JPH07138245A - Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide - Google Patents

Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide

Info

Publication number
JPH07138245A
JPH07138245A JP5177324A JP17732493A JPH07138245A JP H07138245 A JPH07138245 A JP H07138245A JP 5177324 A JP5177324 A JP 5177324A JP 17732493 A JP17732493 A JP 17732493A JP H07138245 A JPH07138245 A JP H07138245A
Authority
JP
Japan
Prior art keywords
formula
hydroxy
butanolide
hydroxymethyl
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5177324A
Other languages
Japanese (ja)
Inventor
Takashi Ebata
隆 恵畑
Yukifumi Koseki
幸史 古関
Koji Okano
耕二 岡野
Hiroshi Kawakami
浩 川上
Katsuya Matsumoto
克也 松本
Hajime Matsushita
肇 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP5177324A priority Critical patent/JPH07138245A/en
Publication of JPH07138245A publication Critical patent/JPH07138245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain (3S,4R)-3-hydroxy-4-hydroxymethyl-4-butanolide useful as a synthetic raw material for valuable compounds in high selectivity and yield in a short step with easy operation by using levo glucosenone as a starting substance and subjecting the substance to the hydration of carbon-carbon double bond and the Baeyer-Villiger oxidation. CONSTITUTION:The carbon-carbon double bond between the 3- and 4-sites of levo glucosenone of formula I is hydrated to obtain 1, 6-anhydro-3-deoxy-beta-D- erythro-hexopyranose-2-urose of formula II having methylene group on 3-site and a hydroxyl group having alpha-configuration on 4-site. The obtained compound of formula II is subjected to Baeyer-Villiger oxidation to obtain the objective 5-membered lactone compound of formula III. It is preferable to consume the excess peracid for the safety in the following process by adding dimethyl sulfide, etc., to the system after completing the reaction. Furthermore, the product is preferably treated under the condition of acid hydrolysis since a part of the hydroxyl group of the product may be present in the form of formyl ester.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は(3S,4R)−3−
ヒドロキシ−4−ヒドロキシメチル−4−ブタノリドを
製造する方法に関する。
This invention relates to (3S, 4R) -3-
It relates to a method for producing hydroxy-4-hydroxymethyl-4-butanolide.

【0002】[0002]

【従来の技術】近年、医薬品、農薬等のファインケミカ
ル分野において、天然界に存在する含糖化合物や糖類似
化合物が有用な生理活性物質として注目され、その合成
的研究が盛んに行われている。その中のヒドロキシラク
トン類もそれ自身が生理活性物質であったり、また各種
有用化合物の出発原料となり得る糖類似化合物である。
2. Description of the Related Art In recent years, sugar-containing compounds and sugar-like compounds existing in the natural world have attracted attention as useful physiologically active substances in the field of fine chemicals such as pharmaceuticals and agricultural chemicals, and their synthetic studies have been actively conducted. Hydroxy lactones among them are also sugar-like compounds that can be physiologically active substances themselves or can be starting materials for various useful compounds.

【0003】下記式[3]、The following formula [3],

【化3】 で表される(3S,4R)−3−ヒドロキシ−4−ヒド
ロキシメチル−4−ブタノリドもヒドロキシラクトン類
にふくまれる化合物であり、その有用性において注目す
べき化合物である。例えば生理活性としては、摂食抑制
物質(満腹物質)としての活性が期待され、生理学の基
礎研究分野が進められており(T.Sakata,Brain Res. Bu
ll., 25(6), 969-74 (1990))、医薬品や農薬への応用
が期待される。またこのラクトンのエステル誘導体は、
発癌機構に深く関わっているとされているプロテインキ
ナーゼCに対する阻害活性物質の研究において使われて
いる(K.Teng, V.E.Marquez, G.W.A. Milne, J.J.Barch
i,Jr., M.G.Kazanietz, N.E.Lewin, P.M.Blumberg, and
E.Abushanab, J. Am. Chem. Soc., 114, 1059 (1992)
)。さらにこのラクトンは合成原料としても有用であ
り、例えば1位を還元し、ラクトールとすることで2−
デオキシ−D−リボースとすることが出来る。この糖は
抗癌剤や抗エイズ薬として有用な種々の核酸誘導体の糖
部分の原料となりうる。また、このラクトン自身を香料
として用いることも考えられ、煙草の香喫味改良剤とし
て利用出来る。さらに別の香料の出発原料になることも
期待できる。
[Chemical 3] (3S, 4R) -3-Hydroxy-4-hydroxymethyl-4-butanolide represented by is also a compound included in hydroxylactones and is a compound to be noted for its usefulness. For example, as physiological activity, activity as an antifeedant substance (satiety substance) is expected, and basic research fields of physiology are being advanced (T. Sakata, Brain Res.
ll., 25 (6), 969-74 (1990)), and is expected to be applied to pharmaceuticals and agricultural chemicals. In addition, the ester derivative of this lactone is
It is used in the research of inhibitory active substances for protein kinase C which is said to be deeply involved in the carcinogenic mechanism (K.Teng, VEMarquez, GWA Milne, JJBarch.
i, Jr., MGKazanietz, NELewin, PMBlumberg, and
E.Abushanab, J. Am. Chem. Soc., 114, 1059 (1992)
). Furthermore, this lactone is also useful as a raw material for synthesis. For example, by reducing the 1-position to give lactol, 2-
It can be deoxy-D-ribose. This sugar can be a raw material for the sugar moiety of various nucleic acid derivatives useful as anti-cancer agents and anti-AIDS agents. Further, it is considered that the lactone itself is used as a fragrance, and it can be used as a flavor enhancer for tobacco. It can also be expected to be the starting material for other fragrances.

【0004】[0004]

【発明が解決しようとする課題】このように、(3S,
4R)−3−ヒドロキシ−4−ヒドロキシメチル−4−
ブタノリドは用途面で有用なヒドロキシラクトンである
が、天然からの入手は困難であり、合成的手法により入
手するほかない。
As described above, (3S,
4R) -3-Hydroxy-4-hydroxymethyl-4-
Butanolide is a useful hydroxy lactone in terms of application, but it is difficult to obtain it from nature, and there is no choice but to obtain it by a synthetic method.

【0005】従来の合成法としては、2,3−O−イソ
プロピリデン−D−グリセロアルデヒドを出発物質とす
る合成法が4件報告されており、一つは(B.Rague, Y.C
hapleur, and B.Castro, J.Chem.Soc. Perkin Trans.I,
2063 (1982))、グリニャール試薬により2,3−O−
イソプロピリデン−D−グリセロアルデヒドに対して増
炭反応をして、のちにラクトン化する等の方法であり、
2工程で総収率39%である。2つめは( Y.Kita, H.Y
asuda, O.Tamura, F.Itoh, Y.Yuan Ke, Y.Tamura, Tetr
ahedron Lett., 26, 5770 (1985))、O−メチル−O−
t−ブチルジメチルシリルケテンアセタールによって
2,3−O−イソプロピリデン−D−グリセロアルデヒ
ドに対して増炭反応し、保護基等を脱離させ、ラクトン
化する方法であり、2工程で収率64%である。3つめ
は(M.V.Fernandez, P.D.Lanes, and F.J.L.Herrera, T
etrahedron, 46, 7911 (1990) )、スルファニリデン誘
導体によって2,3−O−イソプロピリデン−D−グリ
セロアルデヒドに対して増炭反応し、生成するα,β−
エポキシアミドを還元的に開環し、後にラクトン化する
等の方法であり、3工程で収率70%である。4つめは
(F.J.L.Herrera, M.V.Fernandez, and S.G.Claros, Te
trahedron, 46, 7165 (1990))、ジアゾアセテートによ
って2,3−O−イソプロピリデン−D−グリセロアル
デヒドに対して増炭反応し、脱アジド化、ラクトン化等
を経て、3工程で総収率20%である。4つの合成のう
ち収率の高いものもある。しかし、いずれも2,3−O
−イソプロピリデン−D−グリセロアルデヒドへの増炭
反応により(3S,4R)−3−ヒドロキシ−4−ヒド
ロキシメチル−4−ブタノリドの3位の立体を構築する
ものであり、その際にジアステレマーとして3位の不斉
がR配置のものが生成してしまう。その結果それを分離
する操作を必ず必要とする。さらに原料の2,3−O−
イソプロピリデン−D−グリセロアルデヒドの最も効率
的な合成法はD−マンニトールから得るものであるが
(R.Dumont and H.Pfander, Helv. Chim. Acta, 66, 81
4 (1983))、2工程を費やすので、上記工程数は実質上
4〜5工程になる。よって総収率も上記値よりも低くな
る。
As conventional synthesis methods, four synthesis methods using 2,3-O-isopropylidene-D-glyceroaldehyde as a starting material have been reported, one of which is (B. Rague, YC
hapleur, and B. Castro, J. Chem. Soc. Perkin Trans.I,
2063 (1982)), 2,3-O- with Grignard reagent.
Isopropylidene-D-glyceraldehyde is subjected to a carbon increasing reaction and then lactonized, and the like.
The total yield in the two steps is 39%. The second is (Y.Kita, HY
asuda, O.Tamura, F.Itoh, Y.Yuan Ke, Y.Tamura, Tetr
ahedron Lett., 26, 5770 (1985)), O-methyl-O-
It is a method of increasing the carbon number of 2,3-O-isopropylidene-D-glyceraldehyde with t-butyldimethylsilylketene acetal, removing a protecting group, and lactonizing the mixture. %. The third is (MVFernandez, PDLanes, and FJLHerrera, T
etrahedron, 46, 7911 (1990)), α, β-produced by a carbophilic reaction of 2,3-O-isopropylidene-D-glyceraldehyde with a sulfanilidene derivative.
For example, a method of reductively ring-opening the epoxyamide and then lactonization is performed, and the yield is 70% in 3 steps. The fourth is (FJL Herrera, MVFernandez, and SGClaros, Te
trahedron, 46, 7165 (1990)), 2,3-O-isopropylidene-D-glyceraldehyde is subjected to a carbon increasing reaction with diazoacetate, followed by deazidation, lactonization, etc., and a total yield in 3 steps. 20%. Some of the four syntheses have high yields. However, both are 2,3-O
-The steric structure at the 3-position of (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide is constructed by a carbon increasing reaction to isopropylidene-D-glyceraldehyde, and at that time, as a diastereomer, An asymmetry in position will be generated in the R configuration. As a result, it always requires an operation to separate it. In addition, the raw material 2,3-O-
The most efficient synthetic method of isopropylidene-D-glyceroaldehyde is obtained from D-mannitol (R. Dumont and H. Pfander, Helv. Chim. Acta, 66, 81.
4 (1983)), since 2 steps are spent, the number of steps is substantially 4 to 5 steps. Therefore, the total yield is also lower than the above value.

【0006】他の出発原料としてD−γ−リボノラクト
ンを用いる合成法が2件報告されている。(N.Baggett,
J.G.Buchanan, M.Y.Fatah, C.H.Lachut, K.J.MuCullou
gh,J.M.Weher, J. Chem. Soc., Chem. Commun, 1826 (1
985) 、及び K.Bock, I.Lundt, and C.Pedersen, Carbo
hydr. Res., 90, 17 (1981))、前者はD−γ−リボノ
ラクトンの2位の水酸基を還元的に脱離させて2位をメ
チレンとするもので、4工程を要する(収率は未報
告)。後者は2位のブロモ化と脱ブロモ化により2位を
メチレンとし、2工程で総収率27%である。これら
は、2,3−O−イソプロピリデン−D−グリセロアル
デヒドを原料とする合成法と比較して、原料が既に目的
の立体配置を含んでいるため立体選択性を考慮する必要
がないが、収率は劣る。
Two synthetic methods using D-γ-ribonolactone as another starting material have been reported. (N. Baggett,
JGBuchanan, MYFatah, CHLachut, KJMuCullou
gh, JMWeher, J. Chem. Soc., Chem. Commun, 1826 (1
985), and K. Bock, I. Lundt, and C. Pedersen, Carbo
hydr. Res., 90, 17 (1981)), the former reductively eliminates the hydroxyl group at the 2-position of D-γ-ribonolactone to give methylene at the 2-position, which requires 4 steps (yield is Unreported). The latter has a total yield of 27% in two steps by converting the 2-position to methylene by brominating and debrominating the 2-position. Compared with the synthetic method using 2,3-O-isopropylidene-D-glyceroaldehyde as a raw material, these do not need to consider stereoselectivity because the raw material already contains the desired configuration. The yield is poor.

【0007】この様に従来の合成法のなかには、立体選
択的で短工程、高収率かつ簡易な操作であることの全て
を満たす有用な方法はまだ無いと言えよう。
As described above, it can be said that there is still no useful method satisfying all of stereoselective, short steps, high yield and simple operation among the conventional synthetic methods.

【0008】したがって、この発明の目的は、入手の容
易な原料から選択的に簡易な操作の短工程で合成し、か
つ高い収率で得ることが可能な、(3S,4R)−3−
ヒドロキシ−4−ヒドロキシメチル−4−ブタノリドの
製造法を提供することにある。
Therefore, an object of the present invention is (3S, 4R) -3-, which can be selectively synthesized from easily available raw materials in a short step of simple operation and can be obtained in a high yield.
It is to provide a method for producing hydroxy-4-hydroxymethyl-4-butanolide.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意研究を重ねた結果、セルロースの熱
分解物として容易に得られるレボグルコセノンを出発物
質とし、わずか2工程の簡易な操作で、しかも収率も良
く総収率 64.3 % で、(3S,4R)−3−ヒドロキシ
−4−ヒドロキシメチル−4−ブタノリドを立体選択的
に得る経路を見いだした。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventors have used levoglucosenone, which is easily obtained as a pyrolyzate of cellulose, as a starting material and have only two steps. A route for obtaining (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide in a stereoselective manner was found by operation and in a good yield with a total yield of 64.3%.

【0010】すなわち、この発明は、(a)下記式
[1]で表わされるレボグルコセノンの3位と4位にわ
たる炭素−炭素二重結合に水和して、3位をメチレン基
とし、4位にα配置の水酸基を有する下記一般式[2]
で表わされる化合物を得る工程と、(b)下記一般式
[2]で表される化合物をバイヤービリガー酸化するこ
とにより下記式[3]で表される(3S,4R)−3−
ヒドロキシ−4−ヒドロキシメチル−4−ブタノリドを
得る工程とを含む、(3S,4R)−3−ヒドロキシ−
4−ヒドロキシメチル−4−ブタノリドの製造方法を提
供する。
That is, according to the present invention, (a) the carbon-carbon double bond extending over the 3- and 4-positions of levoglucosenone represented by the following formula [1] is hydrated to form a methylene group at the 3-position and a 4-position. The following general formula [2] having a hydroxyl group in α-configuration
And a step (b) of subjecting a compound represented by the following general formula [2] to a Bayer-Villiger oxidation to produce a compound represented by the following formula [3] (3S, 4R) -3-
Obtaining a hydroxy-4-hydroxymethyl-4-butanolide, (3S, 4R) -3-hydroxy-
Provided is a method for producing 4-hydroxymethyl-4-butanolide.

【化1】 [Chemical 1]

【化2】 [Chemical 2]

【化3】 [Chemical 3]

【0011】以下、この発明の(3S,4R)−3−ヒ
ドロキシ−4−ヒドロキシメチル−4−ブタノリドの製
造方法を、各工程を追って具体的に説明する。
The method for producing (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide of the present invention will be specifically described below by following each step.

【0012】まず、工程(a)において、上記式[1]
で表わされるレボグルコセノンの3位と4位にわたる炭
素−炭素二重結合を水和し、3位をメチレン基として4
位にα配置の水酸基を有する上記一般式[2]で表され
る1,6−アンヒドロ−3−デオキシ−β−D−エリス
ロ−ヘキソピラノース−2−ウロースを得る。水和は酸
または塩基触媒の存在下で行われる。酸触媒としては、
1,6−アンヒドロ結合を切断する能力の無い酢酸など
があげられる。塩基触媒としてはトリエチルアミン等の
求核性の低い3級アミンが望ましい。溶媒は両者の場合
とも、水のみあるいは水性の有機溶媒があげられる。た
だし、水以外が求核試薬とならないように溶媒を選択す
る必要がある。反応温度は室温から100℃程度、反応
時間は30分から5時間程度である。
First, in the step (a), the above formula [1] is used.
The carbon-carbon double bond extending over the 3- and 4-positions of levoglucosenone represented by
The 1,6-anhydro-3-deoxy-β-D-erythro-hexopyranose-2-ulose represented by the above general formula [2] having a hydroxyl group in the α-position at the position is obtained. Hydration is carried out in the presence of acid or base catalysts. As an acid catalyst,
Examples include acetic acid, which has no ability to cleave 1,6-anhydro bonds. As the base catalyst, a tertiary amine having low nucleophilicity such as triethylamine is desirable. In both cases, the solvent may be water alone or an aqueous organic solvent. However, it is necessary to select a solvent so that only water is a nucleophile. The reaction temperature is room temperature to about 100 ° C., and the reaction time is about 30 minutes to 5 hours.

【0013】続く工程(b)において、工程(a)で得
られた上記一般式で表される化合物[2]をバイヤービ
リガー酸化することで、五員環のラクトン化合物である
上記式[3]で表される(3S,4R)−3−ヒドロキ
シ−4−ヒドロキシメチル−4−ブタノリドへと導く。
バイヤービリガー酸化の酸化剤としては過酢酸やm−ク
ロロ過安息香酸などを1〜10当量用い、溶媒としては
酢酸や塩化メチレンなどのそれ自身が反応しない有機溶
媒であれば特に限定されるものではない。反応温度は室
温程度が望ましい。反応時間は10分間〜10時間程度
である。
In the subsequent step (b), the compound [2] represented by the above-mentioned general formula obtained in the step (a) is subjected to Bayer-Villiger oxidation to give the above-mentioned formula [3] which is a five-membered lactone compound. To (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide.
As the oxidizing agent for the Bayer-Villiger oxidation, peracetic acid, m-chloroperbenzoic acid or the like is used in an amount of 1 to 10 equivalents, and the solvent is not particularly limited as long as it is an organic solvent such as acetic acid or methylene chloride which does not itself react. Absent. The reaction temperature is preferably about room temperature. The reaction time is about 10 minutes to 10 hours.

【0014】反応終了後、過剰量の過酢酸等の過酸は、
以後の処理の安全の為に、ジメチルスルフィド等を加え
ることで消費しておくことが望ましい。
After the reaction is completed, an excess amount of peracid such as peracetic acid is
For the safety of the subsequent processing, it is desirable to add dimethyl sulfide and the like to consume it.

【0015】更に、生成物の水酸基は、一部がホルミル
エステルとなっている可能性も有り得るので、酸加水分
解の条件で処理しておくことが望ましい。用いる酸とし
ては塩酸,硫酸,アンバーライトIR−120B(プロ
トン型)などの一般の酸加水分解において用いられる酸
触媒の全てを用いることが出来る。溶媒としては水やア
ルコール系などの一般の酸加水分解で用いる全ての溶媒
を用いることが出来る。反応温度としては、0〜100
℃であるが室温程度が望ましい。また。反応時間は1〜
20時間程度である。
Further, since it is possible that a part of the hydroxyl group of the product is formyl ester, it is desirable to treat the hydroxyl group under the condition of acid hydrolysis. As the acid to be used, all of the acid catalysts used in general acid hydrolysis such as hydrochloric acid, sulfuric acid and Amberlite IR-120B (proton type) can be used. As the solvent, all solvents used in general acid hydrolysis such as water and alcohols can be used. The reaction temperature is 0 to 100
Although it is ℃, room temperature is preferable. Also. Reaction time is 1
It takes about 20 hours.

【0016】これにより、上記式[3]で表される(3
S,4R)−3−ヒドロキシ−4−ヒドロキシメチル−
4−ブタノリドを得る。
As a result, the expression (3) is given by the above equation [3].
S, 4R) -3-Hydroxy-4-hydroxymethyl-
4-butanolide is obtained.

【0017】[0017]

【実施例】以下、実施例によりこの発明をさらに詳細に
説明する。
The present invention will be described in more detail with reference to the following examples.

【0018】実施例1 (工程1) 1,6−アンヒドロ−3−デオキシ−β−
D−エリスロ−ヘキソピラノース−2−ウロースの合成 レボグルコセノン 10.85 g (86.04 mmol) を水 1085 ml
に加え、さらにこれにトリエチルアミン 10.9 ml (78.2
0 mmol) を加えて室温にて1時間撹拌した。反応液から
減圧下にて溶媒およびトリエチルアミンを留去し、残渣
をシリカゲルカラムクロマトグラフ(ヘキサン−酢酸エ
チル=1:2)にて精製し、上記式[2]で表される
1,6−アンヒドロ−3−デオキシ−β−D−エリスロ
−ヘキソピラノース−2−ウロース 9.37 g (75.6 %)を
得た。
Example 1 (Step 1) 1,6-anhydro-3-deoxy-β-
Synthesis of D-erythro-hexopyranose-2-ulose Levoglucosenone 10.85 g (86.04 mmol) in water 1085 ml
In addition to this, add 10.9 ml (78.2
(0 mmol) was added and the mixture was stirred at room temperature for 1 hour. The solvent and triethylamine were distilled off from the reaction solution under reduced pressure, the residue was purified by silica gel column chromatography (hexane-ethyl acetate = 1: 2), and 1,6-anhydro represented by the above formula [2] was used. There was obtained 9.37 g (75.6%) of 3-deoxy-β-D-erythro-hexopyranose-2-ulose.

【0019】1H−NMR(CDCl3 ,TMSからの
ppm ): 1位; 5.16 (1H ,s),5位; 4.26 - 4.21
(1H,m),4位; 4.70 - 4.67 (1H,m),6位; 4.01
(1H,dd,J = 8.1, 5.1 Hz),6’位; 3.95 (1H ,d
d,J = 8.1, 1.5 Hz),3位;2.87 (1H ,dd,J = 17.
0, 5.6 Hz) ,3’位; 2.52 (1H ,dddd,J = 17.0,2.
4, 1.3, 1.3 Hz) ,OH; 2.49 (1H ,d ,J = 9.7 H
z)
1 H-NMR (CDCl 3 , from TMS
ppm): 1st place; 5.16 (1H, s), 5th place; 4.26-4.21
(1H, m), 4th; 4.70-4.67 (1H, m), 6th; 4.01
(1H, dd, J = 8.1, 5.1 Hz), 6'th place; 3.95 (1H, d
d, J = 8.1, 1.5 Hz), 3rd place; 2.87 (1H, dd, J = 17.
0, 5.6 Hz), 3'th place; 2.52 (1H, dddd, J = 17.0, 2.
4, 1.3, 1.3 Hz), OH; 2.49 (1H, d, J = 9.7 H
z)

【0020】(工程2) (3S,4R)−3−ヒドロ
キシ−4−ヒドロキシメチル−4−ブタノリドの合成 上記式[2]で表わされる 1,6−アンヒドロ−3−
デオキシ−β−D−エリスロ−ヘキソピラノース−2−
ウロース 2.65 g (18.4 mmol) を酢酸 32 mlに溶解し、
窒素雰囲気中水冷下にて40%過酢酸 12 mlを徐々に滴
下した。室温にて1時間撹拌後、水冷下にてジメチルス
ルフィド 9 ml を徐々に滴下した。室温にて1時間撹拌
後、反応液から減圧下にて溶媒を留去し、残渣をメタノ
ール69mlに溶解してこれに濃塩酸 2.8 ml を加えて
室温にて一晩撹拌した。反応液から減圧下にて溶媒を留
去した後、残渣をシリカゲルカラムクロマトグラフ(ヘ
キサン:酢酸エチル=1:4 )を用いて精製し、上記式
[3]で表わされる(3S,4R)−3−ヒドロキシ−
4−ヒドロキシメチル−4−ブタノリド 2.07 g (収率
85.1 % )を得た。
(Step 2) Synthesis of (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide 1,6-anhydro-3-represented by the above formula [2]
Deoxy-β-D-erythro-hexopyranose-2-
2.65 g (18.4 mmol) of urose was dissolved in 32 ml of acetic acid,
12% of 40% peracetic acid was gradually added dropwise under water cooling in a nitrogen atmosphere. After stirring at room temperature for 1 hour, 9 ml of dimethyl sulfide was gradually added dropwise under water cooling. After stirring at room temperature for 1 hour, the solvent was distilled off from the reaction solution under reduced pressure, the residue was dissolved in 69 ml of methanol, 2.8 ml of concentrated hydrochloric acid was added thereto, and the mixture was stirred at room temperature overnight. After the solvent was distilled off from the reaction solution under reduced pressure, the residue was purified by using a silica gel column chromatograph (hexane: ethyl acetate = 1: 4) and represented by the above formula [3] (3S, 4R)- 3-hydroxy-
4-hydroxymethyl-4-butanolide 2.07 g (yield
85.1%) was obtained.

【0021】[α]24D -4.5゜(C 1.44,C25
H)1 H−NMR(CDCl3 −(CD32 CO,TMS
からの ppm ): 3−OH; 4.44 (1H ,d, J = 4.2 H
z),3位; 4.34 (1H ,dddd,J = 6.6, 4.2,2.4, 2.0
Hz),4位; 4.19 (1H ,ddd ,J = 3.4 ,3.4 ,2.0 H
z) ,5−OH; 4.03 (1H ,dd,J = 5.5 ,5.5 Hz)
,5位; 3.65 - 3.51 (2H,m),2位;2.68 (1H ,d
d,J = 17.7,6.6 Hz) ,2.16 (1H,dd,J = 17.7,2.4
Hz)13C−NMR((CD32 CO(30.0 ppm) から
の ppm): 206.7 ,89.2,69.6,62.6,39.0
[Α] 24 D -4.5 ° (C 1.44, C 2 H 5 O
H) 1 H-NMR (CDCl 3 — (CD 3 ) 2 CO, TMS
Ppm): 3-OH; 4.44 (1H, d, J = 4.2H
z), 3rd place; 4.34 (1H, dddd, J = 6.6, 4.2,2.4, 2.0
Hz), 4th place; 4.19 (1H, ddd, J = 3.4, 3.4, 2.0H
z), 5-OH; 4.03 (1H, dd, J = 5.5, 5.5 Hz)
, 5th; 3.65-3.51 (2H, m), 2nd; 2.68 (1H, d
d, J = 17.7, 6.6 Hz), 2.16 (1H, dd, J = 17.7, 2.4
Hz) 13 C-NMR (ppm from (CD 3 ) 2 CO (30.0 ppm)): 206.7, 89.2, 69.6, 62.6, 39.0

【0022】[0022]

【発明の効果】以上のように、この発明によると、従来
入手の困難であったヒドロキシラクトン類の一つである
(3S,4R)−3−ヒドロキシ−4−ヒドロキシメチ
ル−4−ブタノリドを、レボグルコセノンを出発物質と
することで、炭素−炭素二重結合への水和とバイヤービ
リガー酸化により、選択的に、簡易な操作で短工程かつ
高収率で得ることが可能になった。これにより、種々の
有用化合物の合成原料として容易に供給できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, (3S, 4R) -3-hydroxy-4-hydroxymethyl-4-butanolide, which is one of hydroxylactones which has been difficult to obtain conventionally, is By using levoglucosenone as a starting material, hydration to a carbon-carbon double bond and Bayer-Villiger oxidation made it possible to selectively and easily obtain the compound in a short process in a high yield. Thereby, it can be easily supplied as a raw material for synthesizing various useful compounds.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 浩 神奈川県横浜市緑区梅が丘6番地2 日本 たばこ産業株式会社生命科学研究所内 (72)発明者 松本 克也 神奈川県横浜市緑区梅が丘6番地2 日本 たばこ産業株式会社生命科学研究所内 (72)発明者 松下 肇 神奈川県横浜市緑区梅が丘6番地2 日本 たばこ産業株式会社生命科学研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Kawakami 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa Japan Life Science Institute, Tobacco Inc. (72) Inventor Katsuya Matsumoto 6-2, Umegaoka, Midori-ku, Yokohama-shi, Kanagawa Japan Tobacco Inc. Life Science Research Institute (72) Inventor Hajime Matsushita 2 Umegaoka 6-2 Umegaoka, Midori-ku, Yokohama, Kanagawa Japan Tobacco Inc. Life Science Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 (a)下記式[1]で表わされるレボグ
ルコセノンの3位と4位にわたる炭素−炭素二重結合に
水和して、3位をメチレン基とし、4位にα配置の水酸
基を有する下記一般式[2]で表わされる化合物を得る
工程と、(b)下記一般式[2]で表される化合物をバ
イヤービリガー酸化することにより下記式[3]で表さ
れる(3S,4R)−3−ヒドロキシ−4−ヒドロキシ
メチル−4−ブタノリドを得る工程とを含む、(3S,
4R)−3−ヒドロキシ−4−ヒドロキシメチル−4−
ブタノリドの製造方法。 【化1】 【化2】 【化3】
1. (a) A hydroxyl group in which levoglucosenone represented by the following formula [1] is hydrated to a carbon-carbon double bond extending at the 3rd and 4th positions to form a methylene group at the 3rd position and an α configuration at the 4th position. And a step (b) of subjecting a compound represented by the following general formula [2] to Bayer-Villiger oxidation to obtain a compound represented by the following formula [3] (3S, 4R) -3-Hydroxy-4-hydroxymethyl-4-butanolide, and (3S,
4R) -3-Hydroxy-4-hydroxymethyl-4-
Method for producing butanolide. [Chemical 1] [Chemical 2] [Chemical 3]
JP5177324A 1993-06-24 1993-06-24 Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide Pending JPH07138245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177324A JPH07138245A (en) 1993-06-24 1993-06-24 Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5177324A JPH07138245A (en) 1993-06-24 1993-06-24 Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide

Publications (1)

Publication Number Publication Date
JPH07138245A true JPH07138245A (en) 1995-05-30

Family

ID=16028992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177324A Pending JPH07138245A (en) 1993-06-24 1993-06-24 Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide

Country Status (1)

Country Link
JP (1) JPH07138245A (en)

Similar Documents

Publication Publication Date Title
Denis et al. An efficient, enantioselective synthesis of the taxol side chain
Wei et al. Preferred Conformations of C-Glycosides. 14. Synthesis and Conformational Analysis of Carbon Analogs of the Blood Group Determinant H-Type II
Effenberger et al. Stereoselective synthesis of biologically active tetronic acids
Yamazaki et al. Development of a novel pathway to access 6-deoxy-6, 6, 6-trifluoro sugars via 1, 2-migration of a tert-butyldimethylsilyl group
EP0553358B1 (en) Process for producing 3-dpa-lactone
DK162225B (en) PROCEDURE FOR THE PREPARATION OF LACTONS OF CYCLOPROPANCARBOXYL ACIDS
Gaudin Synthesis and organoleptic properties of p-menthane lactones
US5412111A (en) Method of preparing (3R,4R)-3-hydroxy-4-hydroxymethyl-4-butanolide
US5322955A (en) Method of manufacturing 3-DPA-lactone
JP2002521395A (en) Continuous process for producing optically pure (S) -3-hydroxy-γ-butyrolactone
JPH07138245A (en) Production of (3s,4r)-3-hydroxy-4-hydroxymethyl-4-butanolide
JPH06122653A (en) Production of saturated monocyclic hydrocarbon compound and its intermediate
JP3987285B2 (en) Synthesis of 3,4-dihydroxybutanoic acid and derivatives from substituted pentoses
JPH10279573A (en) Production of 3-methyltetrahydrofuran
JP3098825B2 (en) Method for producing dihydrofuranone derivative
JP3087325B2 (en) Optically active compounds and their production
JP3662954B2 (en) Method for producing 6-deoxy-6,6,6-trifluorosaccharide derivative
Schabbert et al. A Facile Asymmetric Synthesis of the Compactin Lactone Moiety
Liu et al. Selective reduction of N-protected-α-amino lactones to lactols with lithium tri-tert-butoxyaluminohydride
Guillerm et al. Regioselective Formylation of Substituted Cyclohexanones. An Efficient Route to Highly Functionalized Cyclohexenes
JPS5930697B2 (en) Production method of β-cyclohexylpropionate
JPH0665151A (en) Production of dihydroepijasmic acid methyl ester
JPH10158257A (en) Production of optical active delta-lactone and perfume containing said delta-lactone
JPH0586020A (en) Alpha,beta-dihydroxy-gamma,delta-unsaturated carboxylic acid thiol ester derivative and its production
JPH0586045A (en) Method for producing 3,4-disubstituted-cis-gamma-lactone