JPH0443069B2 - - Google Patents

Info

Publication number
JPH0443069B2
JPH0443069B2 JP56108918A JP10891881A JPH0443069B2 JP H0443069 B2 JPH0443069 B2 JP H0443069B2 JP 56108918 A JP56108918 A JP 56108918A JP 10891881 A JP10891881 A JP 10891881A JP H0443069 B2 JPH0443069 B2 JP H0443069B2
Authority
JP
Japan
Prior art keywords
group
general formula
derivative represented
silver
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56108918A
Other languages
Japanese (ja)
Other versions
JPS5813571A (en
Inventor
Tamejiro Hyama
Hajime Nozaki
Hiroyuki Saimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP56108918A priority Critical patent/JPS5813571A/en
Publication of JPS5813571A publication Critical patent/JPS5813571A/en
Publication of JPH0443069B2 publication Critical patent/JPH0443069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

【発明の詳細な説明】 本発明は一般式 (式中、Rは水素原子、低級アルキル基、フエ
ニル基又は無置換、低級アルキル基置換、低級ア
ルキルオキシ基置換フエニルオキシ基置換若しく
はクマリン−7−イルオキシ基置換アルケニル基
であり、R1及びR2は低級アルキル基であり、R1
とR2は一体となりアルキレン基を形成し得る。)
で表わされるジヒドロフラン誘導体及びその製造
方法に関する。 本発明の前記一般式()で表わされるジヒド
ロフラン誘導体のうち例えばR1及びR2がメチル
基であり、Rが(E)−3−(クマリン−7−イルオ
キシ)−1−メチルプロペニル基を有する化合物
は酸化することにより制ガン作用を有するゲイパ
ルバリン〔(geiparvarin)、(Acta Pharm.19734
(1)1−9)〕に導くことが出来る〔下記参考例参
照)。更に本発明のジヒドロフラン誘導体はゲイ
パルバリンのみならず3(2H)−フラノン構造を
もつ化合物を製造するための一般的前駆体として
利用出来る。これら3(2H)−フラノン構造を持
つ化合物は、ジヤトロフオン、エレマントリドな
ど制ガン作用を示すものが多々知られている。
〔J.Am.Chem.Soc.,103,1501(1981)〕。さらに
一般式()で示されるジヒドロフラン誘導体は
アスコフラノンなどテトラヒドロフラン構造を有
する制ガン物質や抗生物質の合成前駆体としても
利用できる。 従来、ゲイパルバリンを製造する方法として
は、5−エチル−2,2−ジメチル−3(2H)−
ジヒドロフラノンと対応するアルデヒドとのアル
ドール縮合により得られていた〔J.Org.Chem.,
46,577(1981)〕。しかし、この方法は収率が低
く、しかもオレフインの異性体が50%副生するた
め、ゲイパルバリン合成の有効な方法とは言えな
い。 本発明者等は従来法の欠点を克服すべく検討し
た結果、入手容易な原料から短工程かつ高収率し
かも高選択的にゲイパルバリンを製造できる化合
物及びその製造方法を見出し、本発明を完成し
た。 本発明の製造方法は下式により表すことが出来
る。 (式中、Rは水素原子、低級アルキル基、フエ
ニル基又は無置換、低級アルキル基置換、低級ア
ルキルオキシ基置換フエニルオキシ基置換若しく
はクマリン−7−イルオキシ基置換アルケニル基
であり、R1及びR2は低級アルキル基であり、R1
とR2は一体となりアルキレン基を形成し得る。 〔第一工程〕 本工程は塩基の存在下、前記一般式()で表
わされる2−ブチン−1,4−ジオール誘導体と
無水酢酸とを反応させ、前記一般式()で表わ
される2−ブチン−1,4−ジオールモノアセタ
ート誘導体を製造するものである。 本工程の前記一般式()で表わされる2−ブ
チン−1,4−ジオール誘導体はアセチレンをそ
の両端でそれぞれアルデヒド(RCHO)及びケ
トン(R1COR2)に付加させて容易に得られる化
合物である。 本工程は塩基の存在下に行うことが必要であ
る。塩基としては炭酸カリウム等の炭酸塩、ピリ
ジン、キノリン等の芳香族アミン、トリエチルア
ミン、エチルジイソプロピルアミン、ジエチルア
ニリン等の第三級アミン等を例示することが出来
る。 反応は必ずしも溶媒を必要としないが反応に直
接関与しないもの、例えばジクロロメタン、ヘキ
サン、ベンゼン、ジエチルエーテル等を溶媒とし
て用いることが出来る。 反応温度は−10℃〜100℃の範囲を選択出来る
が、操作が容易でかつ効率よく反応が進行する点
で室温での反応が好ましい。 〔第二工程〕 本工程は前記第一工程で得られた前記一般式
()で表わされる2−ブチン−1,4−ジオー
ルモノアセタート誘導体を銀()触媒の存在
下、環化させ、前記一般式()で表わされるジ
ヒドロフラン誘導体を製造するものである。 本工程は銀()触媒の存在下に行うことを必
須の要件とするものである。銀()触媒として
は過塩素酸銀、ホウフツ化銀、硝酸銀、酢酸銀、
シアン化銀、ヘキサフルオロリン酸銀、ヘキサフ
ルオロアンチモン酸銀、酸化銀、銀アセチルアセ
トナート、リン酸銀、硫酸銀、トリフルオロメタ
ンスルホン酸銀、タングステン酸銀等を例示する
ことができる。銀()触媒の使用量は基質に対
し、15モル%以下で充分であり、反応は速やかに
進行する。 本工程を行うにあたつては溶媒を使用すること
が好ましく、例えばベンゼン、ヘキサン等の炭化
水素溶媒、ジエチルエーテル、テトラヒドロフラ
ン等のエーテル系溶媒、ジクロロメタンを使用す
ることができる。 反応は室温〜120℃で進行するが効率良く反応
を行うには60〜100℃が好ましい。また、本工程
は触媒の分解を防ぐ目的で可視光及び紫外線を遮
断しながら行うことが望ましい。 以下、実施例及び参考例により本発明を更に詳
細に説明する。 実施例 1 4−メチル−1−フエニル−2−ペンチン−
1,4−ジオール(0.21g、1.09ミリモル)をジ
クロロメタン(0.25ml)に溶かし、無水酢酸
(0.5ml)とピリジン(0.05ml)とともに室温にて
2時間撹拌した。減圧下に濃縮し、カラムクロマ
トグラフイー(シリカゲルを用い、ヘキサン−酢
酸エチル10:1から2:1の混合溶媒で溶出)で
精製し出発物質の1位水酸基のみアセチル化され
たもの0.25g(収率99%)を粘稠な無色オイルと
して得た。 IR(neat):3400,1740cm-1. NMR(CCl)4:δ1.51(s,6H),2.03(s,3H),
2.96(br s,1H),6.41(s,1H),7.2−7.6
(m,5H). このモノアセタート(77mg、0.33ミリモル)を
ベンゼン(1ml)にとかし、過塩素酸銀(4mg)
とともに、銀紙で可視光および紫外線を遮断し、
80℃にて10時間撹拌した。ジクロロメタン(10
ml)で希釈したのち10%アンモニア水(3ml)で
洗い、ついで飽和食塩水で洗浄した。乾燥、濃縮
ののちカラムクロマトグラフイー(シリカゲル、
ヘキサン−酢酸エチル10:1)で精製して3−ア
セトキシ−2,2−ジメチル−5−フエニル−1
−オキサ−3−シクロペンテン(65mg、収率84
%)を得た。 bp:122−124℃(浴温)/0.04Torr. IR(neat):1781,1698,1658cm-1. NMR(CCl)4:δ1.36(s,3H),1.38(s,3H),
2.17(s,3H),5.70(d,J=1.5Hz,1H),
5.81(d,J=1.5Hz,1H),7.26(br s,
5H). 元素分析値 計算値 C,72.39;H,6.94%. 測定定 C,72.48;H,6.84%. 実施例 2〜7 各種2−ブチン−1,4−ジオール誘導体及び
各種銀()触媒を用い、実施例1と同様の条件
下反応を行つた。その結果を表1に示す。尚、得
られたジヒドロフラン誘導体の物性は表2に示し
た。 【表】 【表】 【表】 【表】 参考例 3−アセトキシ−5−〔(E)−3−(クマリン−7
−イルオキシ)−1−メチルプロペニル〕−2,2
−ジメチル−1−オキサ−3−シクロペンテン
(実施例7で得られた化合物)(50mg、0.14ミリモ
ル)をジシアノジクロロパラベンゾキノン
(DDQ)(60mg、0.26ミリモル)とともにベンゼ
ン(1ml)にとかし、室温(20℃)にて2.5時間
撹拌した。有機層は亜硫酸ナトリウム水溶液で洗
い、水層をジクロロメタンで抽出(3ml×5回)
した。有機層を一諸にして乾燥し、濃縮ののちカ
ラムクロマトグラフイー(ワコーゲルC−100、
4g、ヘキサン酢酸エチル1:1で溶出)で精製
してゲイパルバリン(44mg、収率100%)を得た。 mp(MeOH):159.5−160.5℃は文献値と一致
した。IR、NMRスペクトルも文献値と一致
し、(Z)異性体の混在は認められなかつた。
[Detailed Description of the Invention] The present invention relates to the general formula (In the formula, R is a hydrogen atom, a lower alkyl group, a phenyl group, or an unsubstituted, lower alkyl-substituted, lower alkyloxy-substituted phenyloxy group-substituted, or coumarin-7-yloxy group-substituted alkenyl group, and R 1 and R 2 is a lower alkyl group, and R 1
and R 2 can be combined to form an alkylene group. )
The present invention relates to a dihydrofuran derivative represented by and a method for producing the same. Among the dihydrofuran derivatives of the present invention represented by the general formula (), for example, R 1 and R 2 are methyl groups, and R is (E)-3-(coumarin-7-yloxy)-1-methylpropenyl group. Geiparvarin, (Acta Pharm.19734), which has an anticancer effect when oxidized,
(1)1-9)] (see reference example below). Furthermore, the dihydrofuran derivative of the present invention can be used as a general precursor for producing not only gay parvalin but also compounds having a 3(2H)-furanone structure. Many of these compounds having a 3(2H)-furanone structure are known to exhibit anticancer effects, such as diatrophone and elemantride.
[J.Am.Chem.Soc., 103 , 1501 (1981)]. Furthermore, the dihydrofuran derivative represented by the general formula () can also be used as a synthetic precursor for anticancer substances and antibiotics having a tetrahydrofuran structure such as ascofuranone. Conventionally, the method for producing gay parvarin is 5-ethyl-2,2-dimethyl-3(2H)-
It was obtained by aldol condensation of dihydrofuranone and the corresponding aldehyde [J.Org.Chem.,
46, 577 (1981)]. However, this method has a low yield and 50% of the olefin isomer is produced as a by-product, so it cannot be said to be an effective method for synthesizing gay parvarin. As a result of studies to overcome the drawbacks of conventional methods, the present inventors have discovered a compound and method for producing gay parvarin in a short process, in high yield, and with high selectivity from readily available raw materials, and have completed the present invention. . The manufacturing method of the present invention can be expressed by the following formula. (In the formula, R is a hydrogen atom, a lower alkyl group, a phenyl group, or an unsubstituted, lower alkyl-substituted, lower alkyloxy-substituted phenyloxy group-substituted, or coumarin-7-yloxy group-substituted alkenyl group, and R 1 and R 2 is a lower alkyl group, and R 1
and R 2 can be combined to form an alkylene group. [First step] In this step, a 2-butyne-1,4-diol derivative represented by the above general formula () is reacted with acetic anhydride in the presence of a base to form a 2-butyne-1,4-diol derivative represented by the above general formula (). -1,4-diol monoacetate derivatives are produced. The 2-butyne-1,4-diol derivative represented by the above general formula () in this step is a compound that can be easily obtained by adding acetylene at both ends to an aldehyde (RCHO) and a ketone (R 1 COR 2 ), respectively. be. This step needs to be carried out in the presence of a base. Examples of the base include carbonates such as potassium carbonate, aromatic amines such as pyridine and quinoline, and tertiary amines such as triethylamine, ethyldiisopropylamine and diethylaniline. Although the reaction does not necessarily require a solvent, solvents that are not directly involved in the reaction, such as dichloromethane, hexane, benzene, diethyl ether, etc., can be used as a solvent. Although the reaction temperature can be selected from the range of -10°C to 100°C, the reaction at room temperature is preferred because it is easy to operate and the reaction proceeds efficiently. [Second step] In this step, the 2-butyne-1,4-diol monoacetate derivative represented by the general formula () obtained in the first step is cyclized in the presence of a silver () catalyst, A dihydrofuran derivative represented by the above general formula () is produced. This step must be carried out in the presence of a silver () catalyst. Silver () catalysts include silver perchlorate, silver borofluoride, silver nitrate, silver acetate,
Examples include silver cyanide, silver hexafluorophosphate, silver hexafluoroantimonate, silver oxide, silver acetylacetonate, silver phosphate, silver sulfate, silver trifluoromethanesulfonate, and silver tungstate. It is sufficient that the amount of silver () catalyst used is 15 mol % or less based on the substrate, and the reaction proceeds quickly. In carrying out this step, it is preferable to use a solvent, and for example, hydrocarbon solvents such as benzene and hexane, ether solvents such as diethyl ether and tetrahydrofuran, and dichloromethane can be used. The reaction proceeds at room temperature to 120°C, but 60 to 100°C is preferred for efficient reaction. Further, this step is desirably carried out while blocking visible light and ultraviolet rays in order to prevent decomposition of the catalyst. Hereinafter, the present invention will be explained in more detail with reference to Examples and Reference Examples. Example 1 4-methyl-1-phenyl-2-pentyne-
1,4-Diol (0.21 g, 1.09 mmol) was dissolved in dichloromethane (0.25 ml) and stirred with acetic anhydride (0.5 ml) and pyridine (0.05 ml) at room temperature for 2 hours. Concentrate under reduced pressure and purify by column chromatography (using silica gel, eluting with a mixed solvent of hexane-ethyl acetate 10:1 to 2:1) to obtain 0.25 g of the starting material in which only the 1-position hydroxyl group was acetylated ( (99% yield) was obtained as a viscous colorless oil. IR (neat): 3400, 1740cm -1 . NMR (CCl) 4 : δ1.51 (s, 6H), 2.03 (s, 3H),
2.96 (br s, 1H), 6.41 (s, 1H), 7.2−7.6
(m, 5H). This monoacetate (77 mg, 0.33 mmol) was dissolved in benzene (1 ml) and silver perchlorate (4 mg)
At the same time, silver paper blocks visible light and ultraviolet rays,
The mixture was stirred at 80°C for 10 hours. Dichloromethane (10
ml), washed with 10% aqueous ammonia (3 ml), and then washed with saturated saline. After drying and concentration, column chromatography (silica gel,
3-acetoxy-2,2-dimethyl-5-phenyl-1 was purified with hexane-ethyl acetate 10:1).
-oxa-3-cyclopentene (65 mg, yield 84
%) was obtained. bp: 122-124℃ (bath temperature) / 0.04 Torr. IR (neat): 1781, 1698, 1658 cm -1 . NMR (CCl) 4 : δ1.36 (s, 3H), 1.38 (s, 3H),
2.17 (s, 3H), 5.70 (d, J=1.5Hz, 1H),
5.81 (d, J=1.5Hz, 1H), 7.26 (br s,
5H). Elemental analysis value Calculated value C, 72.39; H, 6.94%. Measured C, 72.48; H, 6.84%. Examples 2 to 7 Reactions were carried out under the same conditions as in Example 1 using various 2-butyne-1,4-diol derivatives and various silver catalysts. The results are shown in Table 1. The physical properties of the obtained dihydrofuran derivative are shown in Table 2. [Table] [Table] [Table] [Table] Reference example 3-acetoxy-5-[(E)-3-(coumarin-7
-yloxy)-1-methylpropenyl]-2,2
-Dimethyl-1-oxa-3-cyclopentene (compound obtained in Example 7) (50 mg, 0.14 mmol) was dissolved in benzene (1 ml) with dicyanodichloroparabenzoquinone (DDQ) (60 mg, 0.26 mmol) and at room temperature ( The mixture was stirred at 20°C for 2.5 hours. The organic layer was washed with an aqueous sodium sulfite solution, and the aqueous layer was extracted with dichloromethane (3 ml x 5 times).
did. The organic layers were combined and dried, concentrated, and then subjected to column chromatography (Wakogel C-100,
4 g, eluted with hexane-ethyl acetate 1:1) to give gayparvarin (44 mg, yield 100%). mp(MeOH): 159.5-160.5°C agreed with the literature value. The IR and NMR spectra also matched the literature values, and no mixture of the (Z) isomer was observed.

Claims (1)

【特許請求の範囲】 1 一般式 で表されるジヒドロフラン誘導体(式中、Rは水
素原子、低級アルキル基、フエニル基又は無置
換、低級アルキル基置換、低級アルキルオキシ置
換フエニルオキシ基置換若しくはクマリン−7−
イルオキシ基置換アルケニル基であり、R1及び
R2は低級アルキル基であり、R1とR2は一体とな
りアルキレン基を形成し得る。)。 2 銀()触媒の存在下、一般式 で表される2−ブチン−1,4−ジオールモノア
セタート誘導体を環化させることからなる、一般
で表されるジヒドロフラン誘導体の製造方法 (式中、Rは水素原子、低級アルキル基、フエ
ニル基又は無置換、低級アルキル基置換、低級ア
ルキルオキシ置換フエニルオキシ基置換若しくは
クマリン−7−イルオキシ基置換アルケニル基で
あり、R1及びR2は低級アルキル基であり、R1
R2は一体となりアルキレン基を形成し得る。)。 3 塩基の存在下、一般式 で表される2−ブチン−1,4−ジオール誘導体
と無水酢酸とを反応させ、一般式 で表される2−ブチン−1,4−ジオールモノア
セタート誘導体を得、次いで銀()触媒の存在
下に環化させることからなる、一般式 で表されるジヒドロフラン誘導体の製造方法 (式中、Rは水素原子、低級アルキル基、フエ
ニル基又は無置換、低級アルキル基置換、低級ア
ルキルオキシ置換フエニルオキシ基置換若しくは
クマリン−7−イルオキシ基置換アルケニル基で
あり、R1及びR2は低級アルキル基であり、R1
R2は一体となりアルキレン基を形成し得る。)。
[Claims] 1. General formula A dihydrofuran derivative represented by (wherein R is a hydrogen atom, a lower alkyl group, a phenyl group, or unsubstituted, substituted with a lower alkyl group, substituted with a lower alkyloxy group, substituted with a phenyloxy group, or coumarin-7-
It is an alkenyl group substituted with an yloxy group, and R 1 and
R 2 is a lower alkyl group, and R 1 and R 2 can be combined to form an alkylene group. ). 2 In the presence of a silver () catalyst, the general formula The general formula consists of cyclizing a 2-butyne-1,4-diol monoacetate derivative represented by A method for producing a dihydrofuran derivative represented by group, R 1 and R 2 are lower alkyl groups, and R 1 and
R 2 can be taken together to form an alkylene group. ). 3 In the presence of a base, the general formula The 2-butyne-1,4-diol derivative represented by the formula is reacted with acetic anhydride, and the general formula The general formula consists of obtaining a 2-butyne-1,4-diol monoacetate derivative represented by and then cyclizing in the presence of a silver() catalyst. A method for producing a dihydrofuran derivative represented by group, R 1 and R 2 are lower alkyl groups, and R 1 and
R 2 can be taken together to form an alkylene group. ).
JP56108918A 1981-07-14 1981-07-14 Dihydrofuran derivative and its preparation Granted JPS5813571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108918A JPS5813571A (en) 1981-07-14 1981-07-14 Dihydrofuran derivative and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108918A JPS5813571A (en) 1981-07-14 1981-07-14 Dihydrofuran derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS5813571A JPS5813571A (en) 1983-01-26
JPH0443069B2 true JPH0443069B2 (en) 1992-07-15

Family

ID=14496945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108918A Granted JPS5813571A (en) 1981-07-14 1981-07-14 Dihydrofuran derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS5813571A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO864097A0 (en) * 1997-08-19 1997-09-11 Peplin Pty Ltd Anti-cancer compounds

Also Published As

Publication number Publication date
JPS5813571A (en) 1983-01-26

Similar Documents

Publication Publication Date Title
Trost et al. Pyrrole annulation onto aldehydes and ketones via palladium-catalyzed reactions
JPH0639468B2 (en) Hydroquinone derivative
JPH0443069B2 (en)
Kido et al. Carbocyclic construction by the [2, 3] sigmatropic rearrangement of cyclic sulfonium ylides. A new entry for the stereoselective synthesis of substituted cyclohexanones
JPS6135194B2 (en)
US5136061A (en) Optically active pentane derivatives and intermediates thereof, and process for manufacturing same
US6495725B2 (en) Process for the preparation of optically active enones and intermediates thereof
JPS6140669B2 (en)
JPH0597758A (en) Production of alpha,beta-unsaturated carbonyl compound
JPS61204178A (en) Trans-decalin derivative and production thereof
JP3662954B2 (en) Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative
JPH05255297A (en) New deltaalpha,beta-butenolide derivative and its production
SU1038341A1 (en) Process for preparing alpha-arylindolotrimethylecyanines
KR810001248B1 (en) Process for preparing lactones derived form cyclopentanol
JPS632251B2 (en)
JPH0386840A (en) Production of alpha,beta-unsaturated carbonyl compound
JPH07116219B2 (en) Method for producing compound having steroid skeleton
YAMAKAWA et al. Studies on Terpenoids and Related Alicyclic Compounds. II. Bromination-Dehydrobromination of 2-Oxo-5β-santanolide
JPS62258330A (en) Production of 6,7-disubstituted-2-hydroxy-3-methylenebicyclo(3.3.0)octane
JPS63277669A (en) Production of novel 6-membered ring lactone
JPS5821611B2 (en) Beta - Alkoxyketone information
JP2000095790A (en) Novel palladium-imidazole complex
JPH02104542A (en) Production of 2-hydroxy-3-methylenebicyclo(3.3.0)-octanes
JPH1017518A (en) Production of optically active alpha-hydroxyketal
JPS606951B2 (en) Lactone production method