JPH0442959A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPH0442959A
JPH0442959A JP14803290A JP14803290A JPH0442959A JP H0442959 A JPH0442959 A JP H0442959A JP 14803290 A JP14803290 A JP 14803290A JP 14803290 A JP14803290 A JP 14803290A JP H0442959 A JPH0442959 A JP H0442959A
Authority
JP
Japan
Prior art keywords
substrate
element region
type
integrated circuit
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14803290A
Other languages
Japanese (ja)
Inventor
Hirokazu Tanaka
田中 裕計
Tamotsu Ishikawa
保 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14803290A priority Critical patent/JPH0442959A/en
Publication of JPH0442959A publication Critical patent/JPH0442959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To make it possible to reduce the coupling in an AC manner of elements through the parasitic capacity of each element to a substrate by a method wherein a substrate potential feeding impedance from the surface of a semiconductor chip is remarkedly reduced. CONSTITUTION:U-shaped grooves are cut in the peripheries of n-p-n transistors 108 and 109 and a diffusion resistance region 111, polysilicon 105 is buried in the grooves as an insulator and the sidewalls of element regions are respectively isolated from each other. A p<+> element region isolation layer 112, which encircles the periphery of each element region consisting of the transistors 108 and 109 and the region 111, reaches from the surface of a semiconductor chip to a p<-> silicon substrate 101 and in which an impurity of a conductivity type identical with that of the substrate 101 is introduced in a high concentration, is formed. It becomes possible to feed a substrate potential to the vicinities of the peripheries of the element regions 108, 109 and 11 in a low impedance and as a high impedance RH of the substrate 101 becomes that only of the part directly under an n<+> buried layer 102, an overall substrate potential feeding impedance is low.

Description

【発明の詳細な説明】 〔概 要〕 素子の側壁分離に絶縁体を用い、素子領域と基板との間
をPN接合によって分離した半導体集積回路装置に関し
DETAILED DESCRIPTION OF THE INVENTION [Summary] This invention relates to a semiconductor integrated circuit device in which an insulator is used for sidewall isolation of an element, and an element region and a substrate are separated by a PN junction.

半導体チップ表面からの基板電位供給インピーダンスを
低くして、各素子領域が基板に対する寄生容量を通して
交流的に結合するのを減少させることを目的とし。
The purpose of this is to lower the impedance of substrate potential supply from the semiconductor chip surface, thereby reducing alternating current coupling between each element region and the substrate through parasitic capacitance.

集積回路を構成する素子の側壁分離に絶縁体を用い、各
素子領域と基板との間をPN接合により分離した半導体
集積回路装置において、各素子領域の周囲を取り囲み、
半導体チップの表面から基板に到達する。基板と同一導
電型の不純物を高濃度に導入した素子領域分離層を設け
、該素子領域分離層に、基板電位を供給する電極を少な
くとも1個形成するように構成する。
In a semiconductor integrated circuit device in which an insulator is used to separate the side walls of elements constituting an integrated circuit, and each element region and a substrate are separated by a PN junction, each element region is surrounded by a
It reaches the substrate from the surface of the semiconductor chip. An element region isolation layer into which impurities of the same conductivity type as the substrate are introduced at a high concentration is provided, and at least one electrode for supplying a substrate potential is formed in the element region isolation layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体集積回路装置に関する。 The present invention relates to a semiconductor integrated circuit device.

半導体集積回路装置においては、要求される特性に応じ
て各種の構造が使用されている。
In semiconductor integrated circuit devices, various structures are used depending on required characteristics.

トランジスタ、キャパシタ9抵抗などの集積回路を構成
する素子の側壁分離に絶縁体を用い、素子領域と基板と
の間をPN接合によって分離した構造は、各素子の基板
に対する浮遊容量を小さくすることができる等の特徴が
あるため、高速信号を扱う半導体集積回路装置に使用さ
れる。
A structure in which an insulator is used to separate the sidewalls of elements that make up an integrated circuit, such as transistors, capacitors, and resistors, and a PN junction is used to separate the element region from the substrate can reduce the stray capacitance of each element with respect to the substrate. It is used in semiconductor integrated circuit devices that handle high-speed signals.

本発明に係る半導体集積回路装置は、上述した集積回路
を構成する素子の側壁分離に絶縁体を用い、素子領域と
基板との間をPN接合によって分離した構造の半導体集
積回路装置を対象とする。
A semiconductor integrated circuit device according to the present invention is directed to a semiconductor integrated circuit device having a structure in which an insulator is used for sidewall separation of the elements constituting the integrated circuit described above, and the element region and the substrate are separated by a PN junction. .

〔従来の技術〕[Conventional technology]

第5図は、集積回路を構成する素子の側壁分離に絶縁体
を用い、素子領域と基板との間をPN接合によって分離
した構造の半導体集積回路装置の従来例を示す図である
FIG. 5 is a diagram showing a conventional example of a semiconductor integrated circuit device having a structure in which an insulator is used to separate the side walls of elements constituting the integrated circuit, and the element region and the substrate are separated by a PN junction.

同図(a)は平面図、同図(b)はX−Y断面図である
FIG. 3(a) is a plan view, and FIG. 2(b) is an X-Y sectional view.

第5図において、501はP−型シリコン基板。In FIG. 5, 501 is a P-type silicon substrate.

502はn゛゛埋込層、503はn−型エピタキシャル
層、504は5iO1膜、505はポリシリコン、50
6はp型ベース層5507はn゛゛エミッタ層、508
はnpn)ランジスタ、509はnpnl−ランジスタ
、510はp型拡散抵抗、511は拡散抵抗領域、51
2はP゛型型部濃度不純物拡散層513はSiO2膜、
514はアルミニウム電極、515は基板電位供給電極
である。
502 is an n-type buried layer, 503 is an n-type epitaxial layer, 504 is a 5iO1 film, 505 is polysilicon, 50
6 is a p-type base layer 5507 is an n'' emitter layer, 508
is an npn) transistor, 509 is an npnl-transistor, 510 is a p-type diffused resistor, 511 is a diffused resistance region, 51
2, the P′ type part concentration impurity diffusion layer 513 is a SiO2 film,
514 is an aluminum electrode, and 515 is a substrate potential supply electrode.

本従来例では、npn)ランジスタ508および509
.並びに拡散抵抗領域511の周囲にU溝を堀り、その
中に絶縁体としてポリシリコン505を埋め込んで各素
子領域の側壁分離を行っている。
In this conventional example, npn) transistors 508 and 509
.. Further, a U-groove is dug around the diffused resistance region 511, and polysilicon 505 is buried therein as an insulator to separate the sidewalls of each element region.

また、npn)ランジスタ508および509゜並びに
拡散抵抗領域511から成る各素子領域間の分離は、p
−型シリコン基板501−(n’型埋込層502.n−
型エピタキシャル層503)から成るPN接合を逆バイ
アスすることにより行っている。そのために、n−型エ
ピタキシャル層503に、半導体チップ表面からP−型
シリコン基板501に到達する。基板と同一導電型の不
純物を高濃度に導入したp°型型部濃度不純物拡散層5
12半導体チップ内の数個所に設けている。
Furthermore, the isolation between each element region consisting of the npn) transistors 508 and 509 and the diffused resistance region 511 is
- type silicon substrate 501- (n' type buried layer 502.n-
This is done by reverse biasing the PN junction made of the type epitaxial layer 503). For this purpose, the n-type epitaxial layer 503 is reached from the semiconductor chip surface to the P-type silicon substrate 501. p ° type part concentration impurity diffusion layer 5 into which impurities of the same conductivity type as the substrate are introduced at a high concentration
No. 12 is provided at several locations within the semiconductor chip.

そして、p゛型型部濃度不純物拡散層512上設けたア
ルミニウムから成る基板電位供給電極515に負電位を
印加することにより、P−型シリコン基板501−(n
”型埋込層502.n−型エピタキシャルJi503)
から成るPN接合を逆バイアスして、npnトランジス
タ508および509、並びに拡散抵抗領域511から
成る名素子領域間を分離する。
Then, by applying a negative potential to the substrate potential supply electrode 515 made of aluminum provided on the p-type part concentration impurity diffusion layer 512, the P-type silicon substrate 501-(n
"type buried layer 502.n-type epitaxial Ji503)
The PN junction consisting of the transistors 508 and 509 and the diffusion resistance region 511 are isolated from each other by reverse biasing the PN junction consisting of the transistors 508 and 509 .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図に図示j、また。p゛型高濃度不純物拡散層51
2のインピーダンスRt、およびP−型シリコン基板5
01のインピーダンスR,を用いてnpnトランジスタ
508および509のコレクタまでの基板電位供給イン
ピーダンスを簡易等価回路で示すと、第6図のようにな
る。
Also shown in FIG. p type high concentration impurity diffusion layer 51
2 impedance Rt, and P-type silicon substrate 5
When the substrate potential supply impedance to the collectors of the npn transistors 508 and 509 is shown in a simple equivalent circuit using an impedance R of 0.01, it becomes as shown in FIG.

P゛型高濃度不純物拡散N512のインピーダンスR8
は低いが、P−型シリコン基板501のインピーダンス
R□は比較的高い。しかしながら。
Impedance R8 of P type high concentration impurity diffusion N512
is low, but the impedance R□ of the P-type silicon substrate 501 is relatively high. however.

基板電位は2本来素子領域分離のためのバイアスである
から、直流電流は流れない。このため、低周波領域では
、基板電位供給に対するインピーダンスはさほど問題と
ならない。
Since the substrate potential is originally a bias for separating the element regions, no direct current flows. Therefore, in the low frequency region, impedance to substrate potential supply does not pose much of a problem.

しかし1周波数の高い微小信号を増幅する場合等では、
基板電位供給に対するインピーダンスが高いと、各素子
領域間が交流的に寄生容量を透して結合するため、集積
回路に不要な発振が生ずる等の特性に対する悪影響が生
じる。とい・う問題があった。
However, when amplifying a small signal with one high frequency,
When the impedance to the substrate potential supply is high, each element region is coupled in an alternating current manner through parasitic capacitance, which adversely affects the characteristics of the integrated circuit, such as unnecessary oscillation. There was a problem.

本発明は、半導体チップ表面からの基板電位供給インピ
ーダンスを低くして、各素子領域が基板に対する寄生容
量を通して交流的に結合するのを減少さセ°た。半導体
集積回路装置、特に素子の側壁分離に絶縁体を用い、各
素子領域と基板との間をPN接合によって分離した半導
体集積回路装置を提供することを目的とする。
The present invention reduces alternating current coupling of each element region to the substrate through parasitic capacitance by lowering the substrate potential supply impedance from the semiconductor chip surface. An object of the present invention is to provide a semiconductor integrated circuit device, particularly a semiconductor integrated circuit device in which an insulator is used for sidewall isolation of elements, and each element region and a substrate are separated by a PN junction.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために2本発明に係る半導体集積
回路装置は、集積回路を構成する素子の側壁分離に絶縁
体を用い、各素子領域と基板との間をPN接合により分
離した半導体集積回路装置において、各素子領域の周囲
を取り囲み、半導体チップの表面から基板に到達する。
In order to achieve the above objects, the semiconductor integrated circuit device according to the present invention uses an insulator for sidewall separation of elements constituting the integrated circuit, and a semiconductor integrated circuit device in which each element region and the substrate are separated by a PN junction. In a circuit device, it surrounds each element region and reaches the substrate from the surface of the semiconductor chip.

基板と同一導電型の不純物を高濃度に導入した素子領域
分離層を設け、該素子領域分離層に、基板電位を供給す
る電極を少なくとも1個形成するように構成する。
An element region isolation layer into which impurities of the same conductivity type as the substrate are introduced at a high concentration is provided, and at least one electrode for supplying a substrate potential is formed in the element region isolation layer.

〔作 用〕[For production]

本発明では、トランジスタ、キャパシタ、抵抗などの集
積回路を構成する各素子領域の周囲を取り囲み、半導体
チップの表面から基板に到達する。
In the present invention, it surrounds each element region constituting an integrated circuit, such as a transistor, a capacitor, and a resistor, and reaches the substrate from the surface of the semiconductor chip.

基板と同一導電型の不純物を高濃度に導入した素子領域
分離層を設けている。したがって、各素子領域の周囲近
傍まで基板電位を低インピーダンスで供給することが可
能となり、基板の高インピーダンス領域は埋込層直下の
部分のみとなるから。
An element region isolation layer is provided in which impurities of the same conductivity type as the substrate are introduced at a high concentration. Therefore, it is possible to supply the substrate potential at low impedance to the vicinity of the periphery of each element region, and the high impedance region of the substrate is only the portion immediately below the buried layer.

総合的な基板電位供給インピーダンスは飛躍的に低下す
る。
The overall substrate potential supply impedance decreases dramatically.

この結果、素子領域から基板に流れる高周波電流が他の
素子N域に与える影響を抑えることが可能になる。
As a result, it becomes possible to suppress the influence of the high frequency current flowing from the element region to the substrate on the N region of other elements.

〔実 施 例〕〔Example〕

(第1実施例) 第1図は3本発明の一実施例を示す図である。 (First example) FIG. 1 is a diagram showing one embodiment of the present invention.

同図(a)は平面図、同図(b)はX−Y断面図である
FIG. 3(a) is a plan view, and FIG. 2(b) is an X-Y sectional view.

第1図において、101はp″型シリコン基板。In FIG. 1, 101 is a p'' type silicon substrate.

102はn゛型埋込層、1o3はn”型エピタキシャル
層、104ばSiO□膜、1o5はポリシリコン、10
6はP型ベース層、1o7はn゛型エミソ列L 108
はnpn)ランジスタ、1o9はnpn l−ランジス
タ、110はP型拡散抵抗、111は拡散抵抗領域、1
12はP°型素子領域分離層、113は5i02膜、1
14はアルミニウム電極、115は基板電位供給電極で
ある。
102 is an n'' type buried layer, 1o3 is an n'' type epitaxial layer, 104 is a SiO□ film, 1o5 is polysilicon, 10
6 is a P-type base layer, 1o7 is an n-type emitter row L 108
is an npn) transistor, 1o9 is an npn l-transistor, 110 is a P-type diffused resistor, 111 is a diffused resistance region, 1
12 is a P° type element region isolation layer, 113 is a 5i02 film, 1
14 is an aluminum electrode, and 115 is a substrate potential supply electrode.

本実施例では、npn)−ランジスタ10Bおよび10
9.並びに拡散抵抗領域111の周囲にtJ溝を掘り、
その中に絶縁体としてポリシリコン105を埋め込んで
各素子領域の側壁分離を行っている。
In this embodiment, npn)-transistors 10B and 10
9. Also, a tJ groove is dug around the diffused resistance region 111,
Polysilicon 105 is embedded therein as an insulator to separate the sidewalls of each element region.

npnトランジスタ108および109.並びに拡散抵
抗領域111から成る各素子領域の周囲を取り囲み、半
導体チップの表面からP−型シリコン基板101に到達
する。基板101と同一導電型の不純物を高濃度に導入
したp゛型素子領域分離層112が形成されている。
npn transistors 108 and 109. It also surrounds each element region consisting of the diffused resistance region 111 and reaches the P-type silicon substrate 101 from the surface of the semiconductor chip. A p' type element region isolation layer 112 is formed into which impurities of the same conductivity type as the substrate 101 are introduced at a high concentration.

npnトランジスタ108および109.並びに拡散抵
抗領域111から成る各素子領域間の分離は、P゛型素
子領域分離層112−P−型シリコン基板101−(n
”型埋込層102.n〜型エピタキシャル層103)か
ら成るPN接合を逆バイアスすることにより行っている
npn transistors 108 and 109. The isolation between each device region consisting of the diffused resistance region 111 and the P-type device region isolation layer 112-P-type silicon substrate 101-(n
This is done by reverse biasing the PN junction consisting of the ``type buried layer 102 and the n-type epitaxial layer 103''.

そして、p゛型素子領域分離層112上に設けたアルミ
ニウムから成る基板電位供給電極115に負電位を印加
することにより、p゛型素子領域分離層112−p−型
シリコン基板101−.(n0型埋込層102.n−型
エピタキシャル層103)から成るPN接合を逆バイア
スして、npnトランジスタ108および109.並び
に拡散抵抗領域111から成る各素子領域間を分離する
By applying a negative potential to the substrate potential supply electrode 115 made of aluminum provided on the p-type element region isolation layer 112, the p-type element region isolation layer 112-p-type silicon substrate 101-. (n0 type buried layer 102, n- type epitaxial layer 103) is reverse biased, and npn transistors 108 and 109. In addition, each element region consisting of the diffused resistance region 111 is separated.

第1図に図示した。p゛型素子領域分離層112のイン
ピーダンスRLおよびp−型シ’)コンN板10.1の
インピーダンスR,を用いてnpn)ランジスタ108
および109のコレクタまでの基板電位供給インピーダ
ンスを簡易等価回路で示すと、第2図のようになる。
It is illustrated in FIG. npn) transistor 108 using the impedance RL of the p-type element region isolation layer 112 and the impedance R of the p-type silicon N plate 10.1.
A simplified equivalent circuit of the substrate potential supply impedance up to the collector of 109 and 109 is as shown in FIG.

p゛型素子領域分離層112のインピーダンスRLは低
いが、p−型シリコン基板101のインピーダンスRH
は比較的高い。しかしながら1本実施例では、npn)
ランジスタ108および109、並びに拡散抵抗領域1
11から成る各素子領域の周囲を取り囲み、半導体チッ
プの表面からP−型シリコン基板101に到達する。基
板101と同一導電型の不純物を高濃度に導入したp゛
型素子領域分離層112が形成されているので各素子領
域108,109,111の周囲近傍まで基板電位を低
インピーダンスで供給することが可能となり、P−型シ
リコン基板101の高インピーダンスRHはn+型埋込
層102直下の部分のみとなるから、総合的な基板電位
供給インピーダンスは低い。
The impedance RL of the p-type element region isolation layer 112 is low, but the impedance RH of the p-type silicon substrate 101 is low.
is relatively high. However, in one embodiment, npn)
Transistors 108 and 109 and diffused resistance region 1
11, and reaches the P-type silicon substrate 101 from the surface of the semiconductor chip. Since the p-type element region isolation layer 112 is formed with impurities of the same conductivity type as the substrate 101 introduced at a high concentration, the substrate potential can be supplied to the vicinity of the periphery of each element region 108, 109, and 111 with low impedance. Since the high impedance RH of the P- type silicon substrate 101 is only in the portion directly under the n+ type buried layer 102, the overall substrate potential supply impedance is low.

(第2実施例) 第3図は2本発明の他の実施例を示す図である。(Second example) FIG. 3 is a diagram showing another embodiment of the present invention.

同図(a)は平面図、同図(b)はX−Y断面図である
FIG. 3(a) is a plan view, and FIG. 2(b) is an X-Y sectional view.

第3図において、301はp−型シリコン基板。In FIG. 3, 301 is a p-type silicon substrate.

302はn“型埋込層、303はn−型エピタキシャル
層、304は5i(h膜、305はポリシリコン、30
6はP型ベース層、307はn゛型エミッタ層、308
はnpn)ランジスタ、309はnpn )ランジスタ
、310はp型拡散抵抗、311は拡散抵抗領域、31
2はP°型素子領域分離層、313はSiO2膜、3I
4はアルミニウム電極、315は基板電位供給電極であ
る。
302 is an n"-type buried layer, 303 is an n-type epitaxial layer, 304 is a 5i (h film), 305 is a polysilicon layer, 30
6 is a P-type base layer, 307 is an n-type emitter layer, 308
is an npn) transistor, 309 is an npn) transistor, 310 is a p-type diffused resistance, 311 is a diffused resistance region, 31
2 is a P° type element region isolation layer, 313 is a SiO2 film, 3I
4 is an aluminum electrode, and 315 is a substrate potential supply electrode.

本実施例では、npnトランジスタ308および309
.並びに拡散抵抗領域311の周囲にU溝を掘り、その
中に絶縁体としてポリシリコン305を埋め込んで各素
子領域の側壁分離を行っている。
In this embodiment, npn transistors 308 and 309
.. Further, a U-groove is dug around the diffused resistance region 311, and polysilicon 305 is buried therein as an insulator to separate the sidewalls of each element region.

npn!−ランジスタ308および309.並びに拡散
抵抗領域311から成る各素子領域の周囲を取り囲むn
−型エピタキシャル層303中に。
npn! - transistors 308 and 309. and a diffusion resistance region 311 surrounding each element region.
- type epitaxial layer 303.

半導体チップの表面からp−型シリコン基板301に到
達する。基板301と同一導電型の不純物を高濃度に導
入したp゛型素子領域分離層312が形成されている。
It reaches the p-type silicon substrate 301 from the surface of the semiconductor chip. A p' type element region isolation layer 312 is formed into which impurities of the same conductivity type as the substrate 301 are introduced at a high concentration.

npn )ランジスタ308および309.並びに拡散
抵抗領域311から成る各素子領域間の分離は、p゛型
素子領域分離層312−P−型シリコン基板301−(
n7型埋込層302.n−型エピタキシャル層303)
から成るPN接合を逆バイアスすることにより行ってい
る。
npn) transistors 308 and 309. The isolation between each element region consisting of the diffused resistance region 311 and the p-type element region isolation layer 312 - the P- type silicon substrate 301 - (
n7 type buried layer 302. n-type epitaxial layer 303)
This is done by reverse biasing the PN junction consisting of.

そして、p゛型素子領域分離層312上に設けたアルミ
ニウムから成る基板電位供給電極315に負電位を印加
することにより、p゛型素子領域分離層312−])−
型シリコン基板301−(n゛型埋込層302.n−型
エピタキシャル層303)から成るPN接合を逆バイア
スして、npnトランジスタ308および309.並び
に拡散抵抗領域311から成る各素子領域間を分離する
Then, by applying a negative potential to the substrate potential supply electrode 315 made of aluminum provided on the p-type element region isolation layer 312, the p-type element region isolation layer 312-])-
The PN junction consisting of the type silicon substrate 301- (n-type buried layer 302, n- type epitaxial layer 303) is reverse biased to form npn transistors 308 and 309. In addition, each element region consisting of the diffused resistance region 311 is separated.

第3図に図示した。P゛型素子領域分離層312のイン
ピーダンスRLおよびp−型シリコン基板301のイン
ピーダンスRHを用いてnpn)ランジスタ308およ
び309のコレクタまでの基板電位供給インピーダンス
を簡易等価回路で示すと、第1実施例と同様乙こ、第2
図のようになる。
It is illustrated in FIG. The substrate potential supply impedance to the collectors of the npn transistors 308 and 309 is shown in a simplified equivalent circuit using the impedance RL of the P-type element region separation layer 312 and the impedance RH of the p-type silicon substrate 301, as shown in the first embodiment. Same as Otsuko, 2nd
It will look like the figure.

P゛型素子領域分離層312のインピーダンスRLば低
いが、P−型シリコン基板301のインピーダンスR,
は比較的高い。しかしながら1本実施例では、npn)
ランジスタ308および309、並びに拡散抵抗領域3
11から成る各素子領域の周囲を取り囲むn−型エピタ
キシャルH3O3中に、半導体チップの表面からP−型
シリコン基板301に到達する。基板301と同一導電
型の不純物を高濃度に導入したp゛型素子領域分離層3
12が形成されているので、各素子領域308.309
,311の周囲近傍まで基板電位を低インピーダンスで
供給することが可能となり。
The impedance RL of the P-type element region isolation layer 312 is low, but the impedance R of the P-type silicon substrate 301 is low.
is relatively high. However, in one embodiment, npn)
Transistors 308 and 309 and diffused resistance region 3
It reaches the P-type silicon substrate 301 from the surface of the semiconductor chip in the n-type epitaxial H3O3 surrounding each element region consisting of 11 elements. A p-type element region isolation layer 3 into which impurities of the same conductivity type as the substrate 301 are introduced at a high concentration.
12 is formed, each element region 308.309
, 311 can be supplied with low impedance to the substrate potential.

P−型シリコン基板301の高インピーダンスR8ばn
゛型埋込層302直下の部分のみとなるから、総合的な
基板電位供給インピーダンスは低い。
High impedance R8ban of P-type silicon substrate 301
Since it is only the portion immediately below the ゛-type buried layer 302, the overall substrate potential supply impedance is low.

(第3実施例) 第4図は1本発明のさらに他の実施例を示す図である。(Third example) FIG. 4 is a diagram showing still another embodiment of the present invention.

同図(a)は平面図、同図(b)はX−Y断面図である
FIG. 3(a) is a plan view, and FIG. 2(b) is an X-Y sectional view.

第4図において、401ばp−型シリコン基板。In FIG. 4, 401 is a p-type silicon substrate.

402はn“型埋込層、403はn−型エピタキシャル
層、404は5iOz膜、405はポリシリコン、40
6はP型ベース層、407はn゛型エミンタ層、408
はnpn)ランジスタ領域、409はnpn)ランジス
タ、410はp゛型素子領域分離層、411はSin、
膜、412はアルミニウム電極2413は基板電位供給
電極である。
402 is an n-type buried layer, 403 is an n-type epitaxial layer, 404 is a 5iOz film, 405 is polysilicon, 40
6 is a P-type base layer, 407 is an n-type emitter layer, 408
is an npn) transistor region, 409 is an npn) transistor, 410 is a p-type element region isolation layer, 411 is a Sin,
The film 412 is an aluminum electrode 2413 is a substrate potential supply electrode.

本実施例では、3個のnpn)ランジスタの周囲に■溝
を掘り、その中に絶縁体としてポリシリコン405を埋
め込んで各素子領域の側壁分離を行っている。
In this embodiment, trenches are dug around the three npn (npn) transistors, and polysilicon 405 is buried therein as an insulator to isolate the sidewalls of each element region.

npn)ランジスタ領域408およびnpn )ランジ
スタ409から成る各素子領域の周囲を取り囲むn−型
エピタキシャル層403中に、半導体チップの表面から
P−型シリコン基板401に到達する。基板401と同
一導電型の不純物を高濃度に導入し7たP゛型素子領域
分MN410が形成されている。
It reaches the P-type silicon substrate 401 from the surface of the semiconductor chip into an n-type epitaxial layer 403 surrounding each device region consisting of an npn) transistor region 408 and an npn) transistor region 409. A P' type element region MN410 is formed by doping impurities of the same conductivity type as the substrate 401 at a high concentration.

npnトランジスタ領域408およびnpnトランジス
タ409から成る各素子領域間の分離はP゛型素子領域
分#Jif410−p−型シリコン基板401−(n”
型埋込層402.n−型エピタキシャル層403)から
成るPN接合を逆バイアスすることにより行っている。
The separation between each element region consisting of the npn transistor region 408 and the npn transistor 409 is as follows:
Mold embedding layer 402. This is done by reverse biasing the PN junction made of the n-type epitaxial layer 403).

そして、P゛型素子領域分離N410上に設けたアルミ
ニウムから成る基板電位供給電極413に負電位を印加
することにより、p゛型累子領域分離層410−p−型
シリコン基板401−(n゛型埋込層402.n”型エ
ピタキシャル層4゜3)から成るPN接合を逆バイアス
して、npnトランジスタ領域408およびnpn )
ランジスタ409から成る各素子領域間を分離する。
Then, by applying a negative potential to the substrate potential supply electrode 413 made of aluminum provided on the P-type element region isolation layer 410-p-type silicon substrate 401-(n The PN junction consisting of the type buried layer 402 and the n" type epitaxial layer 4°3) is reverse biased to form the npn transistor region 408 and the npn transistor region 408 and the npn
Each element region made up of transistors 409 is isolated.

第4図に図示した。P゛型素子領域分離層410のイン
ピーダンスRtおよびp−型シリコン基板401のイン
ピーダンスR,を用いてnpn トランジスタのコレク
タまでの基板電位供給インピーダンスを簡易等価回路で
示すと、第1実施例と同様に、第2図のようになる。
It is illustrated in FIG. If the substrate potential supply impedance up to the collector of the NPN transistor is shown in a simplified equivalent circuit using the impedance Rt of the P-type element region isolation layer 410 and the impedance R of the P-type silicon substrate 401, it will be the same as in the first embodiment. , as shown in Figure 2.

p゛型素子領域分離層410のインピーダンスRLは低
いが、p−型シリコン基板401のインピーダンスR1
1は比較的高い。しかしながら3本実施例では、npn
トランジスタ領域408およびnpn トランジスタ4
09から成る各素子領域の周囲を取り囲むn”型エピタ
キシャル層403中に、半導体チップの表面からP−型
シリコン基板401に到達する1基板401と同一導電
型の不純物を高濃度に導入したP゛型素子領域分離層4
10が形成されているので、各素子領域408゜409
の周囲近傍まで基板電位を低インピーダンスで供給する
ことが可能となり、p−型シリコン基板401の高イン
ピーダンスRMはn9型埋込層402直下の部分のみと
なるから、総合的な蟇板電位供給インピーダンスは低い
The impedance RL of the p-type element region isolation layer 410 is low, but the impedance R1 of the p-type silicon substrate 401 is low.
1 is relatively high. However, in the three embodiments, npn
Transistor region 408 and npn transistor 4
An impurity having the same conductivity type as the substrate 401, which reaches the P-type silicon substrate 401 from the surface of the semiconductor chip, is introduced at a high concentration into the n'' type epitaxial layer 403 surrounding each element region consisting of P. type element region isolation layer 4
10 is formed, each element region 408°409
It is possible to supply the substrate potential with low impedance to the vicinity of the periphery of the p-type silicon substrate 401, and the high impedance RM of the p-type silicon substrate 401 is only in the part directly under the n9-type buried layer 402, so the overall torsion plate potential supply impedance is low.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体チップ表面からの基板電位供給
インピーダンスを著しく低下させることができるので、
各素子の基板に対する寄生容量を通しての交流的結合を
減少させることが可能となる。この結果2周波数の高い
微小信号を増幅する場合等においても、集積回路の不要
な発振や、特性に対する悪影響を無くすことができる。
According to the present invention, it is possible to significantly reduce the substrate potential supply impedance from the semiconductor chip surface.
It becomes possible to reduce AC coupling through parasitic capacitance of each element to the substrate. As a result, even when amplifying small signals with two high frequencies, unnecessary oscillations of the integrated circuit and adverse effects on the characteristics can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1実施例を示す図。 第2図は本発明の簡易等価回路を示す図。 第3図は第2実施例を示す図。 第4図は第3実施例を示す図。 第5図は従来例を示す図。 第6図は従来例の簡易等価回路を示す図である。 第1図において 101:p−型シリコン基板 102:n”型埋込層 103:n−型エピタキシャル層 104 :SiO,膜 105:ポリシリコン 106:P型ベース層 107:n”型エミツタ層 108:npnトランジスタ 109:npn)ランジスタ 110:p型拡散抵抗 111:拡散抵抗領域 112:P”型素子領域分離層 113:SiO□膜 114ニアルミニウム電極 115:基板電位供給電極 第3図において 301:P−型シリコン基板 302:n”型埋込層 303:n−型エピタキシャル層 304:SiO□膜 305:ポリシリコン 306:p型ベース層 307:n”型エミツタ層 308:npnトランジスタ 309 : npn )ランジメタ 310:p型拡散抵抗 311:拡散抵抗領域 312 : p”型素子領域分離層 313:SiO□膜 314ニアルミニウム電極 315:基板電位供給電極 第4図において 401:p−型シリコン基板 402:n”型埋込層 403:n−型エピタキシャル層 404 :5iOz膜 405:ポリシリコン 406:p型ベース層 407:n’型エミッタ層 408:npnトランジスタ領域 : npn )ランジスタ :p゛型素子領域分離層 : 5i(h膜 ニアルミニウム電極 二基板電位供給電極 FIG. 1 is a diagram showing a first embodiment. FIG. 2 is a diagram showing a simplified equivalent circuit of the present invention. FIG. 3 is a diagram showing a second embodiment. FIG. 4 is a diagram showing a third embodiment. FIG. 5 is a diagram showing a conventional example. FIG. 6 is a diagram showing a simple equivalent circuit of a conventional example. In Figure 1 101:p-type silicon substrate 102: n” type buried layer 103: n-type epitaxial layer 104: SiO, film 105: Polysilicon 106: P type base layer 107: n” type emitter layer 108: npn transistor 109: npn) transistor 110: p-type diffused resistance 111: Diffusion resistance region 112: P” type element region isolation layer 113: SiO□ film 114 aluminum electrode 115: Substrate potential supply electrode In Figure 3 301: P-type silicon substrate 302: n” type buried layer 303: n-type epitaxial layer 304: SiO□ film 305: Polysilicon 306: p-type base layer 307: n” type emitter layer 308: npn transistor 309: npn) Langimeta 310: p-type diffused resistance 311: Diffused resistance region 312: p” type element region isolation layer 313: SiO□ film 314 aluminum electrode 315: Substrate potential supply electrode In Figure 4 401: p-type silicon substrate 402: n” type buried layer 403: n-type epitaxial layer 404: 5iOz film 405: Polysilicon 406: p-type base layer 407: n' type emitter layer 408: npn transistor area :npn) transistor :p type element region isolation layer : 5i (h membrane aluminum electrode Two-substrate potential supply electrode

Claims (4)

【特許請求の範囲】[Claims] (1)集積回路を構成する素子の側壁分離に絶縁体を用
い、各素子領域と基板との間をPN接合により分離した
半導体集積回路装置において、各素子領域の周囲を取り
囲み、半導体チップの表面から基板に到達する、基板と
同一導電型の不純物を高濃度に導入した素子領域分離層
を設け、該素子領域分離層に、基板電位を供給する電極
を少なくとも1個形成した ことを特徴とする半導体集積回路装置。
(1) In a semiconductor integrated circuit device in which an insulator is used to separate the side walls of the elements constituting the integrated circuit, and each element region and the substrate are separated by a PN junction, the periphery of each element region is surrounded and the surface of the semiconductor chip is The device is characterized by providing an element region isolation layer into which impurities of the same conductivity type as the substrate are introduced at a high concentration and reaching the substrate, and at least one electrode for supplying a substrate potential is formed in the element region isolation layer. Semiconductor integrated circuit device.
(2)集積回路を構成する素子の側壁分離を素子の周囲
に形成されたU溝中に絶縁体を埋め込んで行い、各素子
領域と基板との間をPN接合により分離した半導体集積
回路装置において、 各素子領域の周囲を取り囲み、半導体チップの表面から
基板に到達する、基板と同一導電型の不純物を高濃度に
導入した素子領域分離層を設け、該素子領域分離層に、
基板電位を供給する電極を少なくとも1個形成した ことを特徴とする半導体集積回路装置。
(2) In a semiconductor integrated circuit device in which sidewall isolation of the elements constituting the integrated circuit is performed by burying an insulator in a U-groove formed around the element, and each element region and the substrate are separated by a PN junction. , an element region isolation layer is provided that surrounds each element region and is doped with impurities of the same conductivity type as the substrate at a high concentration that reaches the substrate from the surface of the semiconductor chip, and in the element region isolation layer,
A semiconductor integrated circuit device comprising at least one electrode for supplying a substrate potential.
(3)集積回路を構成する素子の側壁分離を素子の周囲
に形成されたU溝中に絶縁体を埋め込んで行い、各素子
領域と基板との間をPN接合により分離した半導体集積
回路装置において、 基板上に成長させた基板と反対導電型のエピタキシャル
層中に、各素子領域の周囲を取り囲み、半導体チップの
表面から基板に到達する、基板と同一導電型の不純物を
高濃度に導入した素子領域分離層を設け、 該素子領域分離層に、基板電位を供給する電極を少なく
とも1個形成した ことを特徴とする半導体集積回路装置。
(3) In a semiconductor integrated circuit device in which sidewall isolation of the elements constituting the integrated circuit is performed by burying an insulator in a U-groove formed around the element, and each element region and the substrate are separated by a PN junction. , an element in which impurities of the same conductivity type as the substrate are introduced at a high concentration into an epitaxial layer grown on the substrate and of the opposite conductivity type to the substrate, surrounding each element region and reaching the substrate from the surface of the semiconductor chip. A semiconductor integrated circuit device, comprising: a region isolation layer; and at least one electrode for supplying a substrate potential formed on the element region isolation layer.
(4)集積回路を構成する素子の側壁分離を素子の周囲
に形成されたV溝中に絶縁体を埋め込んで行い、各素子
領域と基板との間をPN接合により分離した半導体集積
回路装置において、 基板上に成長させた基板と反対導電型のエピタキシャル
層中に、各素子領域の周囲を取り囲み、半導体チップの
表面から基板に到達する、基板と同一導電型の不純物を
高濃度に導入した素子領域分離層を設け、 該素子領域分離層に、基板電位を供給する電極を少なく
とも1個形成した ことを特徴とする半導体集積回路装置。
(4) In a semiconductor integrated circuit device in which sidewall isolation of the elements constituting the integrated circuit is performed by burying an insulator in a V-groove formed around the element, and each element region and the substrate are separated by a PN junction. , an element in which impurities of the same conductivity type as the substrate are introduced at a high concentration into an epitaxial layer grown on the substrate and of the opposite conductivity type to the substrate, surrounding each element region and reaching the substrate from the surface of the semiconductor chip. A semiconductor integrated circuit device, comprising: a region isolation layer; and at least one electrode for supplying a substrate potential formed on the element region isolation layer.
JP14803290A 1990-06-06 1990-06-06 Semiconductor integrated circuit device Pending JPH0442959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14803290A JPH0442959A (en) 1990-06-06 1990-06-06 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14803290A JPH0442959A (en) 1990-06-06 1990-06-06 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0442959A true JPH0442959A (en) 1992-02-13

Family

ID=15443593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14803290A Pending JPH0442959A (en) 1990-06-06 1990-06-06 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0442959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768555A1 (en) * 1997-09-12 1999-03-19 Commissariat Energie Atomique Microelectronics circuit structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2768555A1 (en) * 1997-09-12 1999-03-19 Commissariat Energie Atomique Microelectronics circuit structure
WO1999014803A1 (en) * 1997-09-12 1999-03-25 Commissariat A L'energie Atomique Microelectronics structure comprising a low voltage part provided with protection against a high voltage part and method for obtaining said protection
US6541839B1 (en) 1997-09-12 2003-04-01 Commissariat A L'energie Atomique Microelectronics structure comprising a low voltage part provided with protection against a high voltage part and method for obtaining said protection

Similar Documents

Publication Publication Date Title
US6838348B2 (en) Integrated process for high voltage and high performance silicon-on-insulator bipolar devices
US5323055A (en) Semiconductor device with buried conductor and interconnection layer
JP2998662B2 (en) Semiconductor device
US3532945A (en) Semiconductor devices having a low capacitance junction
EP0462270B1 (en) Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
US5095351A (en) Semiconductor device having bipolar transistor and method of producing the same
US2792540A (en) Junction transistor
US4266233A (en) I-C Wafer incorporating junction-type field-effect transistor
US3969747A (en) Complementary bipolar transistors with IIL type common base drivers
US11769806B2 (en) Bipolar junction transistors including wrap-around emitter and collector contacts
US4443808A (en) Semiconductor device
JPH0442959A (en) Semiconductor integrated circuit device
JPS6133261B2 (en)
JP3438359B2 (en) Semiconductor device
JPS63292673A (en) Lateral bipolar transistor
JPS59169177A (en) Semiconductor device
JP2501556B2 (en) Optical sensor and manufacturing method thereof
JPH10135235A (en) Manufacturing method of semiconductor device
JPS60153165A (en) Semiconductor ic
JPS60249363A (en) Semiconductor ic device
JPH05109742A (en) Semiconductor device
JPH11330083A (en) Lateral bipolar transistor
JPS6348189B2 (en)
JPH0250484A (en) Integrated circuit consisting of varicap diode structure
JPH0558256B2 (en)