JPH0443100B2 - - Google Patents

Info

Publication number
JPH0443100B2
JPH0443100B2 JP61262815A JP26281586A JPH0443100B2 JP H0443100 B2 JPH0443100 B2 JP H0443100B2 JP 61262815 A JP61262815 A JP 61262815A JP 26281586 A JP26281586 A JP 26281586A JP H0443100 B2 JPH0443100 B2 JP H0443100B2
Authority
JP
Japan
Prior art keywords
membrane
ion exchange
film
exchange membrane
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61262815A
Other languages
Japanese (ja)
Other versions
JPS63118338A (en
Inventor
Toshikatsu Sada
Kyoko Saeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP61262815A priority Critical patent/JPS63118338A/en
Publication of JPS63118338A publication Critical patent/JPS63118338A/en
Publication of JPH0443100B2 publication Critical patent/JPH0443100B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、電子電導性を有する高分子化合物が
断面に関して不均一に層状に分布する改良イオン
交換膜に係り、膜分離技術、エレクトロニクス、
電池などの分野に有用な特性を付与した膜状物を
提供するものである。 〔従来技術およびその問題点〕 従来、イオン交換膜については、イオン選択透
過性を向上させたり、低下せしめたり、同符号の
イオン間における選択透過性を変えるために、
種々の方法が試みられてきた。また、イオン交換
膜にさらに新しい機能を賦与するための試みとし
て、重合可能なビニル単量体を陽イオン交換膜、
或いは陰イオン交換膜中に含浸重合させる方法が
行われ、塩の拡散透過量の減少、輸率の向上、酸
または塩基の漏洩量の減少をもたらした改良イオ
ン交換膜が提案されている。しかし、これらの方
法は、一般にビニル単量体をイオン交換膜内で重
合させる場合が多いため、該イオン交換膜自体が
該ビニル単量体によつて膨潤し、得られる改良イ
オン交換膜の機械的強度の低下を招く問題があ
る。また、縮合系の単量体をイオン交換膜内で縮
合させることも報告されているが、縮合反応を完
結させるために、加熱処理を必要とする場合が多
く、膜の性能を損う問題が生ずる。 〔問題点を解決するための手段〕 本発明者らは上記に鑑み、広く一般にイオン交
換樹脂のマトリツクス中に別ポリマーのマトリツ
クスを形成することによつて、該イオン交換体の
特性を変え、また該イオン交換体に新しく機能を
賦与することが出来ないか種々検討を重ねた。そ
の結果、イオン交換樹脂膜に重合可能な単量体で
重合体が電子電導性を有する化合物を含浸重合さ
せることにより、該イオン交換膜の特性を向上さ
せ、また新たに有用な機能を賦与した改良イオン
交換膜を得、本発明を提供するに至つた。即ち、
本発明は、電子電導性を有する高分子化合物が断
面に関して不均一に層状に分布することを特徴と
する改良イオン交換膜である。 本発明の電子電導性を有する化合物としては、
従来公知のものが何ら制限なく用いられる。即
ち、触媒、電気分解等の電気エネルギー、α、
β、γなどの電離性放射線、X線、紫外線、プラ
ズマ、グロー等の放電などによつて重合して電子
電導性を示す化合物が何ら制限なく用いられる。
具体的に挙げると、例えばピロール及びその誘導
体、例えばN−メチルピロール、2−エチルピロ
ールなどのN−アルキルピロール類、チオフエン
及び3−アルキルチオフエンなどのチオフエン誘
導体、イソチアナフテン及びその誘導体、インド
ール、アズレン、フラン、アニリン、フエノー
ル、ベンゼン、ナフタリン、フエニレンジアミン
類、アセチレン等のそれぞれの誘導体がそれぞれ
一種以上好適に用いられる。特にピロール、イン
ドール、アズレン、チオフエン、フランおよびそ
れらの誘導体などの複素環化合物及びアセチレン
はイオン交換膜と親和性がよく、イオン交換して
該イオン交換膜に均一に分散するため好ましい。
これらは、上記したエネルギーによつて重合し、
電子電導性を有する高分子化合物を与えるもので
ある。 また、この電子電導性を有する化合物を存在さ
せるイオン交換膜としては、イオン交換基を結合
した高分子膜状物であれば、従来公知のイオン交
換膜が何ら制限なく用いられる。即ち、有機系の
イオン交換膜に限らず、例えばリン酸ジルコニウ
ムなどを適当な有機、無機の結合剤によつて加
圧、加熱成型したものも好適に用いられる。有機
系のイオン交換膜としては重合系のイオン交換
体、謂ゆるスチレン−ジビニルベンゼン系の共重
合体でイオン交換基が結合したもの、縮合系のイ
オン交換体で陽イオン交換的基及び/または陰イ
オン交換基を結合したものが好適に用いられる。
かかるイオン交換体としては従来公知の均一系、
不均一系のイオン交換体を用いることも出来、ま
た該イオン交換体の基体として炭化水素系のも
の、ふつ化炭素系のもの、パーフルオロカーボン
系のものの如何に関係なく好適に用いられる。特
に本発明に適したイオン交換膜は、乾燥した該イ
オン交換膜の1gあたり一般に0.1〜15ミリ当量
のイオン交換基を結合しているものであれば特に
限定されない。そのイオン交換基としては、従来
公知の陽イオン交換基であるスルホン酸基、カル
ボン酸基、リン酸基、亜リン酸基、スルホン酸エ
ステル基、フエノール性水酸基、チオール基、三
級のパーフルオロアルコールなどが用いられ、陰
イオン交換基としては一級、二級、三級アミン、
第四級アンモニウム、第三級スルホニウム、第四
級ホスホニウム、コバルチシニウム等のオニウム
塩基などである。このようなイオン交換膜には、
一種類のイオン交換基のみが結合しているとは限
らず、複数種のイオン交換基が結合している場合
も有効であり、具体的には一級、二級、三級アミ
ン及びオニウム塩基が一種以上混合して結合して
いる陰イオン交換膜が好適である。またカルボン
酸基とスルホン酸基とを結合しているイオン交換
膜、スルホン酸基と第四級アンモニウム塩基を同
時に結合している膜なども好適に用いられる。さ
らには、イオン交換基の分布が膜断面に関して異
なるもの、例えば膜の一方の面にはイオン交換基
が密に存在し、他方には疎に存在する膜、イオン
交換膜の表層部にはイオン交換膜の交換基とは反
対電荷の薄層が存在している膜なども有効に用い
られる。そのほか多孔質のイオン交換膜、即ち陽
イオン交換基または/および陰イオン交換基が結
合した多孔質膜状物が使用目的によつて極めて有
効である。この場合、膜の多孔度および厚みは使
用目的によつて適宜選択されるが、それぞれ一般
に95%の多孔度および0.0001〜1.0cmの厚みが好
適である。 なお、本発明は、上記した如き予めイオン交換
基を有する膜状物を用いる場合に限らず、イオン
交換基に容易に変換することのできる官能基を有
する膜状物に電子電導性を有する化合物を存在さ
せたのちにイオン交換基の導入を実施してもよ
い。例えば、ハロアルキルスチレンなどを結合し
た高分子膜状物に、前記した如き電子電導性を有
する化合物を含浸重合したのち、アミン類と反応
させて陰イオン交換基を導入する方法などが採用
される。 本発明において、電子電導性を有する高分子化
合物が、イオン交換膜の断面に関して不均一に層
状に分布して存在する態様としては、一般にイオ
ン交換膜の片面にのみ電子電導性を有する高分子
化合物が存在し、他方に殆んど或いは全く存在し
ない状態が最も好ましいが、これのみに限定され
るものではない。即ち、イオン交換膜の使用目的
に応じて、電子電導性を有する高分子化合物が、
膜状物の両面において濃度が高く且つ膜断面の中
央部が低くなつている場合、膜断面に関して中央
部が電子電導性を有する高分子化合物の濃度が高
く且つ両表面が低い場合、膜断面に関して複数の
電子電導性を有する高分子の濃淡が存在し、膜の
一方の面の濃度が高く他面が低い場合、両面の濃
度が低い場合、両面の濃度が高い場合など各種の
態様が有効である。イオン交換膜中における電子
電導性を有する高分子化合物の濃度は、該電子電
導性の高分子化合物のみが存在し他の化合物、即
ちイオン交換膜の基材は全く存在しない場合が最
も高い濃度であり、これに適宜にイオン交換膜の
成分が混入する場合、他の不活性な高分子等が電
子電導性を有する高分子化合物中に混在する場合
がある。また、電子電導性を有する高分子化合物
が全く存在しないイオン交換膜において、必要に
応じて該電子電導性を有する高分子の濃度を調節
して存在させることが出来る。このようなイオン
交換膜に不均一に存在させる電子電導性を有する
高分子化合物の濃度(量)は、該イオン交換膜
(原膜)の重量増加によつて示すことが出来る。
この重量増加は膜断面について、一方の側に電子
電導性を有する高分子化合物が不均一に存在する
とき、膜断面に関して1/2までのところの重量が
10%以上400%まで増加する場合が望ましい。 本発明の電子電導性を有する高分子化合物が存
在するイオン交換膜の製造は、該電子電導性を有
する高分子化合物が膜断面に関して不均一に存在
させるために、次のような各種の方法が採用でき
る。例えば 1 基体として用いるイオン交換膜の高分子重合
体中に不均一に電子電導性を有する化合物(単
量体)を存在させて後、重合させる方法 2 基体として用いるイオン交換膜の高分子重合
体中に電子電導性の化合物(単量体)を均一に
存在させたあと、不均一に重合体が存在するよ
うに重合をする方法 3 基体に用いるイオン交換膜の高分子重合体中
に不均一に電子電導性の化合物(単量体)を存
在させたのち、不均一に重合反応を行わせる方
法 4 基体に用いるイオン交換膜の高分子重合体と
電子電導性を有する高分子化合物を積層、塗
布、噴霧、コーテイング、吸着する方法 5 基体に用いる高分子重合体と電子電導性を有
する高分子化合物を積層、塗布、噴霧、コーテ
イング、吸着させたのち、該高分子重合体と表
層部の電子電導性を有する高分子化合物とを化
学的に安定なイオン結合、共有結合、配位結合
等によつて一体化結合させる方法 6 基体に用いる高分子重合体に電子電導性を有
する高分子化合物を4)の方法によつて存在さ
せたのちに、例えばエポキシ−アミン、ポリイ
ソシアネートとポリオールなどの接着剤によつ
て或いはビニルモノマーを存在させて重合させ
て接着させる方法 7 電解酸化、電解還元によつてイオン交換膜中
或いはその原膜中に電子電導性を有する化合物
を不均一に重合させ、必要に応じてイオン交換
基を導入する方法 本発明は、上記した製法に限定されるものでは
なく、基体となるイオン交換膜の高分子重合体に
不均一に電子電導性を有する高分子化合物が存在
すれば、如何なる方法によつても実施することが
出来る。 本発明の上記した如き電子電導性を有する高分
子化合物には、ドーパントを存在させて電子電導
性を賦与することも出来る。ドーピングの方法と
しては、従来公知の方法が広く採用出来る。即
ち、イオン交換膜をドーパント溶液に浸漬する方
法、電気化学的にドーピング、ドーパントの蒸気
に接触させる方法、ブレンドする方法などであ
る。またドーパントとしては、従来公知のものが
広く使用され、例えばClO4 -、PF4 -、Cl-、F-
Br-、I-、FeCl3、スチレンスルホン酸、ポリス
チレンスルホン酸、パーフルオロカーボンスルホ
ン酸、トルエンスルホン酸、ベンゼンスルホン
酸、ローズベンガル、アントラキノン二硫酸、テ
トラ(スルホニル)ポルフイリン、テトラスルホ
フタルシアニン、バソフエナントロリン二硫酸、
バソフエナントロリン、ポリビニル硫酸、PtCl4 2
、AuCl4、PdCl4 2-、Fe(CN)6 3-、RuO4 -
MnO4などの公知のものが何ら制限なく用いられ
る。これらのうちで特に好適に用いられるのは、
ハロゲンイオン特にCl-である。 本発明においては、これらのドーパントの一種
以上が電子電導性を有する高分子化合物にドーピ
ングされ、ドーピングの割合は0.001以上であれ
ば、目的とするイオン交換膜を得ることが出来
る。 以下、本発明のイオン交換膜を製造する代表的
な方法を具体的に例示する。 原膜のイオン交換膜として陽イオン交換膜、陰
イオン交換膜、両性イオン交換膜、モザイクイオ
ン交換膜、バイポーラーイオン交換膜などが用い
られるが、 a これらの膜をピロール、チオフエン等々の電
子電導性を有する酸化重合可能な単量体または
単量体混合物、単量体を溶媒で希釈または溶媒
中に分散した液中に適当な時間浸漬してとり出
し、例えばFeCl3、Fe(NO33、Fe2(SO43
CuCl2、Fe(CN)6 3-、H2O2、NaClO等の酸化
剤中に浸漬して重合させる方法。この場合、膜
の断面に関して不均一に重合体を存在させるた
めに単量体への浸漬時間を制禦するか、重合時
間を制禦する必要がある。次いで、未反応の単
量体は抽出し、必要に応じてドーピングが行わ
れる。この場合、膜の片面のみに存在させたい
ときには、一旦単量体を吸着したイオン交換膜
を膜の一方のみが反応出来る装置にセツトして
片面のみ適当な時間反応させればよい。 b イオン交換膜を膜の片面のみがそれぞれ反応
出来る室枠にとりつけて、一方に電子電導性を
有する単量体の溶液或いは単量体のみを接触さ
せて膜中に吸着させ、他方には酸化剤を満たし
て、膜を通して相互拡散させて重合体を形成す
る方法。この場合も、a)と同様に未反応の単
量体の抽出とドーピングを適宜行なえばよい。 c 膜の片面のみ反応出来る装置にイオン交換膜
を組み込み、片面に電子電導性を有する単量体
或いは単量体を含む液と接触させ、一定時間後
に該単量体を除き洗浄したのちに、酸化剤を注
入する方法。 d 予め酸化剤を吸着させたイオン交換膜を電子
電導性を有する単量体中に浸漬して重合させる
方法で、該酸化剤の吸着量を制禦することによ
つて不均一とすることが出来る。或いは単量体
の濃度、単量体との接触時間を制禦して不均一
とすることが出来る。 e 白金、ITOなどの電極上にイオン交換膜の原
料となるポリマー、例えばポリ−N−メチル−
4−ビニルピリジニウム、ポリ塩化ビニル、ポ
リクロロメチルスチレンを流延法によつて薄膜
を形成し、これを電解酸化、或いは電解還元す
ることによつて、電子電導性を有する化合物
(単量体)中に浸漬して電極表面で重合させた
のち、残余のポリマーに陰イオン交換基を導入
する方法。 f 白金、ITOなどの電極上にポリスチレンスル
ホン酸などのポリマーを溶媒に溶解したものを
流延してフイルムとして、これをe)と同様に
して電解重合する単量体を重合させて、不均一
に存在させて電極より剥離する方法。 などが挙げられる。 また、膜断面に関して電子電導性を有する高分
子化合物が不均一に存在する状態が、単純な勾配
で表面から内部へ、または内部から表面へ、表面
から裏面へと存在するだけでなく、膜内部に複数
層の濃淡が存在する場合は、上記a)、b)、c)、
d)等によつて作つた膜状物を複数枚積層するこ
とによつて達成され、あるいは膜状物の内部に酸
化重合を開始させる化合物を存在させて単量体を
外部から供給することも出来る。 特に本発明に於いて効果的な製法は、上記した
電子電導性を有する酸化重合可能な化合物を酸化
剤によつて酸化重合する方法である。具体的に
は、塩化第二鉄、硫酸第二鉄、硝酸第二鉄等の第
二鉄塩、塩化銅などの二価の銅イオン、フエロシ
アン化イオン、過酸化水素、オゾン、塩素酸イオ
ン、次亜塩素酸、過塩素酸、過臭素酸等の酸化作
用のあるハロゲン酸など、塩素、臭素、過硫酸塩
など従来公知の酸化作用のある化合物は全て有効
に用いられる。そして、特に好適に用いられるイ
オン交換膜は、陰イオン交換膜の場合である。 〔発明の効果〕 本発明のイオン交換膜は電子電導性を有する高
分子化合物が膜断面に関して不均一に存在するこ
とが重要であり、各種の新しい機能がイオン交換
膜に賦与される。例えば、これを電気透析に用い
ると、通常の陰イオン交換膜にピロールを片面の
み含浸酸化重合した膜は、非常に陰イオン交換膜
を透過し易い酸の濃度勾配に基づく透過漏洩を防
止し、高濃度の酸を高い電流効率で取得すること
が出来る。或いは理由は明確でないが塩素イオン
に対して硫酸イオンの膜透過量を著しく減少させ
ることが出来る。 また、本発明のイオン交換膜は両面に於いて電
位が発生し、全固体の薄膜電池とすることも出来
る。さらに、この電池の電位はイオン交換膜中の
含水量によつて著しく変化するため、感湿素子と
して作用する。その他、多くの膜分離技術分野、
センサー素子、エレクトロニクス分野、電池の分
野と広い応用が展開できる。 〔実施例〕 以下、実施例に於いて本発明の内容を具体的に
説明するが、本発明は以下の実施例によつて制限
されるものではない。 実施例 1 原膜として強塩基性の陰イオン交換膜(徳山曹
達社製、ネオセプタAM−1)を膜の片面のみ反
応出来る装置に組み込み、該膜の片側に3%のピ
ロール水溶液を満たし、24時間攪拌して陰イオン
交換膜に充分に吸着させた。ついで、ピロール水
溶液を排出して充分に洗滌後、これに5%の塩化
第二鉄水溶液を満たして4時間攪拌した。この処
理膜をとり出したところ、ピロールが含浸、重合
した側に著しくカールし黒変した膜が得られた。
この膜を乾燥後、膜表面の電気抵抗を膜表面に銀
ペーストを塗布したストリツプで測定した結果、
ピロールを含浸、重合した側は0.3KΩ/cmであ
り、ピロールが含浸、重合していない側は
2.5MΩ/cmであつた。また、この膜を1.0規定の
塩酸に平衡にした後、1000サイクル交流で電気抵
抗を測定した結果は、2.6Ω−cm2であつた。さら
に、この膜をタングステン酸ソーダ(PH4.88)の
中に一週間平衡にして後とり出し、水洗後にX線
マイクロアナライザーによつてタングステンの分
布を測定したところ、図−1のように不均一に存
在していた。即ち、ポリピロールが陰イオン交換
膜の断面に関して不均一に存在していることが分
る。なお、このピロールを不均一に含漬重合した
膜について、50mm平方を切りとり重量増加を測定
したところ、原膜に対して70%の重量増加があつ
た。 他方、比較のために、膜の両面を反応出来る2
室式装置に上記と同様の陰イオン交換膜をセツト
し、3%のピロール水溶液を満たして24時間攪拌
させて充分に吸着平衡に達せしめたのちに、両室
の液を抜きとり、水洗した後、5%の塩化第二鉄
水溶液を満たして4時間攪拌して処理した。この
処理膜をとり出し、水洗して乾燥後、膜表面の電
気抵抗を測定した結果、膜の両面ともに電気抵抗
は0.3KΩ/cmであつた。さらに、一方の膜面を
1500メツシユのサンドペーパーで膜厚の丁度1/2
となるところまで削り、同様に電気抵抗を測定し
た結果、やはり0.3KΩ/cmであり、ポリピロール
が膜の断面に関して均一に存在していることが分
る。また、こりポリピロールが均一に存在した処
理膜について、電気抵抗を測定した結果は35Ω−
cm2であり、重量増加率は200%であつた。なお、
ピロールを含浸、重合していない陰イオン交換膜
(原膜)の電気抵抗は、同じ条件下で測定した結
果、0.4Ω−cm2であつた。 次に、上記した原膜の陰イオン交換膜、該陰イ
オン交換膜(原膜)にポリピロールを不均一に存
在させた膜、また均一にポリピロールを存在させ
た膜の三種をそれぞれ使つて塩酸の電気透析をし
た。即ち、膜の陽極側に6.0規定の塩酸を配し、
陰極側に0.5規定の塩酸を配して1.0A/dm2で電
気透析したところ、原膜の場合は電流効率が−
470%であり、不均一にポリピロールを存在させ
た膜の場合は83%であり、また均一にポリピロー
ルを存在させた膜の場合は82%であつたが、均一
にポリピロールを存在させた膜の場合は電極間の
電圧が4.62Vで不均一に存在させた膜の場合は
1.26Vで、原膜そのものの場合は1.12Vであつた。 実施例 2 分子量が約7600のポリクロロメチルスチレンを
メチルエチルケトンに30%となるように溶解した
のち、これを白金板上に流延して白金板上に約
0.05mm厚みのフイルムを形成した。次いで、アセ
トニトリルに0.3モルのピロール、0.2モルのテト
ラエチルアンモニウムパークロレートを溶解した
ものに、このフイルムを白金板を陽極として浸漬
し、陰極として同じく白金板を用いて2mA/cm2
の電流密度で15分間電解したところ、陽極の白金
板の近傍にのみピロールが重合し、ポリクロロメ
チルスチレンの表面に一部が含浸重合した。次い
で、このフイルムを白金板からはぎとつて、トリ
メチルアミンの2.0規定のアセトン−水(1:1)
の液に浸漬してアミノ化処理を施して、膜内のク
ロロメチル基に陰イオン交換基を導入した。この
処理膜について、ピロールの重合体が存在する側
の電気抵抗は820Ω/cmであり、他面の電気抵抗
は5.2MΩ/cmである結果から、ポリピロールが
不均一に存在する陰イオン交換膜である。 他方、上記したフイルム白金板上におけるピロ
ールの電解重合を2時間実施した。得られた膜に
ついて、ピロール重合体が存在する側の電気抵抗
は820Ω/cmであり、液に接触している側は
830Ω/cmであり、ポリピロールがほぼ均一に存
在していることが認められる。 なお、上記した電解重合しないで、そのままの
フイルムに陰イオン交換基を導入した膜を基準と
して、不均一にポリピロールが存在した膜の重量
増加は30%であつたが、均一に重合させた膜の重
量増加は500%であつた。 実施例 3 ポリ塩化ビニルの微粉末をテトラヒドロフラン
に溶解し、これをインジウム−スズ酸化物
(ITO)をコーテイングしたガラス板上に流延し、
乾燥してITO上に約0.05mm厚みのフイルムを形成
した。これをチオフエン0.5モル/および(C2
H54NBF4 -0.2モル/をアセトニトリルに溶解
したものに浸漬し、別の白金板を陰極として、ポ
リ塩化ビニルをコーテイングしたITOを陽極とし
て電解酸化重合した。2mA/cm2の電流密度で15
分間実施した結果、ITO表面近傍にのみポリチオ
フエンが形成された。次いで、フイルムをITO上
から剥離してヒドラジン水溶液中に浸漬して加熱
した。得られたフイルムについて、赤外吸収スペ
クトルでポリチオフエンが存在していない面を観
察したところ、陰イオン交換基の存在を示す吸収
が見られ、常法により陰イオン交換容量を測定し
たところ、1.8ミリ当量/グラム乾燥膜であつた。
また、このポリチオフエンが不均一に存在した薄
膜の電気抵抗は0.5規定の塩酸中で測定したとこ
ろ2.1Ω−cm2であり、硫酸イオンの塩素イオンに
対する選択透過性は塩素イオン1当量に対して硫
酸イオンは0.01当量であつた。 上記と同じ厚みのポリ塩化ビニルのフイルムシ
ートを作り、ヒドラジンと反応させて得た陰イオ
ン交換膜について、同様の測定をしたところ、交
換容量は2.0ミリ当量/グラム乾燥膜、電気抵抗
は1.8Ω−cm2、硫酸イオンの塩素イオンに対する
選択透過性は、塩素イオン1当量に対して硫酸イ
オン0.5当量であつた。 他方、上記したと同様の電解酸化重合を
2mA/cm2の電流密度で3時間実施したところ、
ポリ塩化ビニルフイルムの溶液に接している側に
もポリチオフエンの形成が見られた。これを同様
にしてヒドラジンと反応させて陰イオン交換基の
導入を実施した。この得られたポリチオフエンが
均一に存在した膜は機械的に非常に弱く、イオン
交換容量は2.2ミリ当量/グラム乾燥膜であり、
0.5規定の塩酸中で電気抵抗を測定したところ
10.2Ω−cm2であり、また硫酸イオンの塩素イオン
1当量に対して膜透過した量は0.03当量であつ
た。 なお、重量増加を測定したところ、不均一にポ
リチオフエンを存在させた膜は、ヒドラジンと反
応させたのみの膜に比較して105%であつた。他
方、ポリチオフエンを均一に存在させた膜は、
800%の重量増加であつた。 実施例 4 両性イオン交換膜(徳山曹達社製、ネオセプタ
CSV)を原膜として用いて、N−メチルピロー
ルの3%水溶液中に攪拌下に浸漬し24時間放置し
充分に吸着させた。次いで、この膜を実施例1で
用いた膜の片面のみ反応出来る装置に組込み、硝
酸第二鉄の10%水溶液を片側にのみ満たし5時間
攪拌し、N−メチルピロールを酸化重合せしめ
た。このポリ−N−メチルピロールを不均一に存
在させた膜をとり出し水洗後、0.5Nの食塩水に
平衡にして電気抵抗を測定したところ、5.1Ω−
cm2であつた。なお、N−メチルピロールを含浸重
合していない両性イオン交換膜(原膜)の電気抵
抗は、9.5Ω−cm2であつた。 他方、上記のN−メチルピロールを充分に膜内
に含浸したのち、膜を同様に酸化重合して両面に
均一にポリ−N−メチルピロールを存在させて、
得られた膜の電気抵抗は23Ω−cm2であつた。 なお、膜の重量増加は不均一に存在させた膜で
25%であり、均一に存在させた膜が230%であつ
た。 実施例 5 スチレンとジビニルベンゼンの共重合体フイル
ムで、厚みが0.15mmのものの一方の側から、98%
濃硫酸でスルホン化処理してスルホン酸基を導入
した。次いで、この膜を乾燥後クロルメチルエー
テル、四塩化スズを四塩化炭素に溶解した反応浴
に浸漬し、クロルメチル基を反対側の膜面に導入
した。次いでトリメチルアミン−アセトン−水の
アミノ化浴に浸漬して4級アンモニウム塩基を導
入してバイポーラーイオン交換膜とした。 このイオン交換膜を実施例1と同様にして膜の
片面のみ反応出来る装置に組込み5%メタノール
溶液と接触させてピロールを膜に含浸させ、つい
で片面のみ塩化第二鉄の2%水溶液に3時間接触
させて重合させた。この場合、バイポーラーイオ
ン交換膜の陰イオン交換膜層(アミノ基を有する
側)と陽イオン交換膜層(スルホン酸基を有する
側)と両方それぞれ別々にピロール及び塩化第二
鉄を接触させて、ポリピロールが不均一に存在す
る膜を製造した。また、比較のために、実施例1
に記載したと同一の方法で2室式装置を用いて、
膜の両面をピロールおよび塩化第二鉄の溶液と接
触させて、ポリピロールを均一に存在させた膜を
製造した。 これらポリピロールを不均一に存在させた2種
の膜、ポリピロールを均一に存在させた膜、およ
びポリピロールを存在させない原膜(未処理膜)
について、0.5規定の食塩水を1.0A/dm2の電流
密度で電気透析に供した結果、各膜を介して両側
の室におけるPHを第1表に示した。なお、膜は陰
イオン交換基の層を陽極側に向けて設置した。
[Industrial Application Field] The present invention relates to an improved ion exchange membrane in which a polymer compound having electronic conductivity is distributed in a layered manner non-uniformly in a cross section, and is applicable to membrane separation technology, electronics,
The present invention provides a film-like material that has properties useful in fields such as batteries. [Prior art and its problems] Conventionally, for ion exchange membranes, in order to improve or decrease ion selective permeability, or change the selective permeability between ions of the same sign,
Various methods have been tried. In addition, in an attempt to impart new functions to ion exchange membranes, we have added polymerizable vinyl monomers to cation exchange membranes.
Alternatively, a method of impregnating and polymerizing the anion exchange membrane has been carried out, and improved ion exchange membranes have been proposed that reduce the amount of diffused salt permeation, improve the transfer number, and reduce the amount of leakage of acids or bases. However, in these methods, the vinyl monomer is generally polymerized within the ion exchange membrane in many cases, so the ion exchange membrane itself is swollen by the vinyl monomer and the resulting improved ion exchange membrane mechanically deteriorates. There is a problem that leads to a decrease in the strength of the target. It has also been reported that condensation monomers can be condensed within an ion exchange membrane, but this often requires heat treatment to complete the condensation reaction, which can impair membrane performance. arise. [Means for Solving the Problems] In view of the above, the present inventors generally change the characteristics of the ion exchanger by forming a matrix of another polymer in the matrix of the ion exchange resin, and We have repeatedly investigated whether it is possible to impart new functions to the ion exchanger. As a result, by impregnating and polymerizing an ion exchange resin membrane with a polymerizable monomer and a compound in which the polymer has electronic conductivity, the characteristics of the ion exchange membrane were improved and new useful functions were imparted. An improved ion exchange membrane was obtained and the present invention was provided. That is,
The present invention is an improved ion exchange membrane characterized in that a polymer compound having electronic conductivity is distributed nonuniformly in a layered manner with respect to the cross section. As the compound having electronic conductivity of the present invention,
Conventionally known materials can be used without any restriction. That is, the electrical energy of catalysts, electrolysis, etc., α,
Compounds that exhibit electronic conductivity when polymerized by ionizing radiation such as β and γ, X-rays, ultraviolet rays, plasma, discharge such as glow, etc. can be used without any limitations.
Specifically, examples include pyrrole and its derivatives, N-alkylpyrroles such as N-methylpyrrole and 2-ethylpyrrole, thiophene derivatives such as thiophene and 3-alkylthiophene, isothianaphthene and its derivatives, indole, One or more derivatives of each of azulene, furan, aniline, phenol, benzene, naphthalene, phenylene diamines, acetylene, etc. are preferably used. In particular, heterocyclic compounds such as pyrrole, indole, azulene, thiophene, furan, and their derivatives, and acetylene are preferred because they have good affinity with the ion exchange membrane and are uniformly dispersed in the ion exchange membrane after ion exchange.
These are polymerized by the energy described above,
This provides a polymer compound with electronic conductivity. Further, as the ion exchange membrane in which the compound having electronic conductivity is present, any conventionally known ion exchange membrane can be used without any restriction as long as it is a polymeric membrane having ion exchange groups bonded thereto. That is, not only organic ion exchange membranes but also those obtained by pressurizing and heat-molding zirconium phosphate or the like with a suitable organic or inorganic binder can also be suitably used. Organic ion exchange membranes include polymeric ion exchangers, so-called styrene-divinylbenzene copolymers with ion exchange groups bonded to them, condensed ion exchangers with cation exchange groups and/or Those to which an anion exchange group is bonded are preferably used.
Such ion exchangers include conventionally known homogeneous systems,
A heterogeneous ion exchanger can also be used, and the substrate for the ion exchanger can be suitably used regardless of whether it is hydrocarbon-based, carbon fluoride-based, or perfluorocarbon-based. An ion exchange membrane particularly suitable for the present invention is not particularly limited as long as it has generally 0.1 to 15 milliequivalents of ion exchange groups bonded to 1 g of the dried ion exchange membrane. The ion exchange groups include conventionally known cation exchange groups such as sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphorous acid groups, sulfonic acid ester groups, phenolic hydroxyl groups, thiol groups, and tertiary perfluorinated groups. Alcohol etc. are used, and the anion exchange group is primary, secondary, tertiary amine,
These include onium bases such as quaternary ammonium, tertiary sulfonium, quaternary phosphonium, and cobalticinium. Such ion exchange membranes have
It is effective not only when only one type of ion exchange group is bonded, but also when multiple types of ion exchange groups are bonded. Specifically, primary, secondary, tertiary amines and onium bases are bonded. Anion exchange membranes in which one or more types of anion exchange membranes are combined together are preferred. Also preferably used are ion exchange membranes in which carboxylic acid groups and sulfonic acid groups are bonded, membranes in which sulfonic acid groups and quaternary ammonium bases are bonded simultaneously, and the like. Furthermore, membranes in which the distribution of ion exchange groups differs with respect to the cross section of the membrane, such as membranes in which ion exchange groups are densely present on one side of the membrane and sparsely present on the other, and ion exchange groups in the surface layer of the membrane, A membrane in which a thin layer with a charge opposite to that of the exchange group of the exchange membrane exists can also be effectively used. In addition, porous ion exchange membranes, ie, porous membrane materials to which cation exchange groups and/or anion exchange groups are bonded, are extremely effective depending on the purpose of use. In this case, the porosity and thickness of the membrane are appropriately selected depending on the purpose of use, but a porosity of 95% and a thickness of 0.0001 to 1.0 cm are generally suitable, respectively. Note that the present invention is not limited to the use of a film-like material having an ion-exchange group in advance as described above, but also includes a film-like material having electronic conductivity that has a functional group that can be easily converted into an ion-exchange group. The ion exchange group may be introduced after the presence of the ion exchange group. For example, a method may be employed in which a polymeric membrane bonded with haloalkylstyrene or the like is impregnated with a compound having electronic conductivity as described above, and then reacted with an amine to introduce an anion exchange group. In the present invention, the embodiment in which the polymer compound having electron conductivity is present in a non-uniform layered manner with respect to the cross section of the ion exchange membrane is generally a polymer compound having electron conductivity only on one side of the ion exchange membrane. The most preferable state is one in which one exists and the other has little or no presence, but the present invention is not limited to this. That is, depending on the purpose of use of the ion exchange membrane, the polymer compound having electronic conductivity may be
If the concentration of the polymer compound having electronic conductivity is high on both surfaces of the membrane and is low in the center of the membrane cross section, or if the concentration of the polymer compound having electronic conductivity is high in the central part with respect to the membrane cross section and low on both surfaces, When there are multiple concentrations of polymers with electronic conductivity, and the concentration is high on one side of the film and low on the other side, when the concentration is low on both sides, and when the concentration is high on both sides, various modes are effective. be. The concentration of the electron-conductive polymer compound in the ion-exchange membrane is highest when only the electron-conductive polymer compound is present and no other compounds, that is, the base material of the ion-exchange membrane, are present. If the components of the ion exchange membrane are appropriately mixed in, other inert polymers and the like may be mixed in the electronically conductive polymer compound. Further, in an ion exchange membrane in which no polymer compound having electron conductivity is present, the concentration of the polymer having electron conductivity can be adjusted as necessary. The concentration (amount) of the polymer compound having electron conductivity that is unevenly present in such an ion exchange membrane can be indicated by the increase in the weight of the ion exchange membrane (original membrane).
This weight increase occurs when a polymer compound with electronic conductivity exists unevenly on one side of the membrane cross section.
It is desirable that it increases by 10% or more and up to 400%. The production of the ion exchange membrane in which the polymeric compound having electronic conductivity of the present invention exists involves the following various methods in order to make the polymeric compound having electronic conductivity exist nonuniformly with respect to the cross section of the membrane. Can be adopted. For example, 1. A method in which a compound (monomer) having electron conductivity is non-uniformly present in the polymer of the ion exchange membrane used as the substrate and then polymerized. 2. The polymer of the ion exchange membrane used as the substrate Method 3: Polymerization is carried out so that an electron-conductive compound (monomer) is uniformly present in the polymer, and then the polymer is present non-uniformly. Method 4 of causing an electron conductive compound (monomer) to exist in the substrate and then carrying out a polymerization reaction heterogeneously.Laminating the high molecular polymer of the ion exchange membrane used as the substrate and the high molecular compound having electronic conductivity, Method 5 of applying, spraying, coating, and adsorbing After laminating, applying, spraying, coating, and adsorbing the polymer used for the substrate and the polymer compound having electron conductivity, the polymer and the electrons in the surface layer are layered, applied, sprayed, coated, and adsorbed. Method 6 of integrating and bonding a polymer compound with electrical conductivity through a chemically stable ionic bond, covalent bond, coordinate bond, etc. 4), and then polymerized and bonded with an adhesive such as epoxy-amine, polyisocyanate and polyol, or in the presence of a vinyl monomer. Method 7: By electrolytic oxidation or electrolytic reduction. The present invention is not limited to the above-mentioned manufacturing method, but includes the steps of: uniformly polymerizing a compound having electron conductivity in an ion exchange membrane or its raw membrane, and introducing ion exchange groups as necessary; Any method can be used as long as a polymer compound having non-uniform electron conductivity is present in the polymer of the ion exchange membrane serving as the base. A dopant may be present in the above-mentioned electron conductive polymer compound of the present invention to impart electronic conductivity. As the doping method, a wide variety of conventionally known methods can be employed. That is, methods include immersing the ion exchange membrane in a dopant solution, electrochemical doping, contacting with dopant vapor, and blending. Furthermore, conventionally known dopants are widely used, such as ClO 4 - , PF 4 - , Cl - , F - ,
Br - , I - , FeCl 3 , styrene sulfonic acid, polystyrene sulfonic acid, perfluorocarbon sulfonic acid, toluene sulfonic acid, benzene sulfonic acid, rose bengal, anthraquinone disulfate, tetra(sulfonyl)porphyrin, tetrasulfophthalcyanine, Basof enanthroline disulfate,
Bathophenanthroline, polyvinyl sulfate, PtCl 4 2
, AuCl 4 , PdCl 4 2- , Fe(CN) 6 3- , RuO 4 - ,
Known materials such as MnO 4 can be used without any restrictions. Among these, particularly suitable ones are:
Halogen ions, especially Cl - . In the present invention, the desired ion exchange membrane can be obtained as long as one or more of these dopants is doped into a polymer compound having electronic conductivity, and the doping ratio is 0.001 or more. Hereinafter, a typical method for manufacturing the ion exchange membrane of the present invention will be specifically illustrated. Cation exchange membranes, anion exchange membranes, amphoteric ion exchange membranes, mosaic ion exchange membranes, bipolar ion exchange membranes, etc. are used as ion exchange membranes for the raw membrane. An oxidatively polymerizable monomer or a monomer mixture having a property, the monomer is diluted with a solvent or immersed in a solution dispersed in a solvent for an appropriate period of time and taken out, for example, FeCl 3 , Fe(NO 3 ). 3 , Fe2 ( SO4 ) 3 ,
A method of polymerization by immersion in an oxidizing agent such as CuCl 2 , Fe(CN) 6 3- , H 2 O 2 , NaClO, etc. In this case, it is necessary to control the immersion time in the monomer or to control the polymerization time in order to make the polymer exist non-uniformly with respect to the cross section of the membrane. Next, unreacted monomers are extracted, and doping is performed if necessary. In this case, if it is desired that the monomer be present on only one side of the membrane, the ion exchange membrane on which the monomer has been adsorbed may be set in a device that allows only one side of the membrane to react, and only one side of the membrane may be reacted for an appropriate period of time. b. An ion exchange membrane is attached to a chamber frame in which only one side of the membrane can react, and one side is brought into contact with a solution of a monomer having electronic conductivity, or only the monomer is adsorbed into the membrane, and the other side is oxidized. A method in which a polymer is filled with an agent and allowed to interdiffuse through a membrane to form a polymer. In this case as well, extraction of unreacted monomers and doping may be carried out as appropriate in the same manner as in a). c. An ion exchange membrane is installed in a device that can react only on one side of the membrane, and one side is brought into contact with a monomer having electronic conductivity or a liquid containing a monomer, and after a certain period of time, the monomer is removed and washed, and then Method of injecting oxidizer. d) A method in which an ion exchange membrane on which an oxidizing agent has been adsorbed in advance is immersed in a monomer having electronic conductivity for polymerization, which can be made non-uniform by controlling the amount of adsorption of the oxidizing agent. I can do it. Alternatively, the concentration of the monomer and the contact time with the monomer can be controlled to make it non-uniform. e Platinum, ITO, or other electrodes are covered with polymers that are raw materials for ion exchange membranes, such as poly-N-methyl-
A compound (monomer) with electronic conductivity is produced by forming a thin film of 4-vinylpyridinium, polyvinyl chloride, or polychloromethylstyrene by a casting method, and then electrolytically oxidizing or reducing the film. A method in which an anion exchange group is introduced into the remaining polymer after it is immersed in the polymer and polymerized on the electrode surface. f. Cast a polymer such as polystyrene sulfonic acid dissolved in a solvent onto an electrode such as platinum or ITO to form a film, and then electropolymerize the monomer in the same manner as in e) to form a heterogeneous film. A method of separating the electrode from the electrode. Examples include. In addition, the state in which the polymer compound with electronic conductivity exists non-uniformly with respect to the cross section of the membrane exists not only with a simple gradient from the surface to the inside, from the inside to the surface, or from the surface to the back surface, but also in the inside of the membrane. If there are multiple layers of shading, the above a), b), c),
d), etc., by laminating multiple sheets of film-like material, or it is also possible to supply monomers from the outside with a compound that initiates oxidative polymerization present inside the film-like material. I can do it. A particularly effective production method in the present invention is a method in which the above-described oxidatively polymerizable compound having electronic conductivity is oxidatively polymerized using an oxidizing agent. Specifically, ferric salts such as ferric chloride, ferric sulfate, and ferric nitrate, divalent copper ions such as copper chloride, ferrocyanide ions, hydrogen peroxide, ozone, chlorate ions, All conventionally known oxidizing compounds such as halogen acids with oxidizing effects such as hypochlorous acid, perchloric acid, and perbromic acid, chlorine, bromine, and persulfates can be used effectively. An ion exchange membrane that is particularly preferably used is an anion exchange membrane. [Effects of the Invention] In the ion exchange membrane of the present invention, it is important that the polymer compound having electron conductivity exists nonuniformly with respect to the cross section of the membrane, and various new functions are imparted to the ion exchange membrane. For example, when this is used for electrodialysis, a membrane made by impregnating pyrrole on only one side of an ordinary anion exchange membrane and oxidatively polymerizing it prevents permeation leakage due to the concentration gradient of acids that easily permeate the anion exchange membrane. Highly concentrated acids can be obtained with high current efficiency. Alternatively, although the reason is not clear, the amount of sulfate ions that permeate through the membrane can be significantly reduced compared to chlorine ions. Further, the ion exchange membrane of the present invention generates a potential on both sides, and can be used as an all-solid thin film battery. Furthermore, since the potential of this cell changes significantly depending on the water content in the ion exchange membrane, it acts as a moisture sensitive element. In addition, many membrane separation technology fields,
It can be used in a wide range of applications including sensor elements, electronics, and batteries. [Examples] Hereinafter, the contents of the present invention will be specifically explained in Examples, but the present invention is not limited to the following Examples. Example 1 A strongly basic anion exchange membrane (Neosepta AM-1, manufactured by Tokuyama Soda Co., Ltd.) was installed as a raw membrane in an apparatus capable of reacting only one side of the membrane, and one side of the membrane was filled with a 3% aqueous pyrrole solution. The mixture was stirred for hours to ensure sufficient adsorption onto the anion exchange membrane. Next, the pyrrole aqueous solution was discharged and thoroughly washed, and then a 5% ferric chloride aqueous solution was filled in the solution and stirred for 4 hours. When this treated membrane was taken out, it was found that the side where pyrrole had been impregnated and polymerized was significantly curled and turned black.
After drying this film, the electrical resistance of the film surface was measured using a strip coated with silver paste.
The side impregnated with pyrrole and polymerized is 0.3KΩ/cm, and the side impregnated with pyrrole and not polymerized is 0.3KΩ/cm.
It was 2.5MΩ/cm. Further, after equilibrating this membrane with 1.0N hydrochloric acid, the electrical resistance was measured at 1000 cycles of AC, and the result was 2.6Ω-cm 2 . Furthermore, this film was equilibrated in sodium tungstate (PH4.88) for one week, and then taken out. After washing with water, the distribution of tungsten was measured using an X-ray microanalyzer. As shown in Figure 1, the tungsten distribution was uneven. existed in That is, it can be seen that polypyrrole exists nonuniformly in the cross section of the anion exchange membrane. In addition, when a 50 mm square section was cut out of this film obtained by non-uniformly impregnating and polymerizing pyrrole and the weight increase was measured, there was a 70% increase in weight compared to the original film. On the other hand, for comparison, 2 which can react on both sides of the membrane
An anion exchange membrane similar to the above was set in a chamber type device, filled with a 3% aqueous pyrrole solution, and stirred for 24 hours to fully reach adsorption equilibrium.Then, the liquid in both chambers was drained and washed with water. Thereafter, it was filled with a 5% aqueous ferric chloride solution and stirred for 4 hours for treatment. This treated membrane was taken out, washed with water and dried, and the electrical resistance of the membrane surface was measured. As a result, the electrical resistance on both sides of the membrane was 0.3 KΩ/cm. Furthermore, one membrane surface
Exactly 1/2 of the film thickness with 1500 mesh sandpaper
The electrical resistance was measured in the same way as before, and it was found to be 0.3KΩ/cm, indicating that polypyrrole is uniformly present in the cross section of the film. In addition, the electrical resistance of the treated film in which stiff polypyrrole was uniformly present was 35Ω-
cm 2 and the weight increase rate was 200%. In addition,
The electrical resistance of the anion exchange membrane (raw membrane) impregnated with pyrrole and not polymerized was 0.4 Ω-cm 2 when measured under the same conditions. Next, three types of anion exchange membranes were used: the original anion exchange membrane described above, a membrane in which polypyrrole was unevenly present in the anion exchange membrane (original membrane), and a membrane in which polypyrrole was uniformly present in the anion exchange membrane (original membrane). I did electrodialysis. That is, 6.0 normal hydrochloric acid is placed on the anode side of the membrane,
When 0.5N hydrochloric acid was placed on the cathode side and electrodialysis was performed at 1.0A/ dm2 , the current efficiency of the raw membrane was -
It was 470%, 83% for the film with polypyrrole present unevenly, and 82% for the film with uniform polypyrrole present; If the voltage between the electrodes is 4.62V and the film is non-uniform, then
It was 1.26V, and 1.12V for the raw film itself. Example 2 Polychloromethylstyrene with a molecular weight of about 7,600 was dissolved in methyl ethyl ketone to a concentration of 30%, and this was cast onto a platinum plate to form a solution of about 30% on the platinum plate.
A film with a thickness of 0.05 mm was formed. Next, this film was immersed in a solution of 0.3 mol of pyrrole and 0.2 mol of tetraethylammonium perchlorate in acetonitrile, using a platinum plate as an anode, and using the same platinum plate as a cathode at a current of 2 mA/cm 2 .
When electrolysis was carried out for 15 minutes at a current density of , pyrrole was polymerized only in the vicinity of the platinum plate of the anode, and some of it was impregnated and polymerized on the surface of the polychloromethylstyrene. Next, this film was peeled off from the platinum plate and diluted with trimethylamine in 2.0N acetone-water (1:1).
Anion exchange groups were introduced into the chloromethyl groups in the membrane by immersing the membrane in a solution of Regarding this treated membrane, the electrical resistance on the side where the pyrrole polymer is present is 820 Ω/cm, and the electrical resistance on the other side is 5.2 MΩ/cm. be. On the other hand, electrolytic polymerization of pyrrole on the film platinum plate described above was carried out for 2 hours. The resulting membrane has an electrical resistance of 820Ω/cm on the side where the pyrrole polymer is present, and a resistance of 820Ω/cm on the side in contact with the liquid.
830Ω/cm, and it is recognized that polypyrrole exists almost uniformly. In addition, the weight increase of the membrane in which polypyrrole was present unevenly was 30%, compared to the membrane in which anion exchange groups were introduced into the film as it was without electrolytic polymerization, whereas the weight increase in the membrane in which polypyrrole was uniformly present was 30%. The weight increase was 500%. Example 3 Fine powder of polyvinyl chloride was dissolved in tetrahydrofuran, and this was cast onto a glass plate coated with indium-tin oxide (ITO).
After drying, a film with a thickness of about 0.05 mm was formed on the ITO. 0.5 mol of thiophene/and (C 2
H 5 ) 4 NBF 4 - 0.2 mole was immersed in acetonitrile solution, and electrolytic oxidation polymerization was carried out using another platinum plate as a cathode and polyvinyl chloride-coated ITO as an anode. 15 at a current density of 2mA/ cm2
As a result of conducting the experiment for several minutes, polythiophene was formed only near the ITO surface. Next, the film was peeled off from the ITO, immersed in an aqueous hydrazine solution, and heated. When the obtained film was observed in an infrared absorption spectrum on the side where polythiophene was not present, absorption indicating the presence of anion exchange groups was observed, and when the anion exchange capacity was measured using a conventional method, it was found to be 1.8 mm. Equivalents/gram dry film.
In addition, the electrical resistance of a thin film in which polythiophene was unevenly present was 2.1 Ω-cm 2 when measured in 0.5N hydrochloric acid, and the selective permeability of sulfate ions to chloride ions was 2.1Ω-cm 2 for 1 equivalent of chloride ions. The ion was 0.01 equivalent. Similar measurements were made on an anion exchange membrane obtained by making a polyvinyl chloride film sheet with the same thickness as above and reacting it with hydrazine, and the exchange capacity was 2.0 milliequivalents/gram dry membrane, and the electrical resistance was 1.8Ω. -cm 2 , the selective permeability of sulfate ions to chloride ions was 0.5 equivalents of sulfate ions per 1 equivalent of chloride ions. On the other hand, the same electrolytic oxidative polymerization as described above
When carried out for 3 hours at a current density of 2 mA/cm 2 ,
Formation of polythiophene was also observed on the side of the polyvinyl chloride film that was in contact with the solution. This was similarly reacted with hydrazine to introduce an anion exchange group. The resulting membrane in which polythiophene was uniformly present was mechanically very weak, with an ion exchange capacity of 2.2 milliequivalents/g dry membrane;
Electrical resistance measured in 0.5N hydrochloric acid
10.2 Ω-cm 2 , and the amount of sulfate ion permeated through the membrane per 1 equivalent of chlorine ion was 0.03 equivalent. In addition, when the weight increase was measured, the weight increase of the membrane in which polythiophene was unevenly present was 105% compared to the membrane reacted only with hydrazine. On the other hand, a film in which polythiophene is uniformly present,
This was an 800% weight increase. Example 4 Amphoteric ion exchange membrane (manufactured by Tokuyama Soda Co., Ltd., Neocepta)
CSV) was used as a raw film, it was immersed in a 3% aqueous solution of N-methylpyrrole under stirring and left for 24 hours for sufficient adsorption. Next, this membrane was installed in the apparatus used in Example 1 which can react only on one side, and only one side was filled with a 10% aqueous solution of ferric nitrate and stirred for 5 hours to oxidize and polymerize N-methylpyrrole. The membrane in which poly-N-methylpyrrole was unevenly present was taken out, washed with water, equilibrated with 0.5N saline solution, and its electrical resistance was measured. It was found to be 5.1Ω-
It was warm in cm2 . The electrical resistance of the amphoteric ion exchange membrane (original membrane) which was not impregnated with N-methylpyrrole and polymerized was 9.5 Ω-cm 2 . On the other hand, after sufficiently impregnating the membrane with the above-mentioned N-methylpyrrole, the membrane was similarly oxidatively polymerized so that poly-N-methylpyrrole was uniformly present on both sides.
The electrical resistance of the obtained film was 23Ω-cm 2 . Note that the weight increase of the film is due to the non-uniformity of the film.
25%, and 230% for the uniformly distributed film. Example 5 From one side of a styrene and divinylbenzene copolymer film with a thickness of 0.15 mm, 98%
A sulfonic acid group was introduced by sulfonation treatment with concentrated sulfuric acid. Next, this membrane was dried and immersed in a reaction bath in which chloromethyl ether and tin tetrachloride were dissolved in carbon tetrachloride to introduce chloromethyl groups onto the opposite membrane surface. The membrane was then immersed in an amination bath of trimethylamine-acetone-water to introduce a quaternary ammonium base to form a bipolar ion exchange membrane. This ion exchange membrane was assembled into a device capable of reacting only one side of the membrane in the same manner as in Example 1, brought into contact with a 5% methanol solution to impregnate the membrane with pyrrole, and then only one side was soaked in a 2% aqueous solution of ferric chloride for 3 hours. were brought into contact and polymerized. In this case, both the anion exchange membrane layer (the side with amino groups) and the cation exchange membrane layer (the side with sulfonic acid groups) of the bipolar ion exchange membrane are brought into contact with pyrrole and ferric chloride, respectively. , fabricated a membrane in which polypyrrole was present heterogeneously. Also, for comparison, Example 1
using a two-chamber apparatus in the same manner as described in
Both sides of the membrane were brought into contact with a solution of pyrrole and ferric chloride to produce a membrane in which polypyrrole was uniformly present. These two types of films have polypyrrole present unevenly, a film where polypyrrole exists uniformly, and an original film without polypyrrole (untreated film).
Table 1 shows the PH in both chambers through each membrane as a result of electrodialysis of 0.5N saline at a current density of 1.0A/ dm2 . Note that the membrane was installed with the layer of anion exchange groups facing the anode side.

【表】 実施例 6 陽イオン交換膜(徳山曹達社製、ネオセプタ
CM−1)をNa型としたのち、アニリンと水と
の1:10の懸独液中に攪拌下に浸漬した。48時間
浸漬し充分にアニリンが含浸した陽イオン交換膜
を、実施例1で用いた膜の片面のみ反応出来る装
置に組込み、一方の部屋に10%の過硫酸アンモニ
ウム水溶液を加えて1時間攪拌したところ、膜の
片面でアニリンが重合しポリアニリンが形成され
た。この膜のポリアニリンが存在する側を陽極に
向けて電流−電圧の曲線を測定したところ、バイ
ポーラーイオン交換膜として特有の曲線が得られ
た。 しかし、上記の陽イオン交換膜(原膜)に均一
にアニリンを存在させ過硫酸アンモニウム水溶液
で均一に重合させた膜は、電流電圧の曲線を測定
したところバイポーラー膜として特有の曲線は示
さず、その電流電圧曲線は原膜で観察される限界
電流密度以上でも直線であつた。 実施例 7 イソプレン、N,N−ジメチルビニルベンゼン
アミンおよびスチレンの三元ブロツク共重合体を
リビングアニオン重合によつて合成した。この溶
液をガラス板上に流延して溶媒を飛散させての
ち、得られたフイルムを98%濃硫酸でスルホン化
処理してスルホン酸基をスチレンユニツトに導入
し、次いで、沃化メチルと反応させて4級アンモ
ニウム塩基を導入した。この膜を一旦完全に乾燥
したのち、真空蒸着法によつて膜の一方の面に金
を蒸着させた。この金蒸着膜を陽極として、イソ
チアナフテン0.2モル/および(C3H74NBF4
0.2モル/のアセトニトリル溶液中に浸漬し平
衡含浸させたあと、別に白金板を陰極としてイソ
チアナフテンの電解重合を2時間実施した。 この処理膜について、NaClと蔗糖の透過比率
を求めたところ、蔗糖に比べて130倍NaClが透過
したが、未処理の膜は80倍であつた。尚、イソチ
アナフテンが重合した膜の側には、電導性が認め
られた。 実施例 8 強塩基性陰イオン交換膜(徳山曹達社製、ネオ
セプタAFN)を片面だけ反応出来る装置に組み
込み、片面をP−フエニレンジアミンの5%水溶
液に24時間接触させて充分に吸着させた。液を抜
き、次いで水洗後、10%の過硫酸アンモニウム水
溶液に15分間接触させて重合させた。膜の重量増
加は95%であつた。これを1規定の塩酸中に浸漬
して乾燥後、両側を白金板ではさみエレクトロメ
ーターに接続したところ550mVの起動が見られ
た。 別に膜の両面にP−フエニレンジアミンの5%
水溶液に24時間接触し平衡にしたのち、上記と同
様に重合させて膜の重量増加を測定したところ
285%であつた。これの両面に白金板をあてて起
動を測定したところ、全く起動は無かつた。
[Table] Example 6 Cation exchange membrane (manufactured by Tokuyama Soda Co., Ltd., Neocepta)
After converting CM-1) into Na-type, it was immersed in a suspension of aniline and water at a ratio of 1:10 under stirring. A cation exchange membrane that had been soaked for 48 hours and sufficiently impregnated with aniline was installed in the apparatus used in Example 1 that can react on only one side of the membrane, and a 10% aqueous ammonium persulfate solution was added to one chamber and stirred for 1 hour. , aniline polymerized on one side of the membrane to form polyaniline. When a current-voltage curve was measured with the polyaniline side of this membrane facing the anode, a characteristic curve for a bipolar ion exchange membrane was obtained. However, when the current-voltage curve of the above-mentioned cation exchange membrane (original membrane) in which aniline is uniformly present and uniformly polymerized with an aqueous ammonium persulfate solution is measured, it does not show the characteristic curve of a bipolar membrane. The current-voltage curve remained a straight line even above the critical current density observed in the raw film. Example 7 A ternary block copolymer of isoprene, N,N-dimethylvinylbenzenamine and styrene was synthesized by living anionic polymerization. After casting this solution onto a glass plate and scattering the solvent, the resulting film was sulfonated with 98% concentrated sulfuric acid to introduce sulfonic acid groups into the styrene units, and then reacted with methyl iodide. Then, a quaternary ammonium base was introduced. After this film was once completely dried, gold was deposited on one side of the film by vacuum evaporation. Using this gold vapor deposited film as an anode, 0.2 mol of isothianaphthene/and (C 3 H 7 ) 4 NBF 4
After equilibration impregnation by immersing in a 0.2 mol/acetonitrile solution, electrolytic polymerization of isothianaphthene was separately performed for 2 hours using a platinum plate as a cathode. When the permeation ratio of NaCl and sucrose was determined for this treated membrane, NaCl permeated 130 times more than sucrose, while it was 80 times more permeable through the untreated membrane. In addition, electrical conductivity was observed on the side of the film where isothianaphthene was polymerized. Example 8 A strongly basic anion exchange membrane (manufactured by Tokuyama Soda Co., Ltd., Neocepta AFN) was installed in a device capable of reacting only on one side, and one side was brought into contact with a 5% aqueous solution of P-phenylenediamine for 24 hours to ensure sufficient adsorption. . After draining the liquid and washing with water, it was brought into contact with a 10% aqueous ammonium persulfate solution for 15 minutes to polymerize. The weight increase of the membrane was 95%. When this was immersed in 1N hydrochloric acid and dried, both sides were sandwiched between platinum plates and connected to an electrometer, an activation of 550 mV was observed. Separately 5% of P-phenylenediamine on both sides of the membrane.
After contacting the aqueous solution for 24 hours to reach equilibrium, polymerization was performed in the same manner as above, and the weight increase of the membrane was measured.
It was 285%. When we measured the activation by applying platinum plates to both sides of this, there was no activation at all.

Claims (1)

【特許請求の範囲】 1 電子電導性を有する高分子化合物が膜断面に
関して不均一に層状に分布することを特徴とする
改良イオン交換膜 2 電子電導性を有する高分子化合物がイオン交
換膜の片面にのみ存在する特許請求の範囲第1項
記載の改良イオン交換膜。
[Scope of Claims] 1. An improved ion exchange membrane characterized in that a polymer compound having electron conductivity is distributed in a layered manner non-uniformly with respect to the cross section of the membrane. 2. A polymer compound having electron conductivity is distributed on one side of the ion exchange membrane. An improved ion exchange membrane according to claim 1, which exists only in:
JP61262815A 1986-11-06 1986-11-06 Modified ion exchange membrane Granted JPS63118338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61262815A JPS63118338A (en) 1986-11-06 1986-11-06 Modified ion exchange membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61262815A JPS63118338A (en) 1986-11-06 1986-11-06 Modified ion exchange membrane

Publications (2)

Publication Number Publication Date
JPS63118338A JPS63118338A (en) 1988-05-23
JPH0443100B2 true JPH0443100B2 (en) 1992-07-15

Family

ID=17380995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61262815A Granted JPS63118338A (en) 1986-11-06 1986-11-06 Modified ion exchange membrane

Country Status (1)

Country Link
JP (1) JPS63118338A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225634A (en) * 1987-03-16 1988-09-20 Tosoh Corp Aniline/cation exchanger polymeric composite membrane and its production
JPS63225633A (en) * 1987-03-16 1988-09-20 Tosoh Corp Electroconductive polymeric composite membrane and its production
JPH01138237A (en) * 1987-08-04 1989-05-31 Kao Corp Composite film of conjugated polymer and cation exchanger and its production
KR900003916A (en) * 1988-08-03 1990-03-27 이.아이.듀 퐁 드 네모어 앤드 캄파니 Conductive products
AU2001268857A1 (en) * 2000-05-30 2001-12-11 Genesis Group Inc. A fuel cell incorporating a modified ion exchange membrane
JP6575801B2 (en) * 2015-06-12 2019-09-18 トヨタ紡織株式会社 Composite membrane and manufacturing method thereof
CN109072774A (en) 2016-05-27 2018-12-21 株式会社Ihi Booster

Also Published As

Publication number Publication date
JPS63118338A (en) 1988-05-23

Similar Documents

Publication Publication Date Title
KR100300483B1 (en) Non-liquid proton conductors for use in electrochemical systems under ambient conditions
Sata et al. Preparation and transport properties of composite membranes composed of cation exchange membranes and polypyrrole
US5626731A (en) Cation exchange membranes and method for the preparation of such membranes
Tan et al. Characterization of a cation-exchange/polyaniline composite membrane
JPH11144745A (en) Solid high molecular electrolyte type methanol fuel cell
ul Haq et al. Anion-exchange membrane for membrane capacitive deionization prepared via pore-filling polymerization in a porous polyethylene supporting membrane
Sata et al. Preparation and properties of composite membranes composed of anion-exchange membranes and polypyrrole
JPH0443100B2 (en)
JPH01158067A (en) Conductive polymer composition and production thereof
KR20100107010A (en) Diaphragm for fuel cell and process for producing the same
Talu et al. Electrochemical copolymerization of thiophene and aniline
Sata et al. Properties of composite membranes from ion exchange membranes and conducting polymers. III. Changes in acid transport
Sata Properties of ion-exchange membranes combined anisotropically with conducting polymers. 2. Relationship of electrical potential generation to preparation conditions of composite membranes
JPH0828220B2 (en) Battery
JPS6353860A (en) Diaphragm fro redox flow cell
JPH0634929B2 (en) Improved anion exchange membrane
Sata Properties of ion exchange membranes combined with conducting polymers anisotropically—I. emf generation by redox reactions across composite membrane
JPH0553530B2 (en)
JPH0443099B2 (en)
Watanabe et al. Polypyrrole/polymer electrolyte bilayer composites prepared by electrochemical polymerization of pyrrole using ion-conducting polymers as a solid electrolyte
Sata et al. Formation of a battery from an ion-exchange membrane and a polypyrrole composite
JPH0684953B2 (en) Humidity sensor-element
Komura et al. Electrostatic incorporation of anthraquinonesulfonate ions into a polypyrrole film containing pyridinium groups
Sata Generation of light-induced electrical potential from ion exchange membranes containing 4, 4′-bipyridine moiety
KR102057993B1 (en) Ion-exchange membrane with improved monovalent ion selectivity and preparation method thereof