JP3662954B2 - Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative - Google Patents

Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative Download PDF

Info

Publication number
JP3662954B2
JP3662954B2 JP21371794A JP21371794A JP3662954B2 JP 3662954 B2 JP3662954 B2 JP 3662954B2 JP 21371794 A JP21371794 A JP 21371794A JP 21371794 A JP21371794 A JP 21371794A JP 3662954 B2 JP3662954 B2 JP 3662954B2
Authority
JP
Japan
Prior art keywords
trifluoro
benzyloxy
represented
formula
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21371794A
Other languages
Japanese (ja)
Other versions
JPH0873485A (en
Inventor
智哉 北爪
孝 山崎
昭雄 渡部
Original Assignee
東ソ−・エフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソ−・エフテック株式会社 filed Critical 東ソ−・エフテック株式会社
Priority to JP21371794A priority Critical patent/JP3662954B2/en
Publication of JPH0873485A publication Critical patent/JPH0873485A/en
Application granted granted Critical
Publication of JP3662954B2 publication Critical patent/JP3662954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、液晶材料などの機能性材料や医農薬中間体として有用である、新規な光学活性6−デオキシ−6,6,6−トリフルオロ糖誘導体に関するものである。
【0002】
【従来の技術】
従来、6−デオキシ−6,6,6−トリフルオロ糖類を製造するには、光学活性アルデヒド類に対してトリフルオロメチル陰イオン(CF3 -)を反応させるのが一般的であり、次の反応が知られている。
【0003】
(1)D−リキソースから誘導した2,3,4,5−テトラキス(ベンジルオキシ)バレロアルデヒドとトリフルロメチルトリメチルシランの混合物にテトラブチルアンモニウムフルオリドを作用させ、トリフルオロメチル基を導入した化合物を合成した後、5段階を経て58%の全収率で望む6−デオキシ−6,6,6−トリフルオロ糖類を合成する方法(J.Chem.Soc.,Chem.Commun.,796(1991))。
【0004】
(2)()−1,1,1−トリフルオロ−4−メトキシ−3−ブテン−2−オンとエチルビニルエーテルを環化付加させてトリフルオロメチル基を有するジヒドロピラン類を62%の収率で合成し、ヒドロボレーションや光学分割など数段階を経て、全収率7%で目的とする6−デオキシ−6,6,6−トリフルオロ糖誘導体を合成する方法(Bull.Soc.Chim.Belg.,99,647(1990)).また、上記(1)と(2)の中間的な手法として次の合成方法が知られている。
【0005】
(3)ヨウ化トリフルオロメチルを亜鉛存在下にグリセルアルデヒドアセトニドと反応せしめ、水を加えた後にトリフルオロメチル基を導入した光学活性体を収率70%で単離し、更に数段階の反応を経て(全収率不明)目的とする6−デオキシ−6,6,6−トリフルオロ糖類を合成する方法(Chem.Pharm.Bull.,39,2459(1991))。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来方法には次に示すような問題点がある。
【0007】
従来法(1)は、トリフルオロメチル基の導入時のジアステレオ選択性に乏しく(1:1)、しかもこれらを分離することが不可能である。更には、環化時の5員環と6員環の選択性も低いため、最終的には8種類の立体異性体混合物を分離精製することが最大の短所となっている。
【0008】
従来法(2)は、原料である()−1,1,1−トリフルオロ−4−メトキシ−3−ブテン−2−オンは()体だけが調製可能であることおよび全収率が7%と極めて低いという問題点がある。
【0009】
さらに、従来法(3)では、トリフルオロメチル基の導入時のジアステレオ選択性に乏しく、しかも必要とされるものの割合が少なく、このプロセスではさらに一度不斉誘導が必要であり、操作方法が複雑なため効率よく製造することができない。
【0010】
従って本発明の課題は、穏和な条件下でしかも簡便な工程で、6−デオキシ−6,6,6−トリフルオロ糖類の複数の立体異性体を選択的に製造する手法を提供することにある。
【0011】
【課題を解決するための手段および作用】
本発明者らは、上記課題を踏まえ、単一の原料から数種の立体異性体を作り分けられるような反応経路を計画する事にした。この課題を達成すべく鋭意研究を重ねた結果、原料として1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールの光学活性体を用い、()または()体のオレフィンへと誘導した。これらオレフィンを触媒量の四酸化オスミウムによる酸化反応に付すことにより立体選択的なジオール化が達成できることを見出し、更に2〜3段階の反応を経て、単一の出発物質から望む4種類の6−デオキシ−6,6,6−トリフルオロ糖誘導体を立体選択的に合成しわける本発明を完成するに至った。
【0012】
すなわち、本発明は1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールをリパーゼQLの存在下で酢酸ビニルと反応させることにより、反応生成物である()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタートと未反応物質である()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを得、こうして光学分割された化合物を用いた6−デオキシ−6,6,6−トリフルオロ糖誘導体を製造する方法に関するものである。
【0013】
本発明の第1段階の反応は、化学式(1)
【0014】
【化32】

Figure 0003662954
【0015】
で表されるラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを、光学分割し、化学式(2)
【0016】
【化33】
Figure 0003662954
【0017】
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを合成する工程である。
【0018】
光学分割する方法は特に限定されないが、例えばリパーゼQL存在下に有機溶媒中酢酸ビニルと反応させて光学分割する方法(特開昭61−257191号、特開昭61−268192号、特開昭62−104589号)を採用することができる。
【0019】
リパーゼQL存在下に酢酸ビニルと反応させることによって、未反応物質である()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2)が99.6%eeの光学純度、40%の単離収率で得られる。また、反応生成物である()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタート(2a)は64.4%eeの光学純度、59%の単離収率で得られ,()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタート(2a)は、穏和な加水分解反応に付すことにより、化学式(2)のエナンチオマーである()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2b)を与える。
【0020】
【化34】
Figure 0003662954
【0021】
この反応は、非常に簡便なものであり、反応温度としては0から60℃、好ましくは35から40℃程度で行う。あまり温度が高すぎると、酵素自体の安定性に問題が生じ、逆に低すぎると反応速度の低下につながる。
【0022】
本発明における1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(1)と酢酸ビニルとのリパーゼQL存在下での反応は、ヘキサンやベンゼンなどの無極性溶媒や、テトラヒドロフランやエーテルなどの極性溶媒を用いることが可能であるが、ヘキサン中で行うのが望ましい。
【0023】
本発明における1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(1)と酢酸ビニルのモル比は、理論的には2:1でよいが、過剰量の酢酸ビニルは反応速度を向上させる効果があるため、過剰量の酢酸ビニルの使用が好ましい。ただし、あまり過剰量であるとエナンチオ選択性の低下を招くため、基質であるアルコールの2倍モル量の酢酸ビニルの使用が好ましい。また、酵素量も同様に反応速度に影響を及ぼすが、あまり過剰に用いると、やはりエナンチオ選択性が低下するため、基質である1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(1)1mmolに対して0.01から1g程度、好ましくは0.1gの使用が適当である。
【0024】
反応終了後、最終生成物である()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2)と()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタート(2a)は、濾過により酵素などの不溶成分を取り除いた後に硫酸ナトリウムや硫酸マグネシウムで乾燥し、溶媒を減圧留去する。最終的に、この混合物はシリカゲルカラムクロマトグラフィーで単離精製するという公知の方法で、それぞれアルコール(2)とアセタート(2a)に分離される。
【0025】
本発明の第2段階は、前記()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2)を用い、Red−Al(水素化ナトリウム=ビス(メトキシエトキシ)アルミニウム)で三重結合を立体選択的に還元して化学式(3)
【0026】
【化35】
Figure 0003662954
【0027】
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを合成する工程または、リンドラー触媒により三重結合を立体選択的に水素添加して化学式(13)
【0028】
【化36】
Figure 0003662954
【0029】
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オール(9)を合成する工程である。
【0030】
【化37】
Figure 0003662954
【0031】
まず、Red−Alによる化学式(3)の()体への誘導は、公知の手法(例えばOrganic Reactions,34,90(1985))により、立体選択的に()体のみを得ることができる。また、化学式(13)の()体の場合は、リンドラー触媒を用いる公知の手法(例えばOrganic Synthesis Coll.5,880(1973))により、()体のみを得ることができる。
【0032】
Red−Alによる還元は、−78℃から室温で行えるが、副反応を押さえられる温度である−78℃で反応させることが望ましい。また、反応溶媒はエーテルやTHFなどの非プロトン性極性溶媒や、ベンゼン、トルエンなどのより極性の低い溶媒の使用が可能であるが、トルエンの使用が最も好ましい。
【0033】
一方、リンドラー触媒を用いる水素添加反応では、反応温度は0から50℃でよいが、室温(25℃)程度が望ましい。溶媒は、メタノールやエタノールといったプロトン性極性溶媒や、酢酸エチル、ヘキサンなど広範な種類を利用できるが、ヘキサンを用いて、常圧で水素雰囲気下反応させるのが望ましい。
【0034】
本発明の第3段階は、四酸化オスミウムによるジオール化反応である。ジオール化により、前記化学式(3)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールから、化学式(4)
【0035】
【化38】
Figure 0003662954
【0036】
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールと、化学式(8)
【0037】
【化39】
Figure 0003662954
【0038】
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールが得られる。
【0039】
一方、前記化学式(13)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールから、化学式(14)
【0040】
【化40】
Figure 0003662954
【0041】
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールと、化学式(18)
【0042】
【化41】
Figure 0003662954
【0043】
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールが得られる。
【0044】
【化42】
Figure 0003662954
【0045】
この酸化方法に関しては、四酸化オスミウムを1当量用いるものと、四酸化オスミウムを触媒量用い、還元されたオスミウム酸化剤をN−メチルモルホリン=N−オキシドにより酸化して、もとの四酸化オスミウムに戻すという手法が公知となっているが、四酸化オスミウムの毒性や経済性を考慮して、本発明では、後者の四酸化オスミウムを触媒量用い、N−メチルモルホリン=N−オキシドを共酸化剤とする公知の方法に従えばよい(例えば、第4版実験化学講座第23巻有機合成[V]酸化反応、p79;丸善)。
【0046】
使用する四酸化オスミウムの量としては、0.001から1当量まで使用可能であるが、上記の毒性や価格等を考慮すると、0.003から0.01当量の使用が望ましい。また、共酸化剤であるN−メチルモルホリン=N−オキシドは、1から3当量程度でよいが、反応速度や副反応の生起などを配慮すると、1.5当量程度が望ましい。溶媒としては、水と有機溶媒(THFやアセトン、t−ブタノールなど)の混合系が適当であるが、水=アセトン系を使用し、室温で窒素雰囲気下反応をさせることが好ましい。
【0047】
本発明の第4段階は、オスミウムによるジオール化で生成した3つの水酸基のうち、3位ならびに4位のみを選択的に保護をする反応である。トリフルオロメチル基の強い電子吸引性は広く知られた事実であるが、それゆえ、この基に近い水酸基の酸素原子ほど電子密度が低く、求核能がより低くなっていることが容易に推測できる。こうした考えをもとに、前記(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(4)を、公知方法により(例えば、新実験化学講座第14巻有機化合物の合成と反応[V]、p2495;丸善)アセトニド化することにより、化学式(5)
【0048】
【化43】
Figure 0003662954
【0049】
(式中、R1およびR2は、それぞれ同一または相異なるアルキル基またはアリール基を表す)
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール誘導体を高収率で得ることができる。この時、2−4位間でのアセトニドも副製するが、わずかであった。
【0050】
【化44】
Figure 0003662954
【0051】
本発明方法は、このようにトリフルオロメチル基の電子吸引効果をうまく利用した手法であるが、次に末端のベンジル基を脱離させ、この位置の水酸基を酸化してアルデヒドへ誘導した後に2位の水酸基との間でラクトールを形成させるためには、化合物(4)の段階で3位と4位はそれぞれアンチ配置となっている必要がある。それゆえ、3,4−シン体に対しては、別の保護が必要となる。そこで、次のような手法を考案した。すなわち、(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(8)をそれぞれ2当量のt−ブチルジメチルシリル=クロリドならびにイミダゾールと反応させて、AからCで表される3種類の混合物を調製し、これを熱力学的条件下に塩基で処理すれば、最も安定なアルコキシドである2位が未保護のまま残ることになる。
【0052】
【化45】
Figure 0003662954
【0053】
(式中、R3,R4およびR5は、同一または相異なるアルキル基またはアリール基を表す)
この考えは、既に我々が報告している概念を拡張したものである(J.Org.Chem.,58,4346(1993))。実際にこの手法を行ったところ、トリオール(8)からは確かにAからCの混合物が生成したが、この混合物をそのまま分離することなく塩基で処理したところ、望む(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体(10)を単一の生成物として得ることに成功した。本反応は、化合物(8)から中間体であるAからCの混合物へと変換する段階と、この混合物から(10)へと転位させる段階の2つに分かれているが、いずれの場合も溶媒としてはジメチルホルムアミド(DMF)や塩化メチレン等が適しているが、ここでは塩化メチレンを使用した。また、反応温度は0から50℃程度、望ましくは室温(25℃)付近がよい。更に、シリル基を熱力学的条件下で転位させる際の塩基としては、t−ブトキシカリウムや水素化ナトリウム、n−ブチルリチウムなどが使用可能であるが、t−ブトキシカリウムを用いるのが好ましい。
【0054】
体由来のトリオール(14)と(18)は、この段階で分離が不可能である。それゆえ、トリオール(18)はアセトニドとしてもよいのであるが、その条件ではトリオール(14)も当然アセトニドへと変換されてしまい、還化に必要な2つの置換基がアンチの配置、すなわち目的とする糖へと誘導できない構造になってしまう。それゆえ、この混合物はそのまま上記のシリル化を行ったところ、分離可能な(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体(15)ならびに(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体(19)が、非常に良好な収率で生成することが明らかとなった。
【0055】
【化46】
Figure 0003662954
【0056】
一般的には、こうした位置選択的な官能基の保護には数段階を要することが多いが、本発明においては、わずか2段階でこの問題を解決しているところに大きな特徴がある。
【0057】
本発明の第5段階は、(5),(10),(15),(19)の各化合物の末端にある保護基であるベンジル基の除去である。この過程は、通常パラジウムや白金、ラネーニッケルなどの不均一系触媒の存在下、水素雰囲気で行えばよい。溶媒には、エタノールや酢酸エチル、酢酸など高極性のものが適しており、特にエタノールが好ましい。また、反応温度も室温(25℃程度)から100℃以上、反応圧力も常圧から数10気圧と幅広い範囲で行うことができる。
【0058】
【化47】
Figure 0003662954
【0059】
この反応は、特にアセトニドのみに有効であるというわけではなく、ビスt−ブチルジメチルシリル体にも適用でき、良好な収率で脱ベンジル体を得ることが可能である。
【0060】
【化48】
Figure 0003662954
【0061】
本発明の最終段階は、こうして合成してきた光学活性ジオールの還化反応である。化合物(6),(11),(16),(20)の4種類の立体異性体を見てみると、これらはいずれもジオール構造を有しており、ベンジル基を有していた末端である1位の水酸基のみを位置選択的に酸化してアルデヒドへと変換する必要がある。この段階でも、トリフルオロメチル基の特質をうまく利用して、2つの水酸基を単純な化学反応で区別することに成功した。ここでは、トリフルオロメチル基の近傍に存在する官能基が比較的酸化されにくいという特質を利用したのである。すなわち、(3,4,5)−6,6,6−トリフルオロ−3,4−O−イソプロピリデン−1,3,4,5−ヘキサンテトラオール(6)を比較的穏和な酸化剤であるピリジニウムジクロマート(PDC)で処理すると、1位の水酸基のみが酸化されて中間体のヒドロキシアルデヒドとなり、これが更に反応系内で還化して、望む6,6,6−トリフルオロ−3,4−O−イソプロピリデン−L−オリオース(7)を合成することができる。
【0062】
【化49】
Figure 0003662954
【0063】
この時、(7)がさらに酸化されたラクトンである(3,4,5)−6,6,6−トリフルオロ−3,4−ジヒドロキシ−3,4−O−イソプロピリデンヘキサン−5−オリド(7a)も副生成物として得られた。しかし、後者の(7a)は、(7)と分離する前の混合物のまま、更に水素化ジイソブチルアルミニウム(DIBAL−H)で還元することにより、容易に対応するラクトールへと誘導できる。その例としては、(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体(11)を用いた時、2段階で望む6,6,6−トリフルオロ−D−ボイビノース(6−デオキシ−6,6,6−トリフルオロ−D−キシロピラノース)誘導体(12)を高収率で合成できる。
【0064】
【化50】
Figure 0003662954
【0065】
まったく同様な手法を(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体(16)や(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体(20)に応用すれば、それぞれ6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−L−オリボース(17)ならびに6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ジギトキソース(21)が、いずれも80%以上の非常に良好な収率で合成することができる。
【0066】
【化51】
Figure 0003662954
【0067】
【実施例】
1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールの酵素による不斉エステル化
ラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(20.084g,77.772mmol)のn−ヘキサン溶液(150ml)に、酢酸ビニル(13.3ml、160mmol)とリパーゼQL(7.8g)を加え、この溶液を40℃で12時間撹拌した。酵素等の不溶成分を濾過によって取り除いた後、n−ヘキサンを減圧留去し、n−ヘキサン:酢酸エチル=6:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(2)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを7.943g(30.757mmol、39.5%)、ならびに下記化学式(2a)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタートを13.825g(46.041mmol、59.2%)得た。
【0068】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2)の光学純度は、公知の方法(J.Org.Chem.,34,2543(1969))に従ってMTPAエステルとし、キャピラリーガスクロマトグラフィー分析を行ったところ(GE XE60,190℃(カラム温度)、23.5分(()体由来エステル)、26.8分(()体由来エステル))99.6%eeであった。以下に、各種スペクトルの分析結果を示す。1 H−NMRならびに13C−NMRはVarian社製Gemini−200(それぞれ200MHz、50MHz)、19F−NMRは日立製R−1200F(56.451MHz)、IRはJASCO社製A−102、旋光度はJASCO社製DIP−140、質量スペクトルはJEOL JMX−AX505Hを用いて測定した。
【0069】
【化52】
Figure 0003662954
【0070】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(2)の分析値
・旋光度
[α]D 17 −36.13°(c1.24,CHCl3 ),99.6%ee
・HRMS
131332 としての計算値258.0868 実測値258.0852
1H NMR:δ(CDCl3 )ppm(TMS)
1.983(1H,dddd,J=3.46,5.57,6.45,14.76Hz),2.176(1H,ddt,J=8.91,14.77,4.15Hz),3.444(1H,d,J=6.84Hz),3.705(1H,ddd,J=4.15,5.50,9.64Hz),3.864(1H,dt,J=3.54,9.28Hz),4.546(2H,s),4.717(1H,dtq,J=3.81,6.73,2.97Hz),7.2−7.4(5H,m)
13C NMR:δ(CDCl3 )ppm(TMS)
35.391,60.914(q,J=1.17Hz),67.139,72.035(q,J=52.77Hz),73.555,87.502(q,J=6.30Hz),114.023(q,J=257.46Hz),127.736,127.989,128.534,137.303
19F NMR:δ(CDCl3 )ppm(TFA)
28.59(d,J=2.77Hz)
・IR(neat)cm-1
3400,3100,3075,3025,2950,2925,2275
【0071】
【化53】
Figure 0003662954
【0072】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−イルアセタート(2a)の分析値
・旋光度
[α]D 17 +37.31°(c1.33,CHCl3 ),64.4%ee
1H NMR:δ(CDCl3 )ppm(TMS)
2.062(3H,s),2.0−2.3(2H,m),3.538(1H,dt,J=9.83,5.70Hz),3.596(1H,dt,J=9.86,5.89Hz),4.462(1H,d,J=11.94Hz),4.529(1H,d,J=11.94Hz),5.632(1H,tq,J=7.02,2.88Hz)
13C NMR:δ(CDCl3 )ppm(TMS)
20.638,34.083,60.043(q,J=1.32Hz),64.851,72.295(q,J=52.87Hz),73.167,84.401(q,J=6.31Hz),113.812(q,J=257.86Hz),127.738,127.807,128.462,137.826,169.398
19F NMR:δ(CDCl3 )ppm(TFA)
28.38(d,J=2.77Hz)
・IR(neat)cm-1
3090,3065,3035,2935,2865,2800,2275,1750。
【0073】
絶対構造の決定
後述の手法によって調製した()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オール(0.542g,2.083mmol)のメタノール溶液(10ml)を−78℃で30分間オゾンで処理し、その後に80mgの水素化ホウ素ナトリウム(2.1mmol)を加えて終夜撹拌を続けた。この反応溶液を20mlの1規定塩酸水溶液に注ぎ、酢酸エチル(20ml)で3回抽出した。無水硫酸マグネシウムで乾燥後、酢酸エチルを減圧留去し、生成物と原料(0.185g,0.711mmol,34.1%)を酢酸エチルを展開溶媒としたシリカゲルカラムクロマトグラフィーで分離した。さらに生成物を2mlのTHFに溶解し、0.02gの水素化リチウムアルミニウム(0.53mmol)を加えて−78℃で1時間撹拌を続けた。これを上記と同様な処理に付して粗生成物を得たが、このまま3mlの塩化メチレンに溶解し、室温でアセチルクロリド(0.40g,5.1mmol)とピリジン(0.40g,5.1mmol)と終夜反応させ、上記と同様な後処理後、n−ヘキサン:酢酸エチル=2:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製して、下記化学式(22)の(2)−1,2−ジアセトキシ−4−ベンジルオキシブタンを0.206g(0.887mmol,42.6%)得た。文献記載の旋光度の符号を比較したところ(()−22の旋光度[α]D 23 +14.6°(c4.8,CCl4 );J.Chem.Soc.Perkin 1,9(1988))、S体であると決定した。
【0074】
【化54】
Figure 0003662954
【0075】
(2)−1,2−ジアセトキシ−4−ベンジルオキシブタン(22)の分析値
・旋光度
[α]D 19 −14.23°(c2.79,CCl4 ),48.9%ee
1H−NMRならびにIRは、上記文献記載のものと一致した。
【0076】
(S)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールのリンドラー触媒による水素添加反応
上記のリパーゼにより光学分割された()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(0.40g,2.0mmol)を20mlのヘキサン溶解させ、ここに触媒量(0.02g)のLindlar触媒を加えて、水素雰囲気下、室温で撹拌を行い、所定量の水素が消費された時点で、反応溶液を濾過して触媒を除去した。ヘキサンを減圧留去した後、n−ヘキサン;酢酸エチル=4:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(13)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを0.38g(1.93mmol,96.4%)得た。
【0077】
【化55】
Figure 0003662954
【0078】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オール(13)の分析値
・旋光度
[α]D 16 +5.46°(c1.00,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
1.6−2.1(2H,m),3.316(1H,d,J=3.25Hz),3.661(1H,ddd,J=4.06,4.90,8.91Hz),3.739(1H,ddd,J=2.56,4.88,9.38Hz),4.485(1H,d,J=11.90Hz),4.558(1H,d,J=11.72Hz),4.7−5.0(1H,m),5.589(1H,ddq,J=1.23,11.94,8.76Hz),6.033(1H,dd,J=8.81,11.94Hz),7.2−7.5(5H,m)
13C NMR:δ(CDCl3 )ppm(TMS)
36.184,67.536(q,J=1.42Hz),68.294,73.416,117.727(q,J=34.47Hz),122.879(q,J=272.00Hz),127.752,127.908,128.537,137.627,144.485(q,J=5.19Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
20.93(d,J=8.24Hz)
・IR(neat)cm-1
3425,3075,3050,2950,2875,675.。
【0079】
(S)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールの水素化ナトリウム=ビス(2−メトキシエトキシ)アルミニウム(Red−Al)による還元反応
Red−Al(2.5mmol,0.74ml(3.4mol/1のトルエン溶液として市販されている))のトルエン溶液(3ml)に−78℃で()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オール(0.547g,2.12mmol)を加え、その温度で更に3時間撹拌を継続した。反応を1規定塩酸水溶液10mlを加えて停止させ、通常の後処理後、n−ヘキサン:酢酸エチル=4:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(3)の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを0.505g(1.94mmol,91.8%)得た。
【0080】
【化56】
Figure 0003662954
【0081】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オール(3)の分析値
・旋光度
[α]D 18 +8.33°(c1.55,CHCl3 ),99.6%ee
・HRMS
131532 としての計算値260.1024 実測値260.1012・1H NMR:δ(CDCl3 )ppm(TMS)
1.7−2.1(2H,m),3.414(1H,d,J=3.81Hz),3.654(1H,dt,J=9.34,4.27Hz),3.734(1H,dt,J=9.38,4.04Hz),4.4−4.6(1H,m),4.521(2H,s),5.950(1H,ddq,J=2.01,15.62,6.57Hz),6.376(1H,ddq,J=4.01,15.60,2.01Hz),7.2−7.4(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
35.385(q,J=1.32Hz),68.330,69.788,73.535,117.907(q,J=33.65Hz),123.375(q,J=268.84Hz),127.779,128.011,128.581,137.445,141.789(q,J=6.30Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
15.01(d,J=5.53Hz)
・IR(neat)cm-1
3450,3075,3050,2950,2875.。
【0082】
オスミウム酸化によるアリルアルコール類のジオール化反応
12mlの66%アセトン=水混合溶媒中に、窒素気流下0℃でN−メチルモルホリン=N−オキシド(2.343g,20mmol)、ならびに四酸化オスミウムのt−ブタノール溶液(2.5重量%)を0.48ml加え、最後に()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オール(3.349g,12.87mmol)を加えた。2日間室温で撹拌した後、10mlの亜硫酸ナトリウム飽和水溶液を加えて過剰の酸化剤を消費させた後、セライト濾過をすることにより不溶成分を除去した。こうして得られた濾液を、酢酸エチル(20ml)で3回抽出し、無水硫酸マグネシウムで乾燥した後に、酢酸エチルを減圧留去した。得られた粗生成物は、n−ヘキサン:酢酸エチル=1:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(4)の(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールと(8)の(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを、87:13の比で3.272g(86.4%)得た。
【0083】
【化57】
Figure 0003662954
【0084】
(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(4)の分析値
・旋光度
[α]D 16 −9.03°(c1.01,CHCl3 ),99.6%ee
・融点
99.0−99.5℃
1H NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
1.7−1.9(1H,m),2.106(1H,dddd,J=2.48,4.27,6.60,14.75Hz),3.6−3.8(4H,m),3.8−4.1(3H,m),4.303(1H,dq,J=1.06,7.78Hz),4.523(2H,s),7.2−7.4(5H,m).
13C NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
32.626,67.800(q,J=29.59Hz),68.660,70.183(q,J=1.83Hz),70.619,73.317,125.333(q,J=282.96Hz),127.714,127.795,128.456,137.743
19F NMR:δ(CDCl3+DMSO−d6)ppm(TFA)
2.41(d,J=7.56Hz)
・IR(KBr)cm-1
3355,2960,2880,2865.。
【0085】
(2S,3R,4S)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(8)の分析値
・旋光度
[α]18 D−21.20°(c0.77,MeOH),99.6%ee
・融点
79.5−80.0℃
1H NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
1.6−2.1(2H,m),3.5−4.3(8H,m),4.512(2H,s),7.2−7.4(5H,m)
13C NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
32.498,68.007,69.780(q,J=1.68Hz),70.367(q,J=30.20Hz),72.342(q,J=1.27Hz),73.381,124.358(q,J=282.67Hz),127.766,127.950,128.498,137.324
19F NMR:δ(CDCl3+DMSO−d6)ppm(TFA)
1.94(d,J=5.48Hz)
・IR(KBr)cm-1
3410,3355,2955,2930,2900,2875.。
【0086】
)−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを上記と同様に処理して、分解不可能な下記ジアステレオマー化合物である(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(14)、ならびに(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(18)を収率71.2%で74:26の比で得た。
【0087】
【化58】
Figure 0003662954
【0088】
(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(14)の分析値
1H NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
1.8−2.0(2H,m),2.7−2.9(1H,br),3.6−3.8(4H,m),3.8−4.1(4H,m),4.466(2H,s),7.2−7.5(5H,m).
13C NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
31.905,68.411,69.281,71.118(q,J=1.27Hz),72.550(q,J=28.87Hz),73.670,124.746(q,J=282.88Hz),127.863,128.138,128.625,137.051
19F NMR:δ(CDCl3+DMSO−d6)ppm(TFA)
3.28(d,J=6.21Hz)
・IR(KBr)cm-1
3290,2925,2875.。
【0089】
(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール(18)の分析値
1H NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
1.716(1H,ddt,J=4.44,15.19,6.20Hz),2.179(1H,ddt,J=5.24,15.01,9.21Hz),2.931(1H,d,J=9.70Hz),3.8−4.4(7H,m),4.537(2H,s),7.2−7.4(5H,m)
13C NMR:δ(CDCl3+DMSO−d6)ppm(TMS)
32.696,69.091,70.292(q,J=1.53Hz),72.097(q,J=1.43Hz),73.057(q,J=29.59Hz),73.646,124.688(q,J=283.08Hz),127.817,128.128,128.638,137.828
19F NMR:δ(CDCl3+DMSO−d6)ppm(TFA)
2.94(d,J=6.89Hz)
・IR(KBr)cm-1:化合物(14)と(18)が分離できないため、両者に共通である。
【0090】
トリオール類の相対構造決定
ラセミ体の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールのオスミウム酸化で得られた主ジアステレオマーである(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを0.63g(2.27mmol)と2,2−ジメトキシプロパン(3mmol)、触媒量(0.01g)のp−トルエンスルホン酸を4mlのTHFに溶解し、室温で12時間撹拌を続けた。ここに、飽和の炭酸水素ナトリウム水溶液を5ml加え、10mlの酢酸エチルで3回抽出を行った。酢酸エチルを減圧留去した後に、n−ヘキサン:酢酸エチル=5:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(5)の(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロビリデン−2,3,4−ヘキサントリオールを0.63g(2.07mmol,収率91.0%)得た。この時、少量の(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−2,4−O−イソプロビリデン−2,3,4−ヘキサントリオールが副製したが、これは更に公知のアセチル化反応(例えば、新実験化学講座第14巻有機化合物の合成と反応[II],p1012;丸善)に付したところ、下記化学式(5a)の(2 * ,3 * ,4 * )−3−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−2,4−O−イソプロビリデン−2,4−ヘキサンジオールを0.03g(0.09mmol,全収率3.3%)得た。
【0091】
後者の化合物(5a)の1 H−NMRを解析した結果(下記参照)、H2 −H3 ならびにH3 −H4 間の結合定数はそれぞれ4.0ならびに6.9Hzであったことから、3ならびに4位の水素はアキシャル配置、すなわち3位と4位の相対配置はアンチであると判断した。また、反応機構を考慮に入れると2位と3位がシンであることは明白であるから、()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールをオスミウム酸化した際に得られる主ジアステレオマーは、2,3−シン、3,4−アンチであると決定した。
【0092】
【化59】
Figure 0003662954
【0093】
(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロビリデン−2,3,4−ヘキサントリオール(5)の分析値
・旋光度(この化合物は光学活性体でも合成しているので、その光学活性体の旋光度を以下に示す。)
[α]D 18 +4.09°(c1.57,CHCl3 ),99.6%ee
・HRMS
162134 としての計算値334.1392 実測値334.1396・1H NMR:δ(CDCl3 )ppm(TMS)
1.396(3H,q,J=0.73Hz),1.522(3H,q,J=0.61Hz),2.000(1H,dddd,J=4.11,5.27,7.63,14.13Hz),2.040(1H,ddt,J=8.95,14.13,5.41Hz),2.838(1H,d,J=10.13Hz),3.606(1H,dt,J=5.25,9.22Hz),3.672(1H,ddd,J=4.06,5.34,9.37Hz),4.00−4.15(1H,m),4.353(1H,dd,J=1.04,7.14Hz),4.483(1H,dt,J=5.37,7.39Hz),4.509(2H,s),7.2−7.4(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
24.719,26.671,30.385,67.178,67.988(q,J=30.15Hz),73.300,73.324(q,J=1.57Hz),74.993,108.637,124.479(q,J=283.48Hz),127.712,127.731,128.436,138.060.・19F NMR:δ(CDCl3 )ppm(TFA)
1.36(d,J=7.56Hz)
・IR(neat)cm-1
3525,3025,3000,2950,2875.。
【0094】
(2 * ,3 * ,4 * )−3−アセトキシ−5−ベンジルオキシ−1,1,1−トリフルオロ−2,4−O−イソプロピリデン−2,4−ヘキサンジオール(5a)の分析値
1H NMR:δ(CDCl3 )ppm(TMS)
1.363(3H,s),1.453(3H,s),1.804(1H,ddt,J=9.58,14.39,4.81Hz),1.996(1H,ddt,J=3.47,14.37,7.21Hz),2.082(3H,s),3.548(2H,dd,J=4.81,7.19Hz),3.936(1H,ddd,J=3.47,6.90,9.48Hz),4.298(1H,dq,J=4.03,7.02Hz),4.450(1H,d,J=11.31Hz),4.513(1H,d,J=11.84Hz),5.239(1H,dd,J=3.99,6.88Hz),7.2−7.5(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
20.872,23.268,24.421,32.822,65.583,68.749(q,J=31.72Hz),68.700,70.805,73.104,102.461,123.233(q,J=280.13Hz),127.674,127.731,128.415,138.254,169.857.
19F NMR:δ(CDCl3 )ppm(TFA)
5.43(d,J=6.89Hz)
・IR(neat)cm-1
3065,3030,2995,2940,2865,1749.。
【0095】
ラセミ体の()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールのオスミウム酸化で得られたジアステレオマー混合物である(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール、ならびに(2 * ,3 * ,4 * )−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを同様なアセトニド化、ならびにアセチル化反応に付すことにより、下記化学式(14a)の(2 * ,3 * ,4 * )−2−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−3,4−ヘキサンジオールを70%の収率で得た。また、副生成物として、下記化学式(14b)の(2 * ,3 * ,4 * )−3−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−2,4−O−イソプロピリデン−2,4−ヘキサンジオール、ならびに下記化学式(14c)の(2 * ,3 * ,4 * )−2−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−3,4−ヘキサンジオールを58:42の混合物として、収率26%で得た。
【0096】
化合物(14b)の1 H−NMRを解析した結果(下記参照)、H2 −H3 ならびにH3 −H4 間の結合定数はそれぞれ9.7Hzであったことから、2,3ならびに4位の水素はいずれもアキシャル配置、すなわち2位と3位、ならびに3位と4位の相対配置はいずれもアンチであると判断した。
【0097】
【化60】
Figure 0003662954
【0098】
(2 * ,3 * ,4 * )−2−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−3,4−ヘキサンジール(14a)の分析値
1 H NMR:δ(CDCl3 )ppm(TMS)
1.377(3H,q,J=0.61Hz),1.411(3H,q,J=0.73Hz),1.836(1H,ddt,J=8.89,14.18,5.25Hz),1.982(1H,dddd,J=2.93,6.37,8.20,14.22Hz),2.111(3H,s),3.593(1H,ddd,J=5.49,8.30,9.40Hz),3.642(1H,ddd,J=4.95,6.41,9.34Hz),4.042(1H,dd,J=6.34,7.33Hz),4.188(1H,ddd,J=2.93,7.35,8.76Hz),4.498(1H,d,J=12.21Hz),4.524(1H,d,J=11.97Hz),5.490(1H,dq,J=6.35,6.96Hz),7.2−7.5(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
20.670,26.950,27.642,34.581,67.057,69.805(q,J=31.11Hz),73.385,75.510,77.154(q,J=1.58Hz),110.542,123.256(q,J=281.04Hz),127.951,128.727,138.663,169.094.
19F NMR:δ(CDCl3 )ppm(TFA)
4.96(d,J=6.89Hz)
・IR(neat)cm-1
2990,2935,2865,1769.。
【0099】
(2 * ,3 * ,4 * )−3−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−2,4−O−イソプロピリデン−2,4−ヘキサンジオール(14b)の分析値(13C NMRならびにIRは、(14b)と(14c)の判別ができなかったので、まとめてここに示す。)
13C NMR:δ(CDCl3 )ppm(TMS)
19.368,20.838,21.028,25.937,28.082,29.006,29.152,32.425,65.255,65.504,67.125,67.692,70.470(q,J=30.51Hz),73.410,73.513,74.138(q,J=32.27Hz),100.085,109.642,123.712(q,J=280.94Hz),128.007,128.038,128.753,128.791,138.572,138.701,168.991,169.691.
・IR(neat)cm-1
3015,2970,1780.
1H NMR:δ(CDCl3 )ppm(TMS)
1.439(3H,s),1.500(3H,s),1.6−2.0(2H,m),2.050(3H,s),3.5−3.6(2H,m),4.005(1H,dt,J=2.44,9.71Hz),4.161(1H,dq,J=9.70,5.70Hz),4.454(1H,d,J=12.09Hz),4.529(1H,d,J=12.45Hz),4.908(1H,t,J=9.71Hz),7.2−7.4(5H,m).
19F NMR:δ(CDCl3 )ppm(TFA)
2.39(d,J=5.48Hz)。
【0100】
(2 * ,3 * ,4 * )−2−アセトキシ−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−3,4−ヘキサンジオール(14c)の分析値
1H NMR:δ(CDCl3 )ppm(TMS)
1.366(3H,s),1.449(3H,s),1.6−2.0(2H,m),2.112(3H,s),3.5−3.6(2H,m),4.287(1H,dd,J=5.19,9.34Hz),4.4−4.5(1H,m),4.498(1H,d,J=12.00Hz),4.528(1H,d,J=12.18Hz),5.253(1H,dq,J=9.31,6.51Hz),7.2−7.4(5H,m).
19F NMR:δ(CDCl3 )ppm(TFA)
6.52(d,J=5.48Hz)。
【0101】
(2R,3R,4S)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールならびに(2S,3S,4S)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールのジアステレオマー混合物の3,4−ビス−t−ブチルジメチルシリル化反応
4.169gの表題ジアステレオマー混合物(14.166mmol,(2,3,4):(2,3,4)=74:26)とそれぞれ42.5mmolのt−ブチルジメチルシリルクロリド(6.406g)とイミダゾール(2.893g)を30mlの塩化メチレンに溶解し、終夜室温で撹拌した。ここに1規定塩酸水溶液を50ml加えて反応を停止させ、50mlの塩化メチレン3回抽出をした。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去すると、2位、3位、4位の3つの水酸基のうちの2カ所がt−ブチルジメチルシリル基で保護された化合物が、混合物として得られた。
【0102】
この混合物を精製することなく75mlのTHFに溶解し、14.2mmolのカリウムt−ブトキシド(1.593g)と−78℃で4時間反応させた。ここに1規定塩酸水溶液を15ml加えて反応を停止させ、30mlの酢酸エチルで3回抽出した。無水硫酸マグネシウムで乾燥後、溶媒を減圧留去し、n−ヘキサン:酢酸エチル=4:1の溶液を展開溶媒としてシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(15)の(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノール、ならびに(19)の(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノールを、それぞれ4.673g(8.939mmol,63.1%)ならびに1.768g(3.381mmol,23.9%)得た。
【0103】
【化61】
Figure 0003662954
【0104】
(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノール(15)の分析値
・旋光度
[α]D 18 −19.83°(c0.99,CHCl3 ),99.6%ee
・HRMS
131532 としての計算値260.1024 実測値260.1012・1H NMR:δ(CDCl3 )ppm(TMS)
0.059(3H,s),0.070(3H,s),0.091(3H,s),0.161(3H,s),0.857(9H,s),0.895(9H,s),1.760(1H,ddt,J=10.19,14.28,4.03Hz),2.276(1H,dddd,J=2.20,6.72,9.77,14.16Hz),3.565(1H,ddd,J=4.39,9.28,9.88Hz),3.595(1H,ddd,J=3.69,6.52,9.44Hz),3.932(1H,dd,J=4.03,8.67Hz),4.039(1H,ddq,J=2.20,8.79,6.51Hz),4.111(1H,ddd,J=1.95,3.66,10.26Hz),4.491(2H,s),5.066(1H,d,J=1.46Hz),7.2−7.5(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
−5.397,−5.270,−4.447,−4.287,17.776(2C),25.589,25.614,30.019,65.787,69.044(q,J=1.58Hz),72.615(q,J=28.16Hz),72.697,72.900,124.858(q,J=281.96Hz),127.409,127.448,128.236,138.306.
19F NMR:δ(CDCl3 )ppm(TFA)
2.16(d,J=4.80Hz)
・IR(neat)cm-1
3415,3030,2955,2930,2890,2860.。
【0105】
(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノール(19)の分析値
・旋光度
[α]D 18 +1.26°(c0.93,CHCl3 ),99.6%ee
・HRMS
131532 としての計算値260.1024 実測値260.1012・1H NMR:δ(CDCl3 )ppm(TMS)
0.054(3H,s),0.083(3H,s),0.102(3H,s),0.135(3H,s),0.887(9H,s),0.909(9H,s),1.835(1H,ddt,J=7.39,14.80,5.01Hz),2.051(1H,ddt,J=5.24,14.87,7.17Hz),3.561(2H,dd,J=5.02,7.06Hz),3.7−3.9(1H,br),3.947(1H,d,J=7.10Hz),3.95−4.06(1H,m),4.157(1H,dd,J=5.22,7.42Hz),4.508(2H,s),7.2−7.4(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
−5.737,−5.067,−4.248,−3.779,17.987,18.059,25.809,25.870,34.473,66.830,73.046,73.074(q,J=28.77Hz),74.042(q,J=1.17Hz),74.123,124.899(q,J=281.66Hz),127.697,128.379,137.853.
19F NMR:δ(CDCl3 )ppm(TFA)
3.61(d,J=6.21Hz)
・IR(neat)cm-1
3410,3065,3030,2955,2930,2880,2860,2740.。
【0106】
(3S,4R,5S)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールの3,4−ビス−t−ブチルジメチルシリル化反応
上記反応と同様に行い、70%の収率で下記化学式(10)の(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノールを得た。
【0107】
【化62】
Figure 0003662954
【0108】
(2,3,4)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノール(10)の分析値
・旋光度
[α]D 17 −28.31°(c1.08,CHCl3 ),99.6%ee
・HRMS
131532 としての計算値260.1024 実測値260.1012・1H NMR:δ(CDCl3 )ppm(TMS)
0.055(3H,s),0.057(3H,s),0.113(3H,s),0.140(3H,s),0.880(9H,s),0.913(9H,s),1.597(1H,ddt,J=10.16,14.23,4.08Hz),2.053(1H,dddd,J=1.87,6.66,9.59,14.21Hz),3.251(1H,d,J=10.25Hz),3.521(1H,dt,J=4.51,9.46Hz),3.551(1H,ddd,J=3.70,6.51,9.11Hz),3.938(1H,d,J=4.88Hz),3.967(1H,ddd,J=1.56,4.73,10.11Hz),4.205(1H,dq,J=9.83,7.90Hz),4.465(1H,d,J=11.97Hz),4.497(1H,d,J=11.96Hz),7.2−7.4(5H,m).
13C NMR:δ(CDCl3 )ppm(TMS)
−5.419,−5.142,−4.437,−4.236,17.780,17.918,25.621,25.666,30.892,66.116(q,J=29.69Hz),66.300,69.133,69.580(q,J=1.68Hz),72.598,125.164(d,J=283.28Hz),127.295,127.322,128.189,138.616
19F NMR:δ(CDCl3 )ppm(TFA)
0.69(d,J=7.56Hz)
・IR(neat)cm-1
3515,3065,3030,2955,2930,2885,2855.。
【0109】
(2R,3R,4S)−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−2,3,4−ヘキサントリオールのラネーニッケルによる脱ベンジル化
(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−3,4−O−イソプロピリデン−2,3,4−ヘキサントリオール(0.996g,2.98mmol)のエタノール溶液(30ml)に、約0.5gのラネーニッケル(W2)を加え、水素雰囲気下、室温で12時間撹拌を続けた。濾過によりラネーニッケルを除去した後濃縮し、n−ヘキサン:酢酸エチル=1:1の溶液を展開溶媒としたシリカゲルクロマトグラフィーで精製を行い、下記化学式(6)の(3,4,5)−6,6,6−トリフルオロ−3,4−O−イソプロピリデン−1,3,4,5−ヘキサンテトラオールを95.3%の収率(0.694g、2.84mmol)で得た。
【0110】
【化63】
Figure 0003662954
【0111】
(3,4,5)−6,6,6−トリフルオロー3,4−O−イソプロピリデン−1,3,4,5−ヘキサンテトラオール(6)の分析値
・旋光度
[α]D 18 +18.21°(c1.20,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
1.418(3H,s),1.550(3H,s)1.849(1H,dddd,J=3.63,5.30,7.19,14.07Hz),2.048(1H,dddd,J=4.63,5.81,9.84,14.09Hz),1.6−2.2(1H,br),2.7−3.3(1H,br),3.822(1H,ddd,J=4.62,7.14,10.76Hz),3.895(1H,dt,J=10.89,5.37Hz),3.9−4.1(1H,m)4.391(1H,dd,J=1.22,7.22Hz),4.522(1H,ddd,J=3.54,7.08,9.68Hz)
13C NMRδ(CDCl3 )ppm(TMS)
24.246,26.695,32.273,60.536,67.950(q,J=30.10Hz),73.160(q,J=1.83Hz),75.597,109.142,124.431(q,J=283.79Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
1.31(d,J=6.89Hz)
・IR(neat)cm-1
3420,3000,2940.。
【0112】
(2S,3S,4S)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノールのラネーニッケルによる脱ベンジル化
上記の反応と同様に行い、70.7%の収率で下記化学式(11)の(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオールを得た。また、この時13.1%の原料も回収された。
【0113】
【化64】
Figure 0003662954
【0114】
(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオール(11)の分析値
・旋光度
[α]D 18 −36.23°(c0.97,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
0.081(3H,s),0.110(3H,s)0.118(3H,s),0.156(3H,s),0.885(9H,s),0.917(9H,s),1.651(1H,ddt,J=9.27,14.32,4.76Hz),1.894(1H,dddd,J=2.13,5.77,9.05,14.31Hz),2.6−3.6(2H,br),3.653(1H,ddd,J=4.76,9.15,10.50Hz),3.767(1H,ddd,J=4.83,5.80,10.56Hz),3.915(1H,ddd,J=2.20,4.64,9.77Hz),3.938(1H,d,J=4.63Hz),4.196(1H,q,J=7.81Hz)
13C NMRδ(CDCl3 )ppm(TMS)
−5.478,−5.092,−4.437,−4.117,17.736,17.885,25.593,25.647,33.416,59.484,66.117(q,J=29.96Hz),69.555(q,J=1.68Hz),69.778,125.091(q,J=283.18Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
0.70(d,J=8.24Hz)
・IR(neat)cm-1
3515,2955,2930,2890,2860.。
【0115】
(2R,3S,4S)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノールのラネーニッケルによる脱ベンジル化
上記の反応と同様に行い、87.2%の収率で下記化学式(16)の(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオールを得た。また、この時9.8%の原料も回収された。
【0116】
【化65】
Figure 0003662954
【0117】
(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオール(16)の分析値
・旋光度
[α]D 18 −23.61°(c1.29,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
0.085(3H,s),0.117(3H,s),0.148(3H,s),0.188(3H,s),0.876(9H,s),0.904(9H,s),1.6−1.8(1H,br),1.787(1H,ddt,J=9.30,13.97,4.65Hz),2.149(1H,dddd,J=3.53,5.99,9.54,14.11Hz),3.685(1H,dt,J=4.38,10.22Hz),3.829(1H,ddd,J=4.39,6.05,10.59Hz),3.945(1H,dd,J=3.84,8.80Hz),4.0−4.2(2H,m),4.9−5.1(1H,br)
13C NMRδ(CDCl3 )ppm(TMS)
−5.454(q,J=1.43Hz),−5.158,−4.487,−4.101,17.763,17.798,25.575,25.613,33.252,58.863,69.297(q,J=1.42Hz),72.447(q,J=28.68Hz),73.456,124.791(q,J=282.37Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
2.28(d,J=5.53Hz)
・IR(neat)cm-1
3420,2955,2930,2890,2860.。
【0118】
(2S,3R,4S)−6−ベンジルオキシ−3,4−ビス(t−ブチルジメチルシロキシ)−1,1,1−トリフルオロ−2−ヘキサノールのラネーニッケルによる脱ベンジル化
上記の反応と同様に行い、97.6%の収率で下記化学式(20)の(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオールを得た。
【0119】
【化66】
Figure 0003662954
【0120】
(3,4,5)−3,4−ビス(t−ブチルジメチルシロキシ)−6,6,6−トリフルオロ−1,5−ヘキサンジオール(20)の分析値
・旋光度
[α]D 17 +4.32°(c0.42,CHCl3 ),99.6%ee
・1H NMR:δ(CDCl3 )ppm(TMS)
0.080(3H,s),0.104(3H,s)0.129(3H,s),0.140(3H,s),0.885(9H,s),0.909(9H,s),1.868(2H,q,J=5.92Hz),2.0−4.0(2H,br),3.686(1H,dt,J=10.61,6.02Hz),3.794(1H,dt,J=10.54,5.27Hz),3.9−4.1(1H,m),3.981(1H,d,J=4.40Hz),4.173(1H,t,J=6.04Hz)
・13C NMRδ(CDCl3 )ppm(TMS)
−5.718,−5.071,−4.253,−3.721,18.060,18.092,25.805,25.914,35.945,59.100,72.622(q,J=28.57Hz),72.809(q,J=1.37Hz),74.683(q,J=1.12Hz),124.784(q,J=282.27Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
3.69(d,J=6.89Hz)
・IR(neat)cm-1
3360,2960,2930,2860.。
【0121】
6,6,6−トリフルオロ−3,4−O−イソプロピリデン−L−オリオースの合成
15mlの塩化メチレンにピリジニウムジクロマート(PDC;3.762g,10mmol)を懸濁させ、そこに窒素雰囲気下0℃で(3,4,5)−6,6,6−トリフルオロ−3,4−O−イソプロピリデン−1,3,4,5−ヘキサンテトラオール(0.725g,2.97mmol)を加えた後、室温で2日間撹拌した。反応溶液をセライト濾過した後、減圧で濃縮し、得られた粗生成物をn−ヘキサン:酢酸エチル=2:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(7)の6,6,6−トリフルオロ−3,4−O−イソプロピリデン−L−オリオースが50.1%(0.360g,1.486mmol)の収率で、90:10のアノマー混合物として得られた。また、更に酸化された、下記化学式(7a)の(3S,4S,5R)−6,6,6−トリフルオロ−3,4−ジヒドロキシ−3,4−O−イソプロピリデンヘキサン−5−オリドが32.7%(0.233g,0.97mmol)得られた。なお、前者の6,6,6−トリフルオロ−3,4−O−イソプロピリデン−L−オリオースのデータは、主異性体のみを示す。
【0122】
【化67】
Figure 0003662954
【0123】
6,6,6−トリフルオロ−3,4−O−イソプロピリデン−L−オリオース(7)の分析値
・融点
96.5−97.0℃
・旋光度
[α]D 16 −67.82°(c1.39,CHCl3 ),99.6%ee
1 H NMR:δ(CDCl3 )ppm(TMS)
1.359(3H,s),1.496(3H,s),1.705(1H,ddd,J=3.35,6.88,15.33Hz),2.380(1H,ddd,J=4.33,5.32,15.32Hz),3.3−3.7(1H,br),4.229(1H,dq,J=2.05,6.74Hz),4.380(1H,dd,J=2.05,7.30Hz),4.578(1H,dt,J=7.40,3.76Hz),5.482(1H,dd,J=5.68,6.71Hz)
13C NMR:δ(CDCl3 )ppm(TMS)
25.116,26.236,30.675,68.148(q,J=31.31Hz),70.241,70.566(q,J=1.47Hz),90.856,110.285,123.437(q,J=280.33Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
5.57(d,J=6.89Hz)
・IR(KBr)cm-1
3475,2995,2970,2930.。
【0124】
(3,4,5)−6,6,6−トリフルオロ−3,4−ジヒドロキシ3,4−O−イソプロピリデンヘキサン−5−オリド(7a)の分析値
・融点
90.0−91.0℃
・旋光度
[α]D 16 −15.28°(c0.98,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 +DMSO−d6 )ppm(TMS)
1.352(3H,s),1.420(3H,s),2.794(1H,dd,J=2.39,16.10Hz),2.919(1H,dd,J=3.19,16.05Hz),4.719(1H,dd,J=1.83,7.61Hz),4.813(1H,dt,J=7.72,2.77Hz),4.924(1H,dq,J=1.85,6.55Hz)
13C NMR:δ(CDCl3 +DMSO−d6 )ppm(TMS)
24.107,25.771,34.684,70.122(q,J=1.42Hz),71.692,73.040(q,J=32.23Hz),110.170,122.056(q,J=280.33Hz),167.455.
19F NMR:δ(CDCl3 +DMSO−d6 )ppm(TFA)
5.99(d,J=6.21Hz)
・IR(KBr)cm-1
3000,2950,1765.。
【0125】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ボイビノースの合成
上記と同様なPDC酸化反応を行って得た粗生成物を塩化メチレン(0.5M)に溶解し、ここにジイソプロピルアルミニウムヒドリド(DIBAL−H;1.0当量)を窒素雰囲気下−78℃で加えて1時間撹拌した。同様な後処理後、得られた粗生成物をn−ヘキサン:酢酸エチル=6:1の溶液を展開溶媒としたシリカゲルカラムクロマトグラフィーで精製を行い、下記化学式(12)の6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ボイビノースを86.0%の収率で75:25のアノマー混合物として得た。なおデータは主異性体のみを示す。
【0126】
【化68】
Figure 0003662954
【0127】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ボイビノース(12)
・旋光度
[α]D 17 +21.74°(c1.92,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
0.072(3H,s),0.086(3H,s),0.145(3H,s),0.159(3H,s),0.894(9H,s),0.929(9H,s),1.726(1H,ddt,J=3.42,14.16,1.10Hz),2.288(1H,ddd,J=2.50,3.60,14.22Hz),3.775(1H,d,J=3.91Hz),3.991(1H,q,J=2.93Hz),4.491(1H,dq,J=0.98,6.96Hz),5.16−5.32(2H,m)
13C NMR:δ(CDCl3 )ppm(TMS)
−5.243,−5.183,−4.869,−4.666,17.750,17.790,25.585,30.545,65.558(q,J=30.91Hz),66.555(q,J=1.73Hz),69.905,92.999,124.060(q,J=280.03Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
5.45(d,J=6.21Hz)
・IR(neat)cm-1
3495,2955,2930,2900,2860.。
【0128】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−L−オリボースの合成
上記と同様なPDC酸化反応、ならびにDIBAL−H還元を行い、下記化学式(17)の6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−L−オリボースを95.4%の収率で87:13のアノマー混合物として得た。なお、データは主異性体のみを示す。
【0129】
【化69】
Figure 0003662954
【0130】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−L−オリボース(17)の分析値
・旋光度
[α]D 18 −19.22°(c1.28,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
0.094(3H,s),0.098(3H,s),0.104(6H,s),0.874(9H,s),0.893(9H,s),1.838(1H,ddd,J=4.32,7.74,13.69Hz),2.001(1H,ddd,J=3.66,4.65,13.70Hz),2.4−3.2(1H,br),3.719(1H,dd,J=5.29,7.32Hz),3.966(1H,ddd,J=3.66,5.23,7.70Hz),4.112(1H,dq,J=7.42,7.42Hz),5.395(1H,t,J=4.49Hz)
13C NMR:δ(CDCl3 )ppm(TMS)
−4.584(q,J=1.68Hz),−3.970,−3.222,−2.892,18.360,18.599,26.307,26.436,36.628,70.787,71.355,73.079(q,J=29.29Hz),91.913,124.807(q,J=280.74Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
5.42(d,J=6.89Hz)
・IR(neat)cm-1
3420,2955,2940,2900,2860.。
【0131】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ジギトキソースの合成
上記と同様なPDC酸化反応、ならびにDIBAL−H還元を行い、下記化学式(21)の6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ジギトキソースを85.6%の収率で79:21のアノマー混合物として得た。なおデータは主異性体のみを示す。
【0132】
【化70】
Figure 0003662954
【0133】
6,6,6−トリフルオロ−3,4−O−(ビス−t−ブチルジメチルシリル)−D−ジギトキソース(21)の分析値
・旋光度
[α]D 19 +59.78°(c1.10,CHCl3 ),99.6%ee
1H NMR:δ(CDCl3 )ppm(TMS)
0.0−0.2(12H,m),0.898(9H,s),0.927(9H,s),1.913(1H,ddd,J=2.42,3.75,14.24Hz),2.00−2.15(1H,m),3.777(1H,dd,J=2.39,9.09Hz),4.1−4.2(1H,m),4.382(1H,dq,J=9.14,6.90Hz),5.15−5.50(2H,m)
13C NMR:δ(CDCl3 )ppm(TMS)
−5.549(q,J=1.63Hz),−4.635,−4.523,−3.306,17.853,17.938,25.686,25.979,36.368,66.905(q,J=29.28Hz),69.088,71.381,92.369,124.460(q,J=280.23Hz)
19F NMR:δ(CDCl3 )ppm(TFA)
6.07(d,J=6.89Hz)
・IR(neat)cm-1
3420,2950,2935,2875,2860.
【0134】
【発明の効果】
本発明は、以下のような優れた効果を有するものであり、本発明が有機フッ素化学工業に貢献するところ大である。
【0135】
(1)本発明は、比較的安価な原料である2−ブロモ−3,3,3−トリフルオロプロペンを出発原料とし、わずか7段階という短工程で、2,6−ジデオキシ−6,6,6−トリフルオロヘキソース類の可能な4種類の立体異性体すべてを、非常に高い光学純度で効率よく合成することができる。
【0136】
(2)いずれの実験操作も、特別な反応装置等が不要であり、ごく簡便に実行することができる。
【0137】
(3)t−ブチルジメチルシリル基での保護や、最終工程の位置選択的酸化など、トリフルオロメチル基の有している強い電子吸引性を有効に利用し、合成経路の短工程化を実現できる。[0001]
[Industrial application fields]
The present invention relates to a novel optically active 6-deoxy-6,6,6-trifluorosugar derivative that is useful as a functional material such as a liquid crystal material or an intermediate for medical and agricultural chemicals.
[0002]
[Prior art]
Conventionally, to produce 6-deoxy-6,6,6-trifluorosaccharide, trifluoromethyl anion (CF) is used for optically active aldehydes.Three -) Is generally reacted, and the following reaction is known.
[0003]
(1) A compound in which a trifluoromethyl group is introduced by allowing tetrabutylammonium fluoride to act on a mixture of 2,3,4,5-tetrakis (benzyloxy) valeraldehyde and trifluoromethyltrimethylsilane derived from D-lyxose Is a method of synthesizing the desired 6-deoxy-6,6,6-trifluorosaccharide in a total yield of 58% through 5 steps (J.Chem.Soc., Chem.Commun., 796 (1991)).
[0004]
(2) (E) -1,1,1-trifluoro-4-methoxy-3-buten-2-one and ethyl vinyl ether were cyclized to synthesize dihydropyrans having a trifluoromethyl group in a yield of 62%; A method of synthesizing the desired 6-deoxy-6,6,6-trifluorosugar derivative in a total yield of 7% through several stages such as hydroboration and optical resolution (Bull.Soc.Chim.Belg.,99, 647 (1990)). Further, the following synthesis method is known as an intermediate method between the above (1) and (2).
[0005]
(3) Reacting trifluoromethyl iodide with glyceraldehyde acetonide in the presence of zinc, adding water and then isolating the optically active compound introduced with a trifluoromethyl group in a yield of 70%. A method of synthesizing the desired 6-deoxy-6,6,6-trifluorosaccharide via reaction (total yield unknown) (Chem. Pharm. Bull.,39,2459 (1991)).
[0006]
[Problems to be solved by the invention]
However, the conventional method has the following problems.
[0007]
In the conventional method (1), the diastereoselectivity upon introduction of the trifluoromethyl group is poor (1: 1), and these cannot be separated. Furthermore, since the selectivity of the 5-membered ring and the 6-membered ring at the time of cyclization is low, finally, separation and purification of 8 kinds of stereoisomer mixtures is the greatest disadvantage.
[0008]
Conventional method (2) is a raw material (E) -1,1,1-trifluoro-4-methoxy-3-buten-2-one is (E) There are problems that only the body can be prepared and that the overall yield is as extremely low as 7%.
[0009]
Furthermore, in the conventional method (3), the diastereoselectivity at the time of introduction of the trifluoromethyl group is poor, and the ratio of what is required is small. In this process, asymmetric induction is required once more, and the operation method is It is complicated and cannot be manufactured efficiently.
[0010]
Accordingly, an object of the present invention is to provide a technique for selectively producing a plurality of stereoisomers of 6-deoxy-6,6,6-trifluorosaccharide under mild conditions and in a simple process. .
[0011]
[Means and Actions for Solving the Problems]
Based on the above-mentioned problems, the present inventors have planned a reaction route that can produce several stereoisomers from a single raw material. As a result of earnest research to achieve this problem, an optically active form of 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol was used as a raw material,E) Or (Z) Derived into the body olefin. By subjecting these olefins to an oxidation reaction with a catalytic amount of osmium tetroxide, it was found that stereoselective diol formation can be achieved, and further, through two to three stages of reaction, the desired four kinds of 6- The present invention for stereoselectively synthesizing deoxy-6,6,6-trifluorosugar derivatives has been completed.
[0012]
That is, the present invention is a reaction product obtained by reacting 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol with vinyl acetate in the presence of lipase QL (R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate and unreacted substances (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol, thus producing a 6-deoxy-6,6,6-trifluorosugar derivative using the optically resolved compound. It relates to a method of manufacturing.
[0013]
The reaction of the first step of the present invention is represented by the chemical formula (1)
[0014]
Embedded image
Figure 0003662954
[0015]
Racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by the formula (2)
[0016]
Embedded image
Figure 0003662954
[0017]
Represented by (SThis is a step of synthesizing -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol.
[0018]
The method of optical resolution is not particularly limited. For example, optical resolution is carried out by reacting with vinyl acetate in an organic solvent in the presence of lipase QL (Japanese Patent Laid-Open Nos. 61-257191, 61-268192, 62). -104589) can be employed.
[0019]
By reacting with vinyl acetate in the presence of lipase QL, it is an unreacted substance (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2) is obtained with an optical purity of 99.6% ee and an isolated yield of 40%. It is also a reaction product (R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate (2a) was obtained with an optical purity of 64.4% ee and an isolated yield of 59%;R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate (2a) is an enantiomer of formula (2) by subjecting it to a mild hydrolysis reaction (R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2b).
[0020]
Embedded image
Figure 0003662954
[0021]
This reaction is very simple and is performed at a reaction temperature of 0 to 60 ° C., preferably about 35 to 40 ° C. If the temperature is too high, there will be a problem with the stability of the enzyme itself. Conversely, if the temperature is too low, the reaction rate will decrease.
[0022]
The reaction of 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (1) and vinyl acetate in the present invention in the presence of lipase QL is carried out by using a nonpolar solvent such as hexane or benzene, It is possible to use a polar solvent such as tetrahydrofuran or ether, but it is preferable to carry out in hexane.
[0023]
In the present invention, the molar ratio of 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (1) to vinyl acetate may theoretically be 2: 1, but an excess of acetic acid may be used. Since vinyl has the effect of improving the reaction rate, it is preferable to use an excessive amount of vinyl acetate. However, if the amount is too large, enantioselectivity is lowered, and therefore, it is preferable to use vinyl acetate having twice the molar amount of alcohol as the substrate. In addition, the amount of enzyme similarly affects the reaction rate, but if it is used too much, the enantioselectivity also decreases, so that the substrate 1-benzyloxy-6,6,6-trifluoro-4-hexyne is used. It is appropriate to use about 0.01 to 1 g, preferably 0.1 g, per 1 mmol of -3-ol (1).
[0024]
After the reaction, the final product (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2) and (R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate (2a) is filtered to remove insoluble components such as enzymes and dried over sodium sulfate and magnesium sulfate. Remove under reduced pressure. Finally, this mixture is separated into alcohol (2) and acetate (2a) by a known method of isolation and purification by silica gel column chromatography.
[0025]
The second stage of the present invention is the above (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2) and stereoselection of triple bond with Red-Al (sodium hydride = bis (methoxyethoxy) aluminum) Reduced to chemical formula (3)
[0026]
Embedded image
Figure 0003662954
[0027]
Represented by (S,E) A process for synthesizing -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol, or by stereoselectively hydrogenating a triple bond with a Lindlar catalyst to obtain a chemical formula (13)
[0028]
Embedded image
Figure 0003662954
[0029]
Represented by (S,Z) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (9).
[0030]
Embedded image
Figure 0003662954
[0031]
First, the chemical formula (3) of Red-Al (E) Induction to the body is a known method (for example,Organic Reactions,34, 90 (1985)), stereoselectively (E) Only the body can be obtained. Further, in the chemical formula (13) (ZIn the case of a body, a known method using a Lindlar catalyst (for example,Organic Synthesis Coll.Five, 880 (1973)),Z) Only the body can be obtained.
[0032]
The reduction with Red-Al can be carried out at -78 ° C to room temperature, but it is desirable to carry out the reaction at -78 ° C, which is a temperature that can suppress side reactions. The reaction solvent may be an aprotic polar solvent such as ether or THF, or a less polar solvent such as benzene or toluene, with toluene being most preferred.
[0033]
On the other hand, in a hydrogenation reaction using a Lindlar catalyst, the reaction temperature may be 0 to 50 ° C., but is preferably about room temperature (25 ° C.). A wide variety of solvents such as protic polar solvents such as methanol and ethanol, ethyl acetate, and hexane can be used as the solvent, but it is desirable to carry out the reaction under a hydrogen atmosphere at normal pressure using hexane.
[0034]
The third stage of the present invention is a diolation reaction with osmium tetroxide. By the diol formation, the chemical formula (3) (S,E) From 1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol, the chemical formula (4)
[0035]
Embedded image
Figure 0003662954
[0036]
(2R, 3S, 4S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol and the chemical formula (8)
[0037]
Embedded image
Figure 0003662954
[0038]
(2S, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol is obtained.
[0039]
Meanwhile, in the chemical formula (13) (S,Z) From 1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol, the chemical formula (14)
[0040]
Embedded image
Figure 0003662954
[0041]
(2R, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol and the chemical formula (18)
[0042]
Embedded image
Figure 0003662954
[0043]
(2S, 3S, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol is obtained.
[0044]
Embedded image
Figure 0003662954
[0045]
For this oxidation method, one equivalent of osmium tetroxide and a catalytic amount of osmium tetroxide were used to oxidize the reduced osmium oxidant with N-methylmorpholine = N-oxide to produce the original osmium tetroxide. In view of toxicity and economic efficiency of osmium tetroxide, the present invention uses a catalytic amount of the latter osmium tetroxide and co-oxidizes N-methylmorpholine = N-oxide. Any known method may be used (for example, the fourth edition, Experimental Chemistry Course Vol. 23, Organic Synthesis [V] Oxidation, p79; Maruzen).
[0046]
The amount of osmium tetroxide to be used can be from 0.001 to 1 equivalent, but considering the above toxicity and price, the use of 0.003 to 0.01 equivalent is desirable. Further, the co-oxidant N-methylmorpholine = N-oxide may be about 1 to 3 equivalents, but about 1.5 equivalents are desirable in consideration of the reaction rate and occurrence of side reactions. As the solvent, a mixed system of water and an organic solvent (THF, acetone, t-butanol, etc.) is suitable, but it is preferable to use water = acetone system and react at room temperature in a nitrogen atmosphere.
[0047]
The fourth stage of the present invention is a reaction that selectively protects only the 3-position and 4-position among the three hydroxyl groups generated by the diol formation with osmium. The strong electron-withdrawing property of the trifluoromethyl group is a well-known fact. Therefore, it can be easily assumed that the oxygen atom of the hydroxyl group closer to this group has a lower electron density and lower nucleophilicity. . Based on this idea, (2R, 3S, 4S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (4) is prepared by a known method (for example, New Experimental Chemistry Course Vol. 14 Synthesis and Reaction of Organic Compounds [V ], P2495; Maruzen) By acetonidation, chemical formula (5)
[0048]
Embedded image
Figure 0003662954
[0049]
(Wherein R1And R2Each represents the same or different alkyl group or aryl group)
(2R, 3R, 4S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol derivative can be obtained in high yield. At this time, acetonide between 2 and 4 positions was also produced as a by-product, but a little.
[0050]
Embedded image
Figure 0003662954
[0051]
The method of the present invention is a technique that makes good use of the electron-withdrawing effect of the trifluoromethyl group as described above. Next, after removing the terminal benzyl group and oxidizing the hydroxyl group at this position into an aldehyde, 2 is used. In order to form lactol with the hydroxyl group at the position, it is necessary that the 3rd and 4th positions are in anti-configuration at the stage of the compound (4). Therefore, another protection is required for the 3,4-syn form. Therefore, the following method was devised. That is, (2S, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (8) is reacted with 2 equivalents of t-butyldimethylsilyl chloride and imidazole respectively, and A to C If the three mixtures represented are prepared and treated with a base under thermodynamic conditions, the most stable alkoxide, position 2, will remain unprotected.
[0052]
Embedded image
Figure 0003662954
[0053]
(Wherein RThree, RFourAnd RFiveAre the same or different alkyl or aryl groups)
This idea is an extension of the concept we have already reported (J. Org. Chem., 584346 (1993)). When this method was actually carried out, a mixture of A to C was certainly produced from triol (8). However, when this mixture was treated with a base without separation as it was, desired (2S, 3S, 4S) -6-benzyloxy-1,1,1-trifluoro-2-hexanol derivative (10) was successfully obtained as a single product. This reaction is divided into two steps: a step of converting compound (8) into a mixture of A to C, which is an intermediate, and a step of rearrangement of this mixture into (10). For example, dimethylformamide (DMF) or methylene chloride is suitable, but here, methylene chloride was used. The reaction temperature is about 0 to 50 ° C., preferably about room temperature (25 ° C.). Furthermore, t-butoxypotassium, sodium hydride, n-butyllithium and the like can be used as a base for rearranging the silyl group under thermodynamic conditions, but it is preferable to use t-butoxypotassium.
[0054]
ZThe triols (14) and (18) derived from the body cannot be separated at this stage. Therefore, triol (18) may be acetonide, but under the conditions, triol (14) is naturally converted to acetonide, and the two substituents necessary for the reversion are in the anti configuration, that is, It becomes a structure that cannot be induced to sugar. Therefore, when this mixture was subjected to the above silylation as it was, it was separable (2R, 3S, 4S) -6-benzyloxy-1,1,1-trifluoro-2-hexanol derivatives (15) and (2S, 3R, 4S) -6-Benzyloxy-1,1,1-trifluoro-2-hexanol derivative (19) was found to be produced in a very good yield.
[0055]
Embedded image
Figure 0003662954
[0056]
In general, the protection of such a regioselective functional group often requires several steps, but the present invention has a major feature in that this problem is solved in only two steps.
[0057]
The fifth step of the present invention is the removal of the benzyl group, which is a protecting group at the end of each compound of (5), (10), (15), (19). This process may be usually performed in a hydrogen atmosphere in the presence of a heterogeneous catalyst such as palladium, platinum, or Raney nickel. Highly polar solvents such as ethanol, ethyl acetate, and acetic acid are suitable as the solvent, and ethanol is particularly preferable. Further, the reaction temperature can be carried out in a wide range from room temperature (about 25 ° C.) to 100 ° C. or more, and the reaction pressure from a normal pressure to several tens of atmospheres.
[0058]
Embedded image
Figure 0003662954
[0059]
This reaction is not particularly effective only for acetonide, but can also be applied to a bis-t-butyldimethylsilyl form, and a debenzylated form can be obtained in a good yield.
[0060]
Embedded image
Figure 0003662954
[0061]
The final stage of the present invention is a reversion reaction of the optically active diol thus synthesized. Looking at the four stereoisomers of the compounds (6), (11), (16), and (20), they all have a diol structure and are at the end having a benzyl group. Only a certain hydroxyl group at the 1-position needs to be regioselectively oxidized to be converted into an aldehyde. Even at this stage, we succeeded in distinguishing the two hydroxyl groups by simple chemical reaction, taking advantage of the characteristics of the trifluoromethyl group. Here, the characteristic that the functional group existing in the vicinity of the trifluoromethyl group is relatively hardly oxidized is used. That is, (3S, 4R, 5R) -6,6,6-trifluoro-3,4-O-isopropylidene-1,3,4,5-hexanetetraol (6) with a relatively mild oxidant pyridinium dichromate (PDC) When treated, only the hydroxyl group at the 1-position is oxidized to an intermediate hydroxyaldehyde, which is further converted in the reaction system to give the desired 6,6,6-trifluoro-3,4-O-isopropylidene-L- Olios (7) can be synthesized.
[0062]
Embedded image
Figure 0003662954
[0063]
At this time, (7) is a further oxidized lactone (3S, 4S, 5R) -6,6,6-trifluoro-3,4-dihydroxy-3,4-O-isopropylidenehexane-5-olide (7a) was also obtained as a by-product. However, the latter (7a) can be easily derived to the corresponding lactol by further reducing with diisobutylaluminum hydride (DIBAL-H) in the mixture before separation from (7). For example, (3S, 4S, 5S) -6,6,6-trifluoro-1,5-hexanediol derivative (11), the desired 6,6,6-trifluoro-D-boyvinose (6-deoxy-6,6) in two steps , 6-Trifluoro-D-xylopyranose) derivative (12) can be synthesized in high yield.
[0064]
Embedded image
Figure 0003662954
[0065]
Exactly the same method (3S, 4S, 5R) -6,6,6-trifluoro-1,5-hexanediol derivatives (16) and (3S, 4R, 5S) -6,6,6-trifluoro-1,5-hexanediol derivative (20), respectively, 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) ) -L-olivos (17) and 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-digitoxose (21) It can be synthesized in good yield.
[0066]
Embedded image
Figure 0003662954
[0067]
【Example】
Asymmetric esterification of 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol with an enzyme
Racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (20.084 g, 77.772 mmol) in n-hexane (150 ml) was added to vinyl acetate (13.3 ml, 160 mmol) and lipase QL (7.8 g) were added and the solution was stirred at 40 ° C. for 12 hours. After removing insoluble components such as enzymes by filtration, n-hexane was distilled off under reduced pressure and purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 6: 1 as a developing solvent. 2) (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol 7.943 g (30.757 mmol, 39.5%), and (1) of the following chemical formula (2a)R) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate was obtained in an amount of 13.825 g (46.041 mmol, 59.2%).
[0068]
(S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2) has an optical purity determined by a known method (J.Org.Chem.,34, 2543 (1969)) and subjected to capillary gas chromatography analysis using MTPA ester (GE XE60, 190 ° C. (column temperature), 23.5 minutes ((R) Body-derived ester), 26.8 minutes ((S) Body-derived ester)) 99.6% ee. The analysis results of various spectra are shown below.1 H-NMR and13C-NMR is a Varian Gemini-200 (200 MHz and 50 MHz, respectively),19F-NMR was measured using Hitachi R-1200F (56.451 MHz), IR using JASCO A-102, optical rotation using JASCO DIP-140, and mass spectrum using JEOL JMX-AX505H.
[0069]
Embedded image
Figure 0003662954
[0070]
(S) Analytical value of -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (2)
・ Optical rotation
[Α]D 17 −36.13 ° (c1.24, CHClThree ), 99.6% ee
・ HRMS
C13H13FThreeO2 Calculated value 258.0868 as measured value 258.0852
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.983 (1H, dddd, J = 3.46, 5.57, 6.45, 14.76 Hz), 2.176 (1H, ddt, J = 8.91, 14.77, 4.15 Hz), 3.444 (1H, d, J = 6.84 Hz), 3.705 (1H, ddd, J = 4.15, 5.50, 9.64 Hz), 3.864 (1H, dt, J = 3. 54, 9.28 Hz), 4.546 (2H, s), 4.717 (1H, dtq, J = 3.81, 6.73, 2.97 Hz), 7.2-7.4 (5H, m) )
13C NMR: δ (CDClThree ) Ppm (TMS)
35.391, 60.914 (q, J = 1.17 Hz), 67.139, 72.035 (q, J = 52.77 Hz), 73.555, 87.502 (q, J = 6.30 Hz) , 114.023 (q, J = 257.46 Hz), 127.736, 1277.989, 128.534, 137.303
19F NMR: δ (CDClThree ) Ppm (TFA)
28.59 (d, J = 2.77 Hz)
・ IR (neat) cm-1:
3400, 3100, 3075, 3025, 2950, 2925, 2275
[0071]
Embedded image
Figure 0003662954
[0072]
(R) Analytical value of -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-yl acetate (2a)
・ Optical rotation
[Α]D 17 + 37.31 ° (c1.33, CHClThree ), 64.4% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
2.062 (3H, s), 2.0-2.3 (2H, m), 3.538 (1H, dt, J = 9.83, 5.70 Hz), 3.596 (1H, dt, J = 9.86, 5.89 Hz), 4.462 (1 H, d, J = 11.94 Hz), 4.529 (1 H, d, J = 11.94 Hz), 5.632 (1 H, tq, J = (7.02, 2.88 Hz)
13C NMR: δ (CDClThree ) Ppm (TMS)
20.638, 34.083, 60.043 (q, J = 1.32 Hz), 64.851, 72.295 (q, J = 52.87 Hz), 73.167, 84.401 (q, J = 6.31 Hz), 113.812 (q, J = 257.86 Hz), 127.738, 127.807, 128.462, 137.6826, 169.398
19F NMR: δ (CDClThree ) Ppm (TFA)
28.38 (d, J = 2.77 Hz)
・ IR (neat) cm-1:
3090, 3065, 3035, 2935, 2865, 2800, 2275, 1750.
[0073]
Determination of absolute structure
Prepared by the method described below (S,E) A methanol solution (10 ml) of 1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (0.542 g, 2.083 mmol) was treated with ozone at −78 ° C. for 30 minutes, Thereafter, 80 mg of sodium borohydride (2.1 mmol) was added and stirring was continued overnight. The reaction solution was poured into 20 ml of 1N aqueous hydrochloric acid and extracted three times with ethyl acetate (20 ml). After drying over anhydrous magnesium sulfate, ethyl acetate was distilled off under reduced pressure, and the product and raw materials (0.185 g, 0.711 mmol, 34.1%) were separated by silica gel column chromatography using ethyl acetate as a developing solvent. Further, the product was dissolved in 2 ml of THF, 0.02 g of lithium aluminum hydride (0.53 mmol) was added, and stirring was continued at -78 ° C for 1 hour. This was subjected to the same treatment as above to obtain a crude product, which was dissolved in 3 ml of methylene chloride as it was, and acetyl chloride (0.40 g, 5.1 mmol) and pyridine (0.40 g, 5. 1 mmol), and after the same post-treatment as above, the product was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 2: 1 as a developing solvent, and (2) of the following chemical formula (22)S) -1,2-diacetoxy-4-benzyloxybutane (0.206 g, 0.887 mmol, 42.6%) was obtained. When the signs of optical rotation described in the literature were compared ((R) Optical rotation [−] of −22D twenty three + 14.6 ° (c4.8, CClFour );J.Chem.Soc.Perkin 1, 9 (1988)).
[0074]
Embedded image
Figure 0003662954
[0075]
(2S) Analytical value of 1,2-diacetoxy-4-benzyloxybutane (22)
・ Optical rotation
[Α]D 19 -14.23 ° (c 2.79, CClFour ), 48.9% ee
11 H-NMR and IR agreed with those described in the above literature.
[0076]
(S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol hydrogenation reaction by Lindlar catalyst
Optically resolved by the above lipase (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (0.40 g, 2.0 mmol) was dissolved in 20 ml of hexane, and a catalytic amount (0.02 g) of Lindlar was added thereto. The catalyst was added and stirred at room temperature under a hydrogen atmosphere. When a predetermined amount of hydrogen was consumed, the reaction solution was filtered to remove the catalyst. After the hexane was distilled off under reduced pressure, purification was performed by silica gel column chromatography using a solution of n-hexane; ethyl acetate = 4: 1 as a developing solvent, and the compound represented by the following chemical formula (13) (S,Z) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol was obtained in an amount of 0.38 g (1.93 mmol, 96.4%).
[0077]
Embedded image
Figure 0003662954
[0078]
(S,Z) Analytical value of -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (13)
・ Optical rotation
[Α]D 16 + 5.46 ° (c1.00, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.6-2.1 (2H, m), 3.316 (1H, d, J = 3.25 Hz), 3.661 (1H, ddd, J = 4.06, 4.90, 8.91 Hz) 3.739 (1H, ddd, J = 2.56, 4.88, 9.38 Hz), 4.485 (1H, d, J = 11.90 Hz), 4.558 (1H, d, J = 11) .72 Hz), 4.7-5.0 (1H, m), 5.589 (1H, ddq, J = 1.23, 11.94, 8.76 Hz), 6.033 (1H, dd, J = 8.81, 11.94 Hz), 7.2-7.5 (5H, m)
13C NMR: δ (CDClThree ) Ppm (TMS)
36.184, 67.536 (q, J = 1.42 Hz), 68.294, 73.416, 117.727 (q, J = 34.47 Hz), 122.879 (q, J = 272.00 Hz) , 127.752, 127.908, 128.537, 137.627, 144.485 (q, J = 5.19 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
20.93 (d, J = 8.24 Hz)
・ IR (neat) cm-1:
3425, 3075, 3050, 2950, 2875, 675. .
[0079]
Reduction reaction of (S) -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol with sodium hydride = bis (2-methoxyethoxy) aluminum (Red-Al)
To a toluene solution (3 ml) of Red-Al (2.5 mmol, 0.74 ml (commercially available as a 3.4 mol / 1 toluene solution)) at −78 ° C. (S) -1-Benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol (0.547 g, 2.12 mmol) was added and stirring was continued at that temperature for another 3 hours. The reaction was stopped by adding 10 ml of a 1N aqueous hydrochloric acid solution, and after normal post-treatment, purification was performed by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 4: 1 as a developing solvent, and the following chemical formula (3) of(S,E) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol 0.505g (1.94mmol, 91.8%) was obtained.
[0080]
Embedded image
Figure 0003662954
[0081]
(S,E) Analytical value of -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (3)
・ Optical rotation
[Α]D 18 + 8.33 ° (c1.55, CHClThree ), 99.6% ee
・ HRMS
C13H15FThree O2 Calculated value 260.1024 as actual value 260.1012 ·11 H NMR: δ (CDClThree ) Ppm (TMS)
1.7-2.1 (2H, m), 3.414 (1H, d, J = 3.81 Hz), 3.654 (1H, dt, J = 9.34, 4.27 Hz), 3.734 (1H, dt, J = 9.38, 4.04 Hz), 4.4-4.6 (1H, m), 4.521 (2H, s), 5.950 (1H, ddq, J = 2. 01, 15.62, 6.57 Hz), 6.376 (1H, ddq, J = 4.01, 15.60, 2.01 Hz), 7.2-7.4 (5H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
35.385 (q, J = 1.32 Hz), 68.330, 69.788, 73.535, 117.907 (q, J = 33.65 Hz), 123.375 (q, J = 268.84 Hz) , 127.777, 128.011, 128.581, 137.445, 141.789 (q, J = 6.30 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
15.01 (d, J = 5.53 Hz)
・ IR (neat) cm-1:
3450, 3075, 3050, 2950, 2875. .
[0082]
Diolation of allyl alcohols by osmium oxidation.
N-methylmorpholine = N-oxide (2.343 g, 20 mmol) and a solution of osmium tetroxide in t-butanol (2.5% by weight) in 12 ml of 66% acetone = water mixed solvent at 0 ° C. under nitrogen flow 0.48 ml and finally (S,E) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (3.349 g, 12.87 mmol) was added. After stirring at room temperature for 2 days, 10 ml of a saturated aqueous sodium sulfite solution was added to consume excess oxidizing agent, and then insoluble components were removed by celite filtration. The filtrate thus obtained was extracted three times with ethyl acetate (20 ml) and dried over anhydrous magnesium sulfate, and then ethyl acetate was distilled off under reduced pressure. The obtained crude product was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 1: 1 as a developing solvent, and (2) of the following chemical formula (4)R, 3S, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol and (8) (2S, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol was obtained in a ratio of 87:13, 3.272 g (86.4%).
[0083]
Embedded image
Figure 0003662954
[0084]
(2R, 3S, 4S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (4)
・ Optical rotation
[Α]D 16 -9.03 ° (c1.01, CHClThree ), 99.6% ee
Melting point
99.0-99.5 ° C
11 H NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
1.7-1.9 (1H, m), 2.106 (1H, dddd, J = 2.48, 4.27, 6.60, 14.75 Hz), 3.6-3.8 (4H, m), 3.8-4.1 (3H, m), 4.303 (1H, dq, J = 1.06, 7.78 Hz), 4.523 (2H, s), 7.2-7. 4 (5H, m).
13C NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
32.626, 67.800 (q, J = 29.59 Hz), 68.660, 70.183 (q, J = 1.83 Hz), 70.619, 73.317, 125.333 (q, J = 282.96 Hz), 127.714, 127.795, 128.456, 137.743
19F NMR: δ (CDClThree+ DMSO-d6) Ppm (TFA)
2.41 (d, J = 7.56 Hz)
・ IR (KBr) cm-1:
3355, 2960, 2880, 2865. .
[0085]
Analytical value of (2S, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (8)
・ Optical rotation
[Α]18 D-21.20 ° (c 0.77, MeOH), 99.6% ee
Melting point
79.5-80.0 ° C
11 H NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
1.6-2.1 (2H, m), 3.5-4.3 (8H, m), 4.512 (2H, s), 7.2-7.4 (5H, m)
13C NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
32.498, 68.007, 69.780 (q, J = 1.68 Hz), 70.367 (q, J = 30.20 Hz), 72.342 (q, J = 1.27 Hz), 73.381 , 124.358 (q, J = 282.67 Hz), 127.766, 127.950, 128.498, 137.3324
19F NMR: δ (CDClThree+ DMSO-d6) Ppm (TFA)
1.94 (d, J = 5.48 Hz)
・ IR (KBr) cm-1:
3410, 3355, 2955, 2930, 2900, 2875. .
[0086]
(S,Z) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol is treated in the same manner as described above to give the following diastereomeric compound that cannot be decomposed (2R, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (14), and (2S, 3S, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (18) was obtained in a yield of 71.2% in a 74:26 ratio.
[0087]
Embedded image
Figure 0003662954
[0088]
(2R, 3R, 4S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (14)
11 H NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
1.8-2.0 (2H, m), 2.7-2.9 (1H, br), 3.6-3.8 (4H, m), 3.8-4.1 (4H, m ), 4.466 (2H, s), 7.2-7.5 (5H, m).
13C NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
31.905, 68.411, 69.281, 71.118 (q, J = 1.27 Hz), 72.550 (q, J = 28.87 Hz), 73.670, 124.746 (q, J = 282.88 Hz), 127.863, 128.138, 128.625, 137.051
19F NMR: δ (CDClThree+ DMSO-d6) Ppm (TFA)
3.28 (d, J = 6.21 Hz)
・ IR (KBr) cm-1:
3290, 2925, 2875. .
[0089]
(2S, 3S, 4S) Analytical value of -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol (18)
11 H NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
1.716 (1H, ddt, J = 4.44, 15.19, 6.20 Hz), 2.179 (1H, ddt, J = 5.24, 15.01, 9.21 Hz), 2.931 ( 1H, d, J = 9.70 Hz), 3.8-4.4 (7H, m), 4.537 (2H, s), 7.2-7.4 (5H, m)
13C NMR: δ (CDClThree+ DMSO-d6) Ppm (TMS)
32.696, 69.091, 70.292 (q, J = 1.53 Hz), 72.097 (q, J = 1.43 Hz), 73.057 (q, J = 29.59 Hz), 73.646 , 124.688 (q, J = 283.08 Hz), 127.817, 128.128, 128.638, 137.828
19F NMR: δ (CDClThree+ DMSO-d6) Ppm (TFA)
2.94 (d, J = 6.89 Hz)
・ IR (KBr) cm-1: Since compounds (14) and (18) cannot be separated, they are common to both.
[0090]
Determination of the relative structure of triols
Racemic (E) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol is the main diastereomer obtained by osmium oxidation (2R * , 3S * , 4S * ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol 0.63 g (2.27 mmol), 2,2-dimethoxypropane (3 mmol), catalyst amount (0.01 g) P-toluenesulfonic acid was dissolved in 4 ml of THF and stirring was continued for 12 hours at room temperature. To this, 5 ml of a saturated aqueous sodium hydrogen carbonate solution was added, and extraction was performed three times with 10 ml of ethyl acetate. After distilling off ethyl acetate under reduced pressure, the residue was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 5: 1 as a developing solvent.R * , 3R * , 4S * ) 0.63 g (2.07 mmol, 91.0% yield) of 6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-2,3,4-hexanetriol Obtained. At this time, a small amount of (2R * , 3S * , 4S * ) -6-Benzyloxy-1,1,1-trifluoro-2,4-O-isopropylidene-2,3,4-hexanetriol was produced as a by-product. New Experimental Chemistry Lecture 14 Synthesis and Reaction of Organic Compounds [II], p1012; Maruzen), (2 of the following chemical formula (5a)R * , 3S * , 4S * ) -3-acetoxy-6-benzyloxy-1,1,1-trifluoro-2,4-O-isopropylidene-2,4-hexanediol 0.03 g (0.09 mmol, total yield 3.) 3%).
[0091]
Of the latter compound (5a)1 Results of H-NMR analysis (see below), H2 -HThree And HThree -HFour Since the coupling constants between them were 4.0 and 6.9 Hz, respectively, it was determined that the hydrogen at the 3rd and 4th positions was an axial configuration, that is, the relative configuration at the 3rd and 4th positions was anti. Also, considering the reaction mechanism, it is clear that the 2nd and 3rd positions are thin,E) -1-Benzyloxy-6,6,6-trifluoro-4-hexen-3-ol is obtained by osmium oxidation, the main diastereomers are 2,3-cin and 3,4-anti It was decided.
[0092]
Embedded image
Figure 0003662954
[0093]
(2R * , 3R * , 4S * ) -6-Benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-2,3,4-hexanetriol (5)
Optical rotation (Because this compound is also synthesized in an optically active form, the optical rotation of the optically active form is shown below.)
[Α]D 18 + 4.09 ° (c1.57, CHClThree ), 99.6% ee
・ HRMS
C16Htwenty oneFThree OFour Calculated value as 334.1392 Actual measured value 334.139611 H NMR: δ (CDClThree ) Ppm (TMS)
1.396 (3H, q, J = 0.73 Hz), 1.522 (3H, q, J = 0.61 Hz), 2.000 (1H, dddd, J = 4.11, 5.27, 7. 63, 14.13 Hz), 2.040 (1H, ddt, J = 8.95, 14.13, 5.41 Hz), 2.838 (1H, d, J = 10.13 Hz), 3.606 (1H) , Dt, J = 5.25, 9.22 Hz), 3.672 (1H, ddd, J = 4.06, 5.34, 9.37 Hz), 4.00-4.15 (1H, m), 4.353 (1H, dd, J = 1.04, 7.14 Hz), 4.483 (1H, dt, J = 5.37, 7.39 Hz), 4.509 (2H, s), 7.2 -7.4 (5H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
24.719, 26.671, 30.385, 67.178, 67.988 (q, J = 30.15 Hz), 73.300, 73.324 (q, J = 1.57 Hz), 74.993 108.637, 124.479 (q, J = 283.48 Hz), 127.712, 127.731, 128.436, 138.060.・19F NMR: δ (CDClThree ) Ppm (TFA)
1.36 (d, J = 7.56 Hz)
・ IR (neat) cm-1:
3525, 3025, 3000, 2950, 2875. .
[0094]
(2R * , 3S * , 4S * ) -3-Acetoxy-5-benzyloxy-1,1,1-trifluoro-2,4-O-isopropylidene-2,4-hexanediol (5a)
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.363 (3H, s), 1.453 (3H, s), 1.804 (1H, ddt, J = 9.58, 14.39, 4.81 Hz), 1.996 (1H, ddt, J = 3.47, 14.37, 7.21 Hz), 2.082 (3H, s), 3.548 (2H, dd, J = 4.81, 7.19 Hz), 3.936 (1H, ddd, J = 3.47, 6.90, 9.48 Hz), 4.298 (1H, dq, J = 4.03, 7.02 Hz), 4.450 (1H, d, J = 11.31 Hz), 4 .513 (1H, d, J = 11.84 Hz), 5.239 (1H, dd, J = 3.99, 6.88 Hz), 7.2-7.5 (5H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
20.872, 23.268, 24.421, 32.822, 65.583, 68.749 (q, J = 31.72 Hz), 68.700, 70.805, 73.104, 102.461, 123 .233 (q, J = 280.13 Hz), 127.674, 127.731, 128.415, 138.254, 169.857.
19F NMR: δ (CDClThree ) Ppm (TFA)
5.43 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
3065, 3030, 2995, 2940, 2865, 1749. .
[0095]
Racemic (Z) A mixture of diastereomers obtained by osmium oxidation of -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol (2R * , 3R * , 4S * ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol, and (2S * , 3S * , 4S * ) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol is subjected to similar acetonation and acetylation reactions to give (2) in the following chemical formula (14a).R * , 3R * , 4S * ) -2-acetoxy-6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-3,4-hexanediol was obtained in a yield of 70%. Moreover, as a by-product, (2 of the following chemical formula (14b)S * , 3S * , 4S * ) -3-acetoxy-6-benzyloxy-1,1,1-trifluoro-2,4-O-isopropylidene-2,4-hexanediol, and (2) of the following chemical formula (14c)S * , 3S * , 4S * ) -2-acetoxy-6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-3,4-hexanediol as a 58:42 mixture in 26% yield. .
[0096]
Of compound (14b)1 Results of H-NMR analysis (see below), H2 -HThree And HThree -HFour Since the coupling constant between them was 9.7 Hz, the hydrogens at the 2, 3 and 4 positions were both axial, ie, the 2nd and 3rd positions, and the 3rd and 4th positions were all anti. Judged that there was.
[0097]
Embedded image
Figure 0003662954
[0098]
(2R * , 3R * , 4S * ) Analytical value of 2-acetoxy-6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-3,4-hexanediol (14a)
1 1 H NMR: δ (CDClThree ) Ppm (TMS)
1.377 (3H, q, J = 0.61 Hz), 1.411 (3H, q, J = 0.73 Hz), 1.836 (1H, ddt, J = 8.89, 14.18, 5. 25 Hz), 1.982 (1H, dddd, J = 2.93, 6.37, 8.20, 14.22 Hz), 2.111 (3H, s), 3.593 (1H, ddd, J = 5) .49, 8.30, 9.40 Hz), 3.642 (1H, ddd, J = 4.95, 6.41, 9.34 Hz), 4.042 (1H, dd, J = 6.34, 7). .33 Hz), 4.188 (1 H, ddd, J = 2.93, 7.35, 8.76 Hz), 4.498 (1 H, d, J = 12.21 Hz), 4.524 (1 H, d, J = 11.97 Hz), 5.490 (1H, dq, J = 6.35, 6.96 Hz), 7.2-7.5 ( H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
20.670, 26.950, 27.642, 34.581, 67.057, 69.805 (q, J = 31.11 Hz), 73.385, 75.510, 77.154 (q, J = 1) .58 Hz), 110.542, 123.256 (q, J = 281.04 Hz), 127.951, 128.727, 138.663, 169.094.
19F NMR: δ (CDClThree ) Ppm (TFA)
4.96 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
2990, 2935, 2865, 1769. .
[0099]
(2S * , 3S * , 4S * ) Analytical value of 3-acetoxy-6-benzyloxy-1,1,1-trifluoro-2,4-O-isopropylidene-2,4-hexanediol (14b) (13Since C NMR and IR could not discriminate between (14b) and (14c), they are collectively shown here. )
13C NMR: δ (CDClThree ) Ppm (TMS)
19.368, 20.838, 21.028, 25.937, 28.082, 29.006, 29.152, 32.425, 65.255, 65.504, 67.125, 67.692, 70. 470 (q, J = 30.51 Hz), 73.410, 73.513, 74.138 (q, J = 32.27 Hz), 100.085, 109.642, 123.712 (q, J = 280. 94 Hz), 128.007, 128.038, 128.753, 128.791, 138.572, 138.701, 168.9991, 169.691.
・ IR (neat) cm-1:
3015, 2970, 1780.
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.439 (3H, s), 1.500 (3H, s), 1.6-2.0 (2H, m), 2.050 (3H, s), 3.5-3.6 (2H, m), 4.005 (1H, dt, J = 2.44, 9.71 Hz), 4.161 (1H, dq, J = 9.70, 5.70 Hz), 4.454 (1H, d, J = 12.09 Hz), 4.529 (1 H, d, J = 12.45 Hz), 4.908 (1 H, t, J = 9.71 Hz), 7.2-7.4 (5 H, m).
19F NMR: δ (CDClThree ) Ppm (TFA)
2.39 (d, J = 5.48 Hz).
[0100]
(2S * , 3S * , 4S * ) Analytical value of 2-acetoxy-6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-3,4-hexanediol (14c)
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.366 (3H, s), 1.449 (3H, s), 1.6-2.0 (2H, m), 2.112 (3H, s), 3.5-3.6 (2H, m), 4.287 (1H, dd, J = 5.19, 9.34 Hz), 4.4-4.5 (1H, m), 4.498 (1H, d, J = 12.00 Hz), 4.528 (1H, d, J = 12.18 Hz), 5.253 (1H, dq, J = 9.31, 6.51 Hz), 7.2-7.4 (5H, m).
19F NMR: δ (CDClThree ) Ppm (TFA)
6.52 (d, J = 5.48 Hz).
[0101]
(2R, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol and (2S, 3S, 4S) -6-benzyloxy-1,1,1- 3,4-bis-tert-butyldimethylsilylation reaction of a diastereomeric mixture of trifluoro-2,3,4-hexanetriol
4.169 g of the title diastereomeric mixture (14.166 mmol, (2R, 3R, 4S: (2S, 3S, 4S) = 74: 26) and 42.5 mmol of t-butyldimethylsilyl chloride (6.406 g) and imidazole (2.893 g), respectively, were dissolved in 30 ml of methylene chloride and stirred overnight at room temperature. 50 ml of 1N hydrochloric acid aqueous solution was added thereto to stop the reaction, and 50 ml of methylene chloride was extracted three times. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain a compound in which two of the three hydroxyl groups at the 2-position, 3-position and 4-position were protected with a t-butyldimethylsilyl group. .
[0102]
This mixture was dissolved in 75 ml of THF without purification, and reacted with 14.2 mmol of potassium t-butoxide (1.593 g) at −78 ° C. for 4 hours. The reaction was stopped by adding 15 ml of 1N aqueous hydrochloric acid solution, and the mixture was extracted 3 times with 30 ml of ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 4: 1 as a developing solvent.R, 3S, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol, and (2) of (19)S, 3R, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol, 4.673 g (8.939 mmol, 63.1%) and 1 respectively. Obtained .768 g (3.381 mmol, 23.9%).
[0103]
Embedded image
Figure 0003662954
[0104]
(2R, 3S, 4S) -6-Benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol (15)
・ Optical rotation
[Α]D 18 -19.83 ° (c0.99, CHClThree ), 99.6% ee
・ HRMS
C13H15FThree O2 Calculated value 260.1024 as actual value 260.1012 ·11 H NMR: δ (CDClThree ) Ppm (TMS)
0.059 (3H, s), 0.070 (3H, s), 0.091 (3H, s), 0.161 (3H, s), 0.857 (9H, s), 0.895 (9H , S), 1.760 (1H, ddt, J = 10.109, 14.28, 4.03 Hz), 2.276 (1H, dddd, J = 2.20, 6.72, 9.77, 14). .16 Hz), 3.565 (1H, ddd, J = 4.39, 9.28, 9.88 Hz), 3.595 (1H, ddd, J = 3.69, 6.52, 9.44 Hz), 3.932 (1H, dd, J = 4.03, 8.67 Hz), 4.039 (1H, ddq, J = 2.20, 8.79, 6.51 Hz), 4.111 (1H, ddd, J = 1.95, 3.66, 10.26 Hz), 4.491 (2H, s), 5.066 (1H, d, J = 1) 46Hz), 7.2-7.5 (5H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
−5.397, −5.270, −4.447, −4.287, 17.776 (2C), 25.589, 25.614, 30.19, 65.787, 69.044 (q, J = 1.58 Hz), 72.615 (q, J = 28.16 Hz), 72.697, 72.900, 124.858 (q, J = 281.96 Hz), 127.409, 127.448, 128. 236, 138.306.
19F NMR: δ (CDClThree ) Ppm (TFA)
2.16 (d, J = 4.80 Hz)
・ IR (neat) cm-1:
3415, 3030, 2955, 2930, 2890, 2860. .
[0105]
(2S, 3R, 4S) -6-Benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol (19)
・ Optical rotation
[Α]D 18 + 1.26 ° (c 0.93, CHClThree ), 99.6% ee
・ HRMS
C13H15FThree O2 Calculated value 260.1024 as actual value 260.1012 ·11 H NMR: δ (CDClThree ) Ppm (TMS)
0.054 (3H, s), 0.083 (3H, s), 0.102 (3H, s), 0.135 (3H, s), 0.887 (9H, s), 0.909 (9H , S), 1.835 (1H, ddt, J = 7.39, 14.80, 5.01 Hz), 2.051 (1H, ddt, J = 5.24, 14.87, 7.17 Hz), 3.561 (2H, dd, J = 5.02, 7.06 Hz), 3.7-3.9 (1H, br), 3.947 (1H, d, J = 7.10 Hz), 3.95 -4.06 (1H, m), 4.157 (1H, dd, J = 5.22,7.42Hz), 4.508 (2H, s), 7.2-7.4 (5H, m) .
13C NMR: δ (CDClThree ) Ppm (TMS)
−5.737, −5.067, −4.248, −3.779, 17.987, 18.059, 25.809, 25.870, 34.473, 66.830, 73.046, 73. 074 (q, J = 28.77 Hz), 74.042 (q, J = 1.17 Hz), 74.123, 124.899 (q, J = 281.66 Hz), 127.697, 128.379, 137 853.
19F NMR: δ (CDClThree ) Ppm (TFA)
3.61 (d, J = 6.21 Hz)
・ IR (neat) cm-1:
3410, 3065, 3030, 2955, 2930, 2880, 2860, 2740. .
[0106]
(3S, 4R, 5S) -6-Benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol 3,4-bis-t-butyldimethylsilylation reaction
The reaction was carried out in the same manner as in the above reaction, with a yield of 70% (2S, 3S, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol was obtained.
[0107]
Embedded image
Figure 0003662954
[0108]
(2S, 3S, 4S) -6-Benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol (10)
・ Optical rotation
[Α]D 17 -28.31 ° (c1.08, CHClThree ), 99.6% ee
・ HRMS
C13H15FThree O2 Calculated value 260.1024 as actual value 260.1012 ·11 H NMR: δ (CDClThree ) Ppm (TMS)
0.055 (3H, s), 0.057 (3H, s), 0.113 (3H, s), 0.140 (3H, s), 0.880 (9H, s), 0.913 (9H , S), 1.597 (1H, ddt, J = 10.16, 14.23, 4.08 Hz), 2.053 (1H, dddd, J = 1.87, 6.66, 9.59, 14). .21 Hz), 3.251 (1H, d, J = 10.25 Hz), 3.521 (1H, dt, J = 4.51, 9.46 Hz), 3.551 (1H, ddd, J = 3. 70, 6.51, 9.11 Hz), 3.938 (1H, d, J = 1.88 Hz), 3.967 (1H, ddd, J = 1.56, 4.73, 10.11 Hz), 4 205 (1H, dq, J = 9.83, 7.90 Hz), 4.465 (1H, d, J = 11.97 Hz), .497 (1H, d, J = 11.96Hz), 7.2-7.4 (5H, m).
13C NMR: δ (CDClThree ) Ppm (TMS)
−5.419, −5.142, −4.437, −4.236, 17.780, 17.918, 25.621, 25.666, 30.892, 66.116 (q, J = 29. 69 Hz), 66.300, 69.133, 69.580 (q, J = 1.68 Hz), 72.598, 125.164 (d, J = 283.28 Hz), 127.295, 127.322, 128 .189, 138.616
19F NMR: δ (CDClThree ) Ppm (TFA)
0.69 (d, J = 7.56 Hz)
・ IR (neat) cm-1:
3515, 3065, 3030, 2955, 2930, 2885, 2855. .
[0109]
Debenzylation of (2R, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-2,3,4-hexanetriol with Raney nickel
(2R, 3R, 4S) -6-benzyloxy-1,1,1-trifluoro-3,4-O-isopropylidene-2,3,4-hexanetriol (0.996 g, 2.98 mmol) in ethanol solution (30 ml), About 0.5 g of Raney nickel (W2) was added, and stirring was continued for 12 hours at room temperature under a hydrogen atmosphere. After removing Raney nickel by filtration, the solution was concentrated and purified by silica gel chromatography using a solution of n-hexane: ethyl acetate = 1: 1 as a developing solvent.S, 4R, 5R) -6,6,6-trifluoro-3,4-O-isopropylidene-1,3,4,5-hexanetetraol in 95.3% yield (0.694 g, 2.84 mmol) It was.
[0110]
Embedded image
Figure 0003662954
[0111]
(3S, 4R, 5R) -6,6,6-Trifluoro-3,4-O-isopropylidene-1,3,4,5-hexanetetraol (6)
・ Optical rotation
[Α]D 18 + 18.21 ° (c 1.20, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.418 (3H, s), 1.550 (3H, s) 1.849 (1H, dddd, J = 3.63, 5.30, 7.19, 14.07 Hz), 2.048 (1H, dddd, J = 4.63, 5.81, 9.84, 14.09 Hz), 1.6-2.2 (1H, br), 2.7-3.3 (1H, br), 3.822 (1H, ddd, J = 4.62, 7.14, 10.76 Hz), 3.895 (1H, dt, J = 10.89, 5.37 Hz), 3.9-4.1 (1H, m ) 4.391 (1H, dd, J = 1.22, 7.22 Hz), 4.522 (1H, ddd, J = 3.54, 7.08, 9.68 Hz)
13C NMRδ (CDClThree ) Ppm (TMS)
24.246, 26.695, 32.273, 60.536, 67.950 (q, J = 30.10 Hz), 73.160 (q, J = 1.83 Hz), 75.597, 109.142, 124.431 (q, J = 283.79 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
1.31 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
3420, 3000, 2940. .
[0112]
Debenzylation of (2S, 3S, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol with Raney nickel
The reaction was carried out in the same manner as in the above reaction, and in the yield of 70.7% (3 of the following chemical formula (11)S, 4S, 5S) -3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol. At this time, 13.1% of the raw material was also recovered.
[0113]
Embedded image
Figure 0003662954
[0114]
(3S, 4S, 5S) Analytical value of 3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol (11)
・ Optical rotation
[Α]D 18 −36.23 ° (c 0.97, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
0.081 (3H, s), 0.110 (3H, s) 0.118 (3H, s), 0.156 (3H, s), 0.885 (9H, s), 0.917 (9H, s), 1.651 (1H, ddt, J = 9.27, 14.32, 4.76 Hz), 1.894 (1H, dddd, J = 2.13, 5.77, 9.05, 14. 31 Hz), 2.6-3.6 (2H, br), 3.653 (1H, ddd, J = 4.76, 9.15, 10.50 Hz), 3.767 (1H, ddd, J = 4) .83, 5.80, 10.56 Hz), 3.915 (1H, ddd, J = 2.20, 4.64, 9.77 Hz), 3.938 (1H, d, J = 4.63 Hz), 4.196 (1H, q, J = 7.81 Hz)
13C NMRδ (CDClThree ) Ppm (TMS)
-5.478, -5.092, -4.437, -4.117, 17.7.66, 17.885, 25.593, 25.647, 33.416, 59.484, 66.117 (q, J = 29.96 Hz), 69.555 (q, J = 1.68 Hz), 69.778, 125.091 (q, J = 283.18 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
0.70 (d, J = 8.24Hz)
・ IR (neat) cm-1:
3515, 2955, 2930, 2890, 2860. .
[0115]
Debenzylation of (2R, 3S, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol with Raney nickel
The reaction was carried out in the same manner as in the above reaction, and the yield was 87.2% (3 in the following chemical formula (16).S, 4S, 5R) -3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol. At this time, 9.8% of the raw material was also recovered.
[0116]
Embedded image
Figure 0003662954
[0117]
(3S, 4S, 5R) Analytical value of 3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol (16)
・ Optical rotation
[Α]D 18 -23.61 ° (c 1.29, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
0.085 (3H, s), 0.117 (3H, s), 0.148 (3H, s), 0.188 (3H, s), 0.876 (9H, s), 0.904 (9H) , S), 1.6-1.8 (1H, br), 1.787 (1H, ddt, J = 9.30, 13.97, 4.65 Hz), 2.149 (1H, dddd, J = 3.53, 5.99, 9.54, 14.11 Hz), 3.685 (1H, dt, J = 4.38, 10.22 Hz), 3.829 (1H, ddd, J = 4.39, 6.05, 10.59 Hz), 3.945 (1H, dd, J = 3.84, 8.80 Hz), 4.0-4.2 (2H, m), 4.9-5.1 (1H , Br)
13C NMRδ (CDClThree ) Ppm (TMS)
-5.454 (q, J = 1.43 Hz), -5.158, -4.487, -4.101, 17.763, 17.798, 25.575, 25.613, 33.252, 58 863, 69.297 (q, J = 1.42 Hz), 72.447 (q, J = 28.68 Hz), 73.456, 124.791 (q, J = 282.37 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
2.28 (d, J = 5.53 Hz)
・ IR (neat) cm-1:
3420, 2955, 2930, 2890, 2860. .
[0118]
Debenzylation of (2S, 3R, 4S) -6-benzyloxy-3,4-bis (t-butyldimethylsiloxy) -1,1,1-trifluoro-2-hexanol with Raney nickel
The reaction was carried out in the same manner as in the above reaction, and (3S, 4R, 5S) -3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol.
[0119]
Embedded image
Figure 0003662954
[0120]
(3S, 4R, 5S) Analytical value of 3,4-bis (t-butyldimethylsiloxy) -6,6,6-trifluoro-1,5-hexanediol (20)
・ Optical rotation
[Α]D 17 + 4.32 ° (c 0.42, CHClThree ), 99.6% ee
・ 11 H NMR: δ (CDClThree ) Ppm (TMS)
0.080 (3H, s), 0.104 (3H, s) 0.129 (3H, s), 0.140 (3H, s), 0.885 (9H, s), 0.909 (9H, s), 1.868 (2H, q, J = 5.92 Hz), 2.0-4.0 (2H, br), 3.686 (1H, dt, J = 10.61, 6.02 Hz), 3.794 (1H, dt, J = 10.54, 5.27 Hz), 3.9-4.1 (1H, m), 3.981 (1H, d, J = 4.40 Hz), 4.173 (1H, t, J = 6.04Hz)
·13C NMRδ (CDClThree ) Ppm (TMS)
-5.718, -5.071, -4.253, -3.721, 18.060, 18.092, 25.805, 25.914, 35.945, 59.100, 72.622 (q, J = 28.57 Hz), 72.809 (q, J = 1.37 Hz), 74.683 (q, J = 1.12 Hz), 124.784 (q, J = 282.27 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
3.69 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
3360, 2960, 2930, 2860. .
[0121]
Synthesis of 6,6,6-trifluoro-3,4-O-isopropylidene-L-oriose
Pyridinium dichromate (PDC; 3.762 g, 10 mmol) was suspended in 15 ml of methylene chloride, and this was suspended at 0 ° C. under a nitrogen atmosphere (3S, 4R, 5R) -6,6,6-trifluoro-3,4-O-isopropylidene-1,3,4,5-hexanetetraol (0.725 g, 2.97 mmol) was added, followed by stirring at room temperature for 2 days. did. The reaction solution was filtered through celite and concentrated under reduced pressure. The resulting crude product was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 2: 1 as a developing solvent. Of 6,6,6-trifluoro-3,4-O-isopropylidene-L-oriose in a yield of 50.1% (0.360 g, 1.486 mmol) as a 90:10 anomeric mixture. It was. Further, the further oxidized (3S, 4S, 5R) -6,6,6-trifluoro-3,4-dihydroxy-3,4-O-isopropylidenehexane-5-olide of the following chemical formula (7a) 32.7% (0.233 g, 0.97 mmol) was obtained. The former 6,6,6-trifluoro-3,4-O-isopropylidene-L-oriose data shows only the main isomer.
[0122]
Embedded image
Figure 0003662954
[0123]
Analytical value of 6,6,6-trifluoro-3,4-O-isopropylidene-L-oriose (7)
Melting point
96.5-97.0 ° C
・ Optical rotation
[Α]D 16 −67.82 ° (c1.39, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
1.359 (3H, s), 1.496 (3H, s), 1.705 (1H, ddd, J = 3.35, 6.88, 15.33 Hz), 2.380 (1H, ddd, J = 4.33, 5.32, 15.32 Hz), 3.3-3.7 (1H, br), 4.229 (1H, dq, J = 2.05, 6.74 Hz), 4.380 ( 1H, dd, J = 2.05, 7.30 Hz), 4.578 (1H, dt, J = 7.40, 3.76 Hz), 5.482 (1H, dd, J = 5.68, 6. 71Hz)
13C NMR: δ (CDClThree ) Ppm (TMS)
25.116, 26.236, 30.675, 68.148 (q, J = 31.31 Hz), 70.241, 70.266 (q, J = 1.47 Hz), 90.856, 110.285, 123.437 (q, J = 280.33 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
5.57 (d, J = 6.89 Hz)
・ IR (KBr) cm-1:
3475, 2995, 2970, 2930. .
[0124]
(3S, 4S, 5R) -6,6,6-Trifluoro-3,4-dihydroxy 3,4-O-isopropylidenehexane-5-olide (7a)
Melting point
90.0-91.0 ° C
・ Optical rotation
[Α]D 16 -15.28 ° (c 0.98, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree + DMSO-d6 ) Ppm (TMS)
1.352 (3H, s), 1.420 (3H, s), 2.794 (1H, dd, J = 2.39, 16.10 Hz), 2.919 (1H, dd, J = 3.19) , 16.05 Hz), 4.719 (1H, dd, J = 1.83, 7.61 Hz), 4.813 (1H, dt, J = 7.72, 2.77 Hz), 4.924 (1H, dq, J = 1.85, 6.55 Hz)
13C NMR: δ (CDClThree + DMSO-d6 ) Ppm (TMS)
24.107, 25.771, 34.684, 70.122 (q, J = 1.42 Hz), 71.692, 73.040 (q, J = 32.23 Hz), 110.170, 122.056 ( q, J = 280.33 Hz), 167.455.
19F NMR: δ (CDClThree + DMSO-d6 ) Ppm (TFA)
5.99 (d, J = 6.21 Hz)
・ IR (KBr) cm-1:
3000, 2950, 1765. .
[0125]
Synthesis of 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-boybinose
The crude product obtained by performing the PDC oxidation reaction similar to the above was dissolved in methylene chloride (0.5M), and diisopropylaluminum hydride (DIBAL-H; 1.0 equivalent) was added at −78 ° C. in a nitrogen atmosphere. The mixture was further stirred for 1 hour. After the same post-treatment, the obtained crude product was purified by silica gel column chromatography using a solution of n-hexane: ethyl acetate = 6: 1 as a developing solvent, and 6, 6, 6 of the following chemical formula (12) -Trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-boyvinose was obtained in a yield of 86.0% as a 75:25 anomeric mixture. The data shows only the main isomer.
[0126]
Embedded image
Figure 0003662954
[0127]
6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-boybinose (12)
・ Optical rotation
[Α]D 17 + 21.74 ° (c1.92, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
0.072 (3H, s), 0.086 (3H, s), 0.145 (3H, s), 0.159 (3H, s), 0.894 (9H, s), 0.929 (9H , S), 1.726 (1H, ddt, J = 3.42, 14.16, 1.10 Hz), 2.288 (1H, ddd, J = 2.50, 3.60, 14.22 Hz), 3.775 (1H, d, J = 3.91 Hz), 3.991 (1H, q, J = 2.93 Hz), 4.491 (1H, dq, J = 0.98, 6.96 Hz), 5 .16-5.32 (2H, m)
13C NMR: δ (CDClThree ) Ppm (TMS)
−5.243, −5.183, −4.669, −4.666, 17.750, 17.790, 25.585, 30.545, 65.558 (q, J = 30.91 Hz), 66 .555 (q, J = 1.73 Hz), 69.905, 92.999, 124.060 (q, J = 280.03 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
5.45 (d, J = 6.21 Hz)
・ IR (neat) cm-1:
3495, 2955, 2930, 2900, 2860. .
[0128]
Synthesis of 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -L-olivos
PDC oxidation reaction similar to the above and DIBAL-H reduction were performed, and 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -L-olivos of the following chemical formula (17) Was obtained as a 87:13 anomeric mixture in 95.4% yield. The data shows only the main isomer.
[0129]
Embedded image
Figure 0003662954
[0130]
Analytical value of 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -L-olivos (17)
・ Optical rotation
[Α]D 18 -19.22 ° (c 1.28, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
0.094 (3H, s), 0.098 (3H, s), 0.104 (6H, s), 0.874 (9H, s), 0.893 (9H, s), 1.838 (1H) , Ddd, J = 4.32, 7.74, 13.69 Hz), 2.001 (1H, ddd, J = 3.66, 4.65, 13.70 Hz), 2.4-3.2 (1H , Br), 3.719 (1H, dd, J = 5.29, 7.32 Hz), 3.966 (1H, ddd, J = 3.66, 5.23, 7.70 Hz), 4.112 ( 1H, dq, J = 7.42, 7.42 Hz), 5.395 (1H, t, J = 4.49 Hz)
13C NMR: δ (CDClThree ) Ppm (TMS)
−4.584 (q, J = 1.68 Hz), −3.9970, −3.222, −2.892, 18.360, 18.599, 26.307, 26.436, 36.628, 70 .787, 71.355, 73.079 (q, J = 29.29 Hz), 91.913, 124.807 (q, J = 280.74 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
5.42 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
3420, 2955, 2940, 2900, 2860. .
[0131]
Synthesis of 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-digitoxose
PDC oxidation reaction similar to the above and DIBAL-H reduction are performed, and 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-digitoxose of the following chemical formula (21) Was obtained as a 79:21 anomeric mixture in 85.6% yield. The data shows only the main isomer.
[0132]
Embedded image
Figure 0003662954
[0133]
Analytical value of 6,6,6-trifluoro-3,4-O- (bis-t-butyldimethylsilyl) -D-digitoxose (21)
・ Optical rotation
[Α]D 19 + 59.78 ° (c1.10, CHClThree ), 99.6% ee
11 H NMR: δ (CDClThree ) Ppm (TMS)
0.0-0.2 (12H, m), 0.898 (9H, s), 0.927 (9H, s), 1.913 (1H, ddd, J = 2.42, 3.75, 14 .24 Hz), 2.00-2.15 (1 H, m), 3.777 (1 H, dd, J = 2.39, 9.09 Hz), 4.1-4.2 (1 H, m), 4 .382 (1H, dq, J = 9.14, 6.90 Hz), 5.15-5.50 (2H, m)
13C NMR: δ (CDClThree ) Ppm (TMS)
−5.549 (q, J = 1.63 Hz), −4.635, −4.523, −3.306, 17.853, 17.938, 25.686, 25.979, 36.368, 66 .905 (q, J = 29.28 Hz), 69.088, 71.281, 92.369, 124.460 (q, J = 280.23 Hz)
19F NMR: δ (CDClThree ) Ppm (TFA)
6.07 (d, J = 6.89 Hz)
・ IR (neat) cm-1:
3420, 2950, 2935, 2875, 2860.
[0134]
【The invention's effect】
The present invention has the following excellent effects, and the present invention greatly contributes to the organic fluorine chemical industry.
[0135]
(1) The present invention uses 2-bromo-3,3,3-trifluoropropene, which is a relatively inexpensive raw material, as a starting material, and in a short process of only 7 steps, 2,6-dideoxy-6,6, All four possible stereoisomers of 6-trifluorohexoses can be efficiently synthesized with very high optical purity.
[0136]
(2) Each experimental operation does not require a special reaction apparatus or the like, and can be executed very simply.
[0137]
(3) Effective use of the strong electron-withdrawing property of the trifluoromethyl group, such as protection with t-butyldimethylsilyl group and regioselective oxidation in the final process, shortening the synthesis route it can.

Claims (4)

化学式(1)
Figure 0003662954
で表されるラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを光学分割して、得られる化学式(2)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを、水素化ナトリウム=ビス(メトキシエトキシ)アルミニウムの存在下に三重結合を立体選択的に還元して、得られる化学式(3)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを、四酸化オスミウムの存在下に酸化して、得られる化学式(4)
Figure 0003662954
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを、アセトニド化して、得られる一般式(5)
Figure 0003662954
(式中、R1およびR2は、それぞれ同一または相異なるアルキル基またはアリール基を表す)
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオール誘導体を、脱ベンジル化して、得られる一般式(6)
Figure 0003662954
(式中、R1およびR2は、前記定義に同じ)
で表される(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体を、酸化することを特徴とする一般式(7)
Figure 0003662954
(式中、R1およびR2は、前記定義に同じ)
で表される6,6,6−トリフルオロ−L−オリオース(6−デオキシ−6,6,6−トリフルオロ−L−リキソピラノース)誘導体の製造方法。
Chemical formula (1)
Figure 0003662954
The chemical formula (2) obtained by optical resolution of racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by formula (2)
Figure 0003662954
And ( S ) -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by the following formula: Chemical formula (3)
Figure 0003662954
( S , E ) -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol represented by the formula (4) is obtained by oxidation in the presence of osmium tetroxide.
Figure 0003662954
(2 R , 3 S , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol represented by the following general formula (5)
Figure 0003662954
(Wherein R 1 and R 2 represent the same or different alkyl groups or aryl groups, respectively)
(2 R , 3 R , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol derivative represented by the following general formula ( 6)
Figure 0003662954
(Wherein R 1 and R 2 are the same as defined above)
(3 S , 4 R , 5 R ) -6,6,6,6-trifluoro-1,5-hexanediol derivative represented by the general formula (7)
Figure 0003662954
(Wherein R 1 and R 2 are the same as defined above)
A method for producing a 6,6,6-trifluoro-L-oriose (6-deoxy-6,6,6-trifluoro-L-lyxopyranose) derivative represented by the formula:
化学式(1)
Figure 0003662954
で表されるラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを光学分割して、得られる化学式(2)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを水素化ナトリウム=ビス(メトキシエトキシ)アルミニウムの存在下に三重結合を立体選択的に還元して、得られる化学式(3)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを、四酸化オスミウムの存在下に酸化して、得られる化学式(8)
Figure 0003662954
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを、化学式(9)
Figure 0003662954
(式中、R3,R4およびR5は、同一または相異なるアルキル基またはアリール基を表す)
で表されるシリルクロリド化合物と反応させて、得られる一般式(10)
Figure 0003662954
(式中、R3,R4およびR5は前記定義に同じ)
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体を、脱ベンジル化して、得られる一般式(11)
Figure 0003662954
(式中、R3,R4およびR5は前記定義に同じ)
で表される(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体を、還元することを特徴とする一般式(12)
Figure 0003662954
(式中、R3,R4およびR5は前記定義に同じ)
で表される6,6,6−トリフルオロ−D−ボイビノース(6−デオキシ−6,6,6−トリフルオロ−D−キシロピラノース)誘導体の製造方法。
Chemical formula (1)
Figure 0003662954
The chemical formula (2) obtained by optical resolution of racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by formula (2)
Figure 0003662954
( S ) -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by the following formula: To give the chemical formula (3)
Figure 0003662954
( S , E ) -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol represented by the formula (8) is obtained by oxidation in the presence of osmium tetroxide.
Figure 0003662954
(2 S , 3 R , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol represented by the formula (9)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 represent the same or different alkyl groups or aryl groups)
The compound represented by the general formula (10) obtained by reacting with a silyl chloride compound represented by the formula:
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(2 S , 3 S , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2-hexanol derivative represented by general formula (11) obtained by debenzylation
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(3 S , 4 S , 5 S ) -6,6,6,6-trifluoro-1,5-hexanediol derivative represented by the general formula (12)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
The manufacturing method of the 6,6,6-trifluoro-D-boybinose (6-deoxy-6,6,6-trifluoro-D-xylopyranose) derivative represented by these.
化学式(1)
Figure 0003662954
で表されるラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを光学分割して、得られる化学式(2)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを、リンドラー触媒により三重結合を立体選択的に還元して、得られる化学式(13)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを、四酸化オスミウムの存在下に酸化して、得られる化学式(14)
Figure 0003662954
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを、化学式(9)
Figure 0003662954
(式中、R3,R4およびR5は、同一または相異なるアルキル基またはアリール基を表す)
で表されるシリルクロリド化合物と反応させて、得られる一般式(15)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体を、脱ベンジル化して、得られる一般式(16)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体を、還元することを特徴とする、一般式(17)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される6,6,6−トリフルオロ−L−オリボース(6−デオキシ−6,6,6−トリフルオロ−L−アラビノピラノース)誘導体の製造方法。
Chemical formula (1)
Figure 0003662954
The chemical formula (2) obtained by optical resolution of racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by formula (2)
Figure 0003662954
( S ) -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by the following formula is obtained by stereoselectively reducing the triple bond with Lindlar catalyst: )
Figure 0003662954
( S , Z ) -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol represented by the following formula (14) is obtained by oxidation in the presence of osmium tetroxide.
Figure 0003662954
(2 R , 3 R , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol represented by the formula (9)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 represent the same or different alkyl groups or aryl groups)
And a silyl chloride compound represented by the general formula (15)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(2 R , 3 S , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2-hexanol derivative represented by the following general formula (16)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(3 S , 4 S , 5 R ) -6,6,6,6-trifluoro-1,5-hexanediol derivative represented by the general formula (17)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
A method for producing a 6,6,6-trifluoro-L-olivose (6-deoxy-6,6,6-trifluoro-L-arabinopyranose) derivative represented by the formula:
化学式(1)
Figure 0003662954
で表されるラセミ体の1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを光学分割して、得られる化学式(2)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキシン−3−オールを、リンドラー触媒により三重結合を立体選択的に還元して、得られる化学式(13)
Figure 0003662954
で表される()−1−ベンジルオキシ−6,6,6−トリフルオロ−4−ヘキセン−3−オールを、四酸化オスミウムの存在下に酸化して、得られる化学式(18)
Figure 0003662954
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2,3,4−ヘキサントリオールを、化学式(9)
Figure 0003662954
(式中、R3,R4およびR5は、同一または相異なるアルキル基またはアリール基を表す)
で表されるシリルクロリド化合物と反応させて、得られる一般式(19)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される(2,3,4)−6−ベンジルオキシ−1,1,1−トリフルオロ−2−ヘキサノール誘導体を、脱ベンジル化して得られる一般式(20)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される(3,4,5)−6,6,6−トリフルオロ−1,5−ヘキサンジオール誘導体を、還元することを特徴とする一般式(21)
Figure 0003662954
(式中、R3,R4およびR5は、前記定義に同じ)
で表される6,6,6−トリフルオロ−D−ジギトキソース(6−デオキシ−6,6,6−トリフルオロ−D−リボピラノース)誘導体の製造方法。
Chemical formula (1)
Figure 0003662954
The chemical formula (2) obtained by optical resolution of racemic 1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by formula (2)
Figure 0003662954
( S ) -1-benzyloxy-6,6,6-trifluoro-4-hexyn-3-ol represented by the following formula is obtained by stereoselectively reducing the triple bond with Lindlar catalyst: )
Figure 0003662954
( S , Z ) -1-benzyloxy-6,6,6-trifluoro-4-hexen-3-ol represented by formula (18) is obtained by oxidation in the presence of osmium tetroxide.
Figure 0003662954
(2 S , 3 S , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2,3,4-hexanetriol represented by the chemical formula (9)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 represent the same or different alkyl groups or aryl groups)
And a silyl chloride compound represented by the general formula (19)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(2 S , 3 R , 4 S ) -6-benzyloxy-1,1,1-trifluoro-2-hexanol derivative represented by the general formula (20) obtained by debenzylation
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
(3 S , 4 R , 5 S ) -6,6,6,6-trifluoro-1,5-hexanediol derivative represented by the general formula (21)
Figure 0003662954
(Wherein R 3 , R 4 and R 5 are the same as defined above)
The manufacturing method of the 6,6,6-trifluoro-D-digitoxose (6-deoxy-6,6,6-trifluoro-D-ribopyranose) derivative represented by these.
JP21371794A 1994-09-07 1994-09-07 Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative Expired - Fee Related JP3662954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21371794A JP3662954B2 (en) 1994-09-07 1994-09-07 Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21371794A JP3662954B2 (en) 1994-09-07 1994-09-07 Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative

Publications (2)

Publication Number Publication Date
JPH0873485A JPH0873485A (en) 1996-03-19
JP3662954B2 true JP3662954B2 (en) 2005-06-22

Family

ID=16643833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21371794A Expired - Fee Related JP3662954B2 (en) 1994-09-07 1994-09-07 Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative

Country Status (1)

Country Link
JP (1) JP3662954B2 (en)

Also Published As

Publication number Publication date
JPH0873485A (en) 1996-03-19

Similar Documents

Publication Publication Date Title
EP0331524B1 (en) Synthesis of trichostatins
JP3662954B2 (en) Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative
EP0583171B1 (en) (3R,5S)-3,5,6-trihydroxyhexanoic acid derivatives and methods for their production
EP0585104B1 (en) A method of preparing a saturated monocyclic hydrocarbon compound and an intermediate therefor
US5136061A (en) Optically active pentane derivatives and intermediates thereof, and process for manufacturing same
KR101221078B1 (en) The preparation method of (3s,4s)-3-hexyl-4-(r)-2-hydroxytridecyl)-oxetan-2-one and the product of that method
US5292891A (en) Optically active 2,2-dimethyl-1,3-dioxin-4-ones and method for preparing same and method for preparing optically active compound for synthesis of physiologically active substance and optically active intermediate compound
JPH0316333B2 (en)
US5243096A (en) Optically active pentane derivatives and intermediates thereof, and process for manufacturing same
JP3410492B2 (en) 7-Octin-1-ene derivative and method for producing the same
JPS6140230B2 (en)
JP2667911B2 (en) Optically active fluorine-containing benzoic acid derivative
US6495725B2 (en) Process for the preparation of optically active enones and intermediates thereof
JP3087325B2 (en) Optically active compounds and their production
JPH06107592A (en) Production of optically active 6-oxo-3,5-dihydroxyhexanoic acid derivative
JPH0523756B2 (en)
JP3471067B2 (en) Method for producing optically active 6- (4-substituted inden-1-yl) -2-methyl-4-hepten-3-ols
US4296035A (en) Total synthesis of the utero-evacuant substance d,l-zoapatanol
JPS6393742A (en) Enantiomer of bicyclo(4,2,0)oct-2-ene-7-one, novel synthesis of derivatives of same and bicyclo(4,2,0)octane derivatives and intermediate therefor
US20030175943A1 (en) Intermediates and improved processes for the preparation of neplanocin A
JP3987285B2 (en) Synthesis of 3,4-dihydroxybutanoic acid and derivatives from substituted pentoses
JPH0530834B2 (en)
JP2002265412A (en) Novel cyclopentenone derivative
JPH07138245A (en) Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide
JPS6013732A (en) Production of ketal derivative

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees