br is 1 mol of bromine complex), and add 6 with 32A.
Assuming that charging was carried out for an hour, hydrogen bubbling was observed in the negative electrode liquid 5 hours after the start of charging.

理論的には、負極室3mol/ZnBr2+1mol/
Q−Br796ml中のZnの電気量は、0.796×
3mol/×2×9.6×8×104C/mol/3600=
128Ahであり、32Aでは4時間経過時には負極液
中のZnイオンがなくなり、その後充電しようと
すると負極上で水素が発生することになる。しか
し、実際には正極液中のZnイオンが隔膜4を通
して負極液中に拡散し、このZnイオン供給によ
り水素発泡が充電開始5時間まで延びる。
Theoretically, negative electrode chamber 3mol/ZnBr 2 +1mol/
The amount of electricity of Zn in 796ml of Q-Br is 0.796×
3mol/×2×9.6×8×10 4 C/mol/3600=
128Ah, and at 32A, Zn ions in the negative electrode liquid disappear after 4 hours, and when charging is attempted thereafter, hydrogen is generated on the negative electrode. However, in reality, Zn ions in the positive electrode solution diffuse into the negative electrode solution through the diaphragm 4, and this Zn ion supply extends hydrogen bubbling until 5 hours after the start of charging.

従つて、この電池の充電可能時間は5時間以下
となる反面、正極中にはZnイオンが存在してい
るので両極液から計算した充電深度は、32A×
5h/128Ah×2=62.5%である。そして、このま
までは充電深度が低く、電池のエネルギー密度が
小さいという問題があつた。
Therefore, the charging time of this battery is less than 5 hours, but since Zn ions are present in the positive electrode, the charging depth calculated from both electrodes is 32A×
5h/128Ah×2=62.5%. If left as is, the problem was that the depth of charge was low and the energy density of the battery was low.

D 発明が解決しようとする課題 以上のように従来の電解液循環型金属−ハロゲ
ン二次電池には、充電深度が低く、かつ電池のエ
ネルギー密度が小さいという問題があつたので、
本発明ではこの充電深度が低いこと及び電池のエ
ネルギー密度が小さいことを改善するためになさ
れたものである。
D. Problems to be Solved by the Invention As mentioned above, conventional electrolyte circulation type metal-halogen secondary batteries had the problems of low depth of charge and low battery energy density.
The present invention has been made to improve the low depth of charge and low energy density of the battery.

E 課題を解決するための手段 即ち、本発明においては、第1図に模式的にそ
の構成を示すごとく、単セル1を隔膜4で負極室
2と正極室3とに分離し、該負極室2及び正極室
3に各々電解液を循環させるための送液管7,8
及び返送管11,12により連結された負極荷槽
5及び正極液槽6を設け、かつ該負極液槽5と正
極液槽6とを連通管15により連結し、前記送液
管7,8には送液ポンプ9,10が設けられ、前
記返送管7,8にはバルブ13,14が設けられ
ている。尚、2′は負極、3′は正極であり、16
は前記連通管15に設けられたバルブである。
E. Means for Solving the Problems That is, in the present invention, as the configuration is schematically shown in FIG. 2 and the positive electrode chamber 3, respectively.
and a negative electrode liquid tank 5 and a positive electrode liquid tank 6 connected by return pipes 11 and 12, and the negative electrode liquid tank 5 and the positive electrode liquid tank 6 are connected by a communication pipe 15, and the liquid sending pipes 7 and 8 are connected to each other. Liquid sending pumps 9 and 10 are provided, and the return pipes 7 and 8 are provided with valves 13 and 14, respectively. In addition, 2' is a negative electrode, 3' is a positive electrode, and 16
is a valve provided in the communication pipe 15.

F 作用 適量の電解液を負極液槽5と正極液槽6とに満
した後の第1図の本発明の電解液循環型金属−ハ
ロゲン二次電池においては、充電する場合に正極
液槽6から正極室3内の液圧を、負極室2内の液
圧よりも相対的に高くするようにしたことを要旨
とするものであつて、これは送液ポンプ10及び
バルブ14を操作することにより行われる。この
ようにして隔膜4の面での電解液の圧力を正極室
3側を高くすることにより、隔膜4を通して電解
液を強制的に負極室2側へ通過、移動させる、。
これにより、正極室内の電解液が保有するZnイ
オンを負極室側へ送り、充電時間の延長を図るも
のである。尚、増加した負極室側の電解液はバル
ブ16を操作することにより正極液槽側へ戻す。
F Effect In the electrolyte circulation type metal-halogen secondary battery of the present invention shown in FIG. 1 after filling an appropriate amount of electrolyte into the anode solution tank 5 and the cathode solution tank 6, the cathode solution tank 6 is filled when charging. The gist is that the liquid pressure in the positive electrode chamber 3 is made relatively higher than the liquid pressure in the negative electrode chamber 2, and this is done by operating the liquid pump 10 and the valve 14. This is done by In this way, by increasing the pressure of the electrolytic solution on the surface of the diaphragm 4 on the positive electrode chamber 3 side, the electrolytic solution is forced to pass through the diaphragm 4 and move to the negative electrode chamber 2 side.
This allows Zn ions held in the electrolyte in the positive electrode chamber to be sent to the negative electrode chamber, thereby extending the charging time. The increased electrolyte in the negative electrode chamber is returned to the positive electrode tank by operating the valve 16.

このようにすれば、充電深度は高くなり、エネ
ルギー密度が向上される。次に、第2図に模式的
に示す本発明の更に一例の構成について説明する
と、この構成では、正極液槽6の電解液量を、負
極液槽5の電解液量よりも大きくしたこと以外は
第1図と同一である。
In this way, the charging depth becomes high and the energy density is improved. Next, a further example of the configuration of the present invention schematically shown in FIG. 2 will be described. In this configuration, the amount of electrolyte in the positive electrode tank 6 is made larger than the amount of electrolyte in the negative electrode tank 5. is the same as in FIG.

因みに、亜鉛−臭素電池では、充電時に発生し
たBr2が、Q−Br3、Q−Br5等の錯化物の形で正
極液槽中に沈殿し、錯化物にならない正極液中の
Br2の濃度が低い状態に保たれる。また、その錯
化物にならない活性度の高いBr2の濃度は、 比率=正極液中のBr2量/正極電解液量 (錯化物になつたBr2を含む) が高くなると、その活性度の高いBr2濃度が高く
なつて負極液側へ隔膜を通して拡散するBr2量が
多くなり、負極面上の析出亜鉛と自己放電を起し
て電気量効率を低下することはよく知られてい
る。また、比率=正極液中の錯化物/正極電解液
量が高くなると液の電導度が低くなつて電圧効率
を低下させることもよく知られている。
Incidentally, in zinc-bromine batteries, Br 2 generated during charging precipitates in the cathode solution tank in the form of complexes such as Q-Br 3 and Q-Br 5 , and the Br 2 in the cathode solution that does not become complexes.
The concentration of Br2 is kept low. In addition, the concentration of highly active Br 2 that does not form a complex is determined by the ratio = amount of Br 2 in the cathode solution / amount of cathode electrolyte (including Br 2 that becomes a complex). It is well known that as the Br 2 concentration increases, the amount of Br 2 that diffuses through the diaphragm to the negative electrode liquid side increases, causing self-discharge with zinc deposited on the negative electrode surface and reducing the electrical efficiency. It is also well known that when the ratio=complex in the catholyte/amount of cathode electrolyte becomes high, the conductivity of the liquid becomes low and the voltage efficiency is reduced.

このため、隔膜を通つて増加した負極室側の電
解液をバルブ16を操作することにより正極液槽
側へ戻したり、正極電解液量を負極電解液量より
も増加させたりして、送液管により正極室に送液
される電解液全量を、負極室に送液される電解液
全量よりも多くして、前述の比率を低くすること
によつて電気量効率及び電圧効率の低下を少なく
することが可能である。
Therefore, by operating the valve 16, the electrolyte in the negative electrode chamber that has increased through the diaphragm is returned to the positive electrode tank, or by increasing the amount of positive electrode electrolyte more than the amount of negative electrode electrolyte. By making the total amount of electrolyte sent to the positive electrode chamber by the tube larger than the total amount of electrolyte sent to the negative electrode chamber and lowering the aforementioned ratio, the decrease in electrical quantity efficiency and voltage efficiency can be minimized. It is possible to do so.

G 実施例 実施例 1 第1図に示す本発明の構成になる電解液循環型
亜鉛−臭素二次電池において、電極面積1600cm2
900ml容量の負極液槽5と正極液槽6内に、
3mol/のZnBr2と1mol/のQ−Brを各々796
ml入れ、電流32Aで6.4時間充電し、その後同じ
電流値でセル電圧0.5Vに低下するまで放電を行
うに当り、正極室3側の返送管12のバルブ14
を半閉にすると共に、両極室2,3へ電解液を送
るポンプ9,10の出力同一にすることにより、
電池内部の隔膜4の正極室3側から負極室2側へ
電解液を強制的に移動させながら充放電を行つ
た。尚、増加した負極室側の電解液はバルブ16
を操作することにより正極液槽側へ戻す。その結
果、充電6.4時間終了まで水素発生は見られず、
効率を調べたところ、電圧効率=86%、電気量効
率83%、エネルギー効率=71.4%の結果を得た。
G Examples Example 1 In the electrolyte circulation type zinc-bromine secondary battery having the configuration of the present invention shown in FIG. 1, the electrode area is 1600 cm 2 ,
In the negative electrode liquid tank 5 and positive electrode liquid tank 6 with a capacity of 900ml,
796 each of 3 mol/ZnBr 2 and 1 mol/Q-Br
ml, charged at a current of 32A for 6.4 hours, and then discharged at the same current value until the cell voltage decreased to 0.5V.
By half closing the pumps and making the outputs of the pumps 9 and 10 that send the electrolyte to the bipolar chambers 2 and 3 the same,
Charging and discharging were performed while forcibly moving the electrolytic solution from the positive electrode chamber 3 side to the negative electrode chamber 2 side of the diaphragm 4 inside the battery. Incidentally, the increased electrolyte on the negative electrode chamber side is removed from the valve 16.
Return it to the positive electrode tank side by operating . As a result, no hydrogen generation was observed until the end of 6.4 hours of charging.
When we investigated the efficiency, we found that the voltage efficiency was 86%, the electricity efficiency was 83%, and the energy efficiency was 71.4%.

実施例 2 第2図に示す本発明の構成になる電解液循環型
亜鉛−臭素二次電池において、上記実施例1と同
一条件の電解液を負極液槽5へは150ml(槽容積
200ml)、正極液槽へは1442ml(槽容積1600ml)を
満たし、電流、電圧等の条件は前記実施例−1と
同一条件で充放電する際に、正極室3側への返液
管12のバルブ14を半閉にすることにより、実
施例1と同様に隔膜4を介して正極室3側から負
極室2側へ電解液を強制的に移動させながら充放
電を行なつたところ、実施例1と同様に水素発泡
は見られず、効率を調べたところ、電圧効率=88
%、電気量効率84%、エネルギー効率=73.9%
と、実施例1に比べて0.5%の効率向上の結果が
得られた。
Example 2 In an electrolyte circulating type zinc-bromine secondary battery having the structure of the present invention shown in FIG.
200ml), the positive electrode liquid tank is filled with 1442ml (tank volume 1600ml), and the conditions such as current and voltage are the same as in Example-1. By half-closing the valve 14, charging and discharging was carried out while forcibly moving the electrolyte from the positive electrode chamber 3 side to the negative electrode chamber 2 side via the diaphragm 4, as in Example 1. Similar to 1, no hydrogen foaming was observed, and when the efficiency was investigated, voltage efficiency = 88
%, electricity efficiency 84%, energy efficiency = 73.9%
As compared to Example 1, an efficiency improvement of 0.5% was obtained.

比較例 第3図に示す従来の電解液循環型亜鉛−臭素二
次電池において、上記実施例1と同一条件の電解
液を用い、実施例1と同一条件即ち電流32Aで
6.4時間充電し、その後同じ電流値でセル電圧
0.5Vに低下するまで放電を行つたところ、充電
5時間のちに水素発泡が起つた。そのままで初期
の充放電を行つて効率を調べたところ、電圧効率
=65%、電気量効率=43%、エネルギー効率=28
%の結果を得た。
Comparative Example In the conventional electrolyte circulation type zinc-bromine secondary battery shown in Fig. 3, an electrolyte under the same conditions as in Example 1 was used, and the current was 32 A.
Charge for 6.4 hours, then the cell voltage at the same current value
When the battery was discharged until the voltage dropped to 0.5V, hydrogen bubbling occurred after 5 hours of charging. When we checked the efficiency by performing initial charging and discharging as it is, voltage efficiency = 65%, electricity efficiency = 43%, energy efficiency = 28
% results were obtained.

H 発明の効果 上記本発明の実施例1及び2の効果によつて明
らかなように、本発明によれば、従来の電解液循
環型金属−ハロゲン二次電池に比べて充電時の水
素発泡がなく、従つて充電深度が高くなると御供
に電池のエネルギー密度が高くなる等優れた効果
を奏する。
H Effects of the Invention As is clear from the effects of Examples 1 and 2 of the present invention, according to the present invention, hydrogen foaming during charging is reduced compared to conventional electrolyte circulation type metal-halogen secondary batteries. Therefore, as the depth of charge increases, the energy density of the battery also increases and other excellent effects are produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電解液循環型亜鉛−臭素二次
電池の一実施例の構成を模式的に示した断面図、
第2図は本発明の電解液循環型亜鉛−臭素二次電
池のさらに一つの実施例の構成を模式的に示した
断面図、第3図は従来の電解液循環型亜鉛−臭素
二次電池の構成を示した断面図である。 1…単セル、2…負極室、2′…負極、3…正
極室、3′…正極、4…隔膜、5…負極液槽、6
…正極液槽、7,8…送液管、9,10…ポン
プ、11,12…返液管、13,14…バルブ、
15…連通管、16…バルブ。
FIG. 1 is a sectional view schematically showing the structure of an embodiment of the electrolyte circulation type zinc-bromine secondary battery of the present invention;
FIG. 2 is a cross-sectional view schematically showing the configuration of yet another embodiment of the electrolyte circulation type zinc-bromine secondary battery of the present invention, and FIG. 3 is a conventional electrolyte circulation type zinc-bromine secondary battery. FIG. 2 is a cross-sectional view showing the configuration of. 1... Single cell, 2... Negative electrode chamber, 2'... Negative electrode, 3... Positive electrode chamber, 3'... Positive electrode, 4... Diaphragm, 5... Negative electrode liquid tank, 6
... Positive electrode liquid tank, 7, 8... Liquid sending pipe, 9, 10... Pump, 11, 12... Liquid return pipe, 13, 14... Valve,
15...Communication pipe, 16...Valve.

Claims (1)

【特許請求の範囲】 1 隔膜で負極室と正極室とに分離した単セル
と、前記両室に夫々送液管及び返液管により連結
された負極液槽及び正極液槽とからなり、前記単
セル及び両槽に電解液を循環してなる電解液循環
型金属−ハロゲン二次電池において、 前記正極室内の液圧を負極室内の液圧よりも循
環手段によつて相対的に高くして、前記隔膜を通
つて負極室に正極電解液を移動せしめるように
し、 前記送液管により正極室に送液される電解液全
量を、負極室に送液される電解液全量よりも多く
したことを特徴とする電解液循環型金属−ハロゲ
ン二次電池。 2 前記負極液槽及び正極液槽を連通した連通管
を備え、前記隔膜を通つて増量した負極液槽側の
電解液を前記連通管により正極液槽に戻したこと
を特徴とする特許請求の範囲第1項記載の電解液
循環型金属−ハロゲン二次電池。 3 前記正極液槽の電解液全量を、負極液槽の電
解液全量よりも多くしたことを特徴とする特許請
求の範囲第1項記載の電解液循環型金属−ハロゲ
ン二次電池。
[Scope of Claims] 1. Consists of a single cell separated into a negative electrode chamber and a positive electrode chamber by a diaphragm, and a negative electrode liquid tank and a positive electrode liquid tank connected to the two chambers by a liquid sending pipe and a liquid return pipe, respectively, In an electrolyte circulation type metal-halogen secondary battery in which an electrolyte is circulated in a single cell and both cells, the liquid pressure in the positive electrode chamber is made relatively higher than the liquid pressure in the negative electrode chamber by a circulation means. , the positive electrode electrolyte is moved to the negative electrode chamber through the diaphragm, and the total amount of electrolytic solution sent to the positive electrode chamber by the liquid sending pipe is larger than the total amount of electrolytic solution sent to the negative electrode chamber. An electrolyte circulation type metal-halogen secondary battery characterized by: 2. A communication tube that communicates the negative electrode liquid tank and the positive electrode liquid tank is provided, and the electrolyte on the negative electrode liquid tank side, which has increased through the diaphragm, is returned to the positive electrode liquid tank through the communication pipe. The electrolyte circulating metal-halogen secondary battery according to item 1. 3. The electrolyte circulating metal-halogen secondary battery according to claim 1, wherein the total amount of electrolyte in the positive electrode tank is greater than the total amount of electrolyte in the negative electrode tank.
JP59114396A 1984-06-06 1984-06-06 Layer-built secondary battery Granted JPS60258869A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59114396A JPS60258869A (en) 1984-06-06 1984-06-06 Layer-built secondary battery
US06/739,224 US4614693A (en) 1984-06-06 1985-05-30 Metal-halogen secondary battery
CA000482814A CA1244078A (en) 1984-06-06 1985-05-30 Metal-halogen secondary battery
EP85303945A EP0165000B1 (en) 1984-06-06 1985-06-04 Metal-halogen secondary battery
AT85303945T ATE66545T1 (en) 1984-06-06 1985-06-04 METAL HALOGEN SECONDARY BATTERY.
DE8585303945T DE3583825D1 (en) 1984-06-06 1985-06-04 SECOND METAL HALOGEN BATTERY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114396A JPS60258869A (en) 1984-06-06 1984-06-06 Layer-built secondary battery

Publications (2)

Publication Number Publication Date
JPS60258869A JPS60258869A (en) 1985-12-20
JPH0443390B2 true JPH0443390B2 (en) 1992-07-16

Family

ID=14636628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114396A Granted JPS60258869A (en) 1984-06-06 1984-06-06 Layer-built secondary battery

Country Status (1)

Country Link
JP (1) JPS60258869A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112803095B (en) * 2021-01-29 2022-10-28 中国科学技术大学 Aqueous halogen-hydrogen secondary battery

Also Published As

Publication number Publication date
JPS60258869A (en) 1985-12-20

Similar Documents

Publication Publication Date Title
JPH05502133A (en) Batteries using metal particle bed electrodes
JPH11506863A (en) How to restore electrode activity
KR101696034B1 (en) Hybride Flow Battery and Electrolyte Solution for The Same
US4491625A (en) Zinc-bromine batteries with improved electrolyte
US3625764A (en) Electrode for electric storage batteries containing zinc halide in aqueous solution, of the type having a soluble cathode and a dissolved anode
US20170214077A1 (en) Electrolyte System For Rechargeable Flow Battery
KR20140096983A (en) Lithium battery with charging redox couple
US3806368A (en) Zinc bromide battery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
JP6643183B2 (en) Organic active materials for rechargeable batteries
US9608264B2 (en) Air cathode battery using zinc slurry anode with carbon additive
CN113871738A (en) Electrode charging method for improving capacity of zinc-silver reserve battery
WO2016031201A1 (en) Air cathode battery using zinc slurry anode with carbon additives
Deutscher et al. Investigations on an aqueous lithium secondary cell
JP2014170715A (en) Cell
CN107482284B (en) Lithium oxygen battery
US20140038000A1 (en) Flow-Through Metal Battery with Ion Exchange Membrane
JPH0443390B2 (en)
KR101719685B1 (en) Method for charge and discharge of redox flow battery
KR20210147005A (en) Electrolytic batteries for high voltage and scalable energy storage
JPH0676821A (en) Lead-acid battery
CN111180777A (en) Positive electrode electrolyte for zinc-bromine single flow battery
JP2518257B2 (en) Zinc bromide secondary battery charging method
JPH0367308B2 (en)
KR0174849B1 (en) Improvement of high rate charge / discharge characteristics of sealed battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term