JPH0442820A - Production of quartz-based preform - Google Patents

Production of quartz-based preform

Info

Publication number
JPH0442820A
JPH0442820A JP15111390A JP15111390A JPH0442820A JP H0442820 A JPH0442820 A JP H0442820A JP 15111390 A JP15111390 A JP 15111390A JP 15111390 A JP15111390 A JP 15111390A JP H0442820 A JPH0442820 A JP H0442820A
Authority
JP
Japan
Prior art keywords
base material
core tube
quartz
furnace core
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15111390A
Other languages
Japanese (ja)
Inventor
Tsugio Sato
継男 佐藤
Hirotaka Hayashi
林 宏高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15111390A priority Critical patent/JPH0442820A/en
Publication of JPH0442820A publication Critical patent/JPH0442820A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain a quartz-based preform enhanced in yield of an article with good quality by reacting a dope raw material gas for increasing refraction index with water content or oxygen contained in a porous preform to hydrolyze or oxidize the raw material gas. CONSTITUTION:In a furnace core tube 12 of electric furnace 11, reaction of GeCl4 with H2O and O2 is carried out to produce GeO2 and the GeO2 is diffused into a porous preform 15. Then the porous preform 15 is raised to an initial position of the furnace core tube 12 and GeCl4 remaining in the furnace core tube 12 is excluded out of the furnace core tube 12. Then the inside of furnace core tube 12 of the electric furnace 11 is heated to temperature (e.g. 1350 deg.C) for changing to transparent glass by a heater 13 and then He and O2 are fed from a gas feed system 14 into the furnace core tube 12. Further, the porous preform 15 in the furnace core tube 12 is moved downward while rotating the preform 15 and changed to transparent glass successively from the lower end.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は屈折率高上用のドーパントを含んだ石英系母材
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION r Industrial Application Field 1 The present invention relates to a method for producing a quartz base material containing a dopant for increasing the refractive index.

r従来の技術j 周知の通り、通信用光ファイバ、イメージファイバ、ラ
イトガイドなどの各党ファイノベは、高屈折率のコアと
低屈折率のクラッドとを備えた石英系のものが主流とな
っている。
rConventional technologyj As is well known, the mainstream of optical fibers for communications, image fibers, light guides, etc. are quartz-based fibers that have a core with a high refractive index and a cladding with a low refractive index. .

通常、これら光ファイバの石英系母材は、ガラス微粒子
を生成してこれを所定の形状に堆積させる工程と、その
ガラス微粒子の堆積物を脱水ならびに透明ガラス化する
工程とで製造される。
Usually, the quartz-based base material of these optical fibers is manufactured by a process of generating fine glass particles and depositing them in a predetermined shape, and a process of dehydrating and converting the deposit of glass fine particles into transparent vitrification.

ちなみに、VAD法を主体にした石英系母材の製造方法
では、ガラス原料(気相)、ドープ原料(気相)の火炎
加水分解反応により生成した高屈折率のガラス微粒子を
軸方向に堆積成長させてコア用多孔質ガラスをつくり、
これと同期して、上記と同様に生成した低屈折率のガラ
ス微粒子をコア用多孔質ガラスの外周に堆積させてクラ
ッド用多孔質ガラスをつくり、その後、不活性ガス、酸
素、塩素などの各ガスを含む高温の加熱雰囲気内におい
て、これら多孔質ガラスを脱水ならびに透明ガラス化し
ている。
By the way, in the manufacturing method of the quartz-based base material mainly based on the VAD method, glass fine particles with a high refractive index generated by a flame hydrolysis reaction of a glass raw material (gas phase) and a dope raw material (gas phase) are deposited and grown in the axial direction. to make porous glass for the core,
At the same time, glass microparticles with a low refractive index produced in the same manner as above were deposited on the outer periphery of the porous glass for the core to create a porous glass for the cladding. These porous glasses are dehydrated and made into transparent glass in a high-temperature heated atmosphere containing gas.

r発明が解決しようとする課題j 上述した石英系母材うち、イメージファイバ用のものは
、受光効率の点から、開口数(NA)の大きいステップ
インデックス(Sl)型が採用される。
r Problems to be Solved by the Invention j Among the above-mentioned quartz-based base materials, those for image fibers are of the step index (Sl) type with a large numerical aperture (NA) from the viewpoint of light receiving efficiency.

この場合のコア用ガラスは、第2図(A)のごとき明確
なSI型の屈折率分布であるのがよく、第2図(B)に
示す屈折率分布のものはよくない。
In this case, the glass for the core preferably has a clear SI type refractive index distribution as shown in FIG. 2(A), and it is not good to have a refractive index distribution as shown in FIG. 2(B).

すなわち、多数本の石英系母材を集合して加熱延伸し、
つぎに、こうして得られたプリフォームロッドを多数本
集合して再度加熱延伸し、以下、これらの操作を繰り返
して、画素数二数千〜1万以上のイメージファイバを作
製するとき、出発母材たる石英系母材の屈折率が第2図
(A)のごとき分布であると、第3図(A)のように、
各画素の実効コア径が小径化せず、十分な画像分解能を
確保することができるが、第2図(B)のごとき屈折率
分布の石英系母材を用いた場合は、第3図(B)のよう
に、各画素の実効コア径が長さ20mにおいて70駕と
小さくなり、画像分解能が低下する。
That is, a large number of quartz base materials are gathered together and heated and stretched.
Next, a large number of preform rods obtained in this way are assembled and heated and stretched again, and these operations are repeated to produce an image fiber with a pixel count of 2,000 to 10,000 or more. If the refractive index of the barrel quartz base material has a distribution as shown in Figure 2 (A), then as shown in Figure 3 (A),
Although the effective core diameter of each pixel does not become small and sufficient image resolution can be secured, if a quartz base material with a refractive index distribution as shown in Fig. 2 (B) is used, the effective core diameter as shown in Fig. 3 ( As shown in B), the effective core diameter of each pixel becomes as small as 70 holes at a length of 20 m, and the image resolution decreases.

これに対処すべく、たとえば、石英系母材のクラッド用
ガラスを薄くし、このような母材を用いてイメージファ
イバを作製した場合、画素のコアからクラッドへ伝送光
が漏れる、いわゆる、クロストークが大きくなり、伝送
画像のコントラストが低下する。
In order to deal with this, for example, if the glass for the cladding is made thinner with a quartz-based base material and an image fiber is manufactured using such a base material, the transmitted light leaks from the pixel core to the cladding, which is called crosstalk. increases, and the contrast of the transmitted image decreases.

このような観点から、石英系母材の製造方法を検討した
場合、ガラス微粒子の生成手段として酸水素炎バーナを
用いる従来技術には、以下に述べる技術的課題がある。
When considering a method for manufacturing a quartz-based base material from such a viewpoint, the conventional technology that uses an oxyhydrogen flame burner as a means for producing glass particles has the following technical problems.

その一つは、酸水素炎中のドーパントが濃度分布を有す
るので、完全なSI型屈折率分布[第2図(A月を形成
するのが困難となり、望ましくない屈折率分布[第2図
(8月になることである。したがって、画像分解能の高
いイメージファイバが得られない。
One of them is that the dopant in the oxyhydrogen flame has a concentration distribution, which makes it difficult to form a complete SI type refractive index distribution [Fig. It will be August. Therefore, an image fiber with high image resolution cannot be obtained.

他の一つは、酸水素炎バーナに関して、バーナの位置、
燃料ガス(H2)、助燃ガス(02)の流量比により、
多孔質母材の成形性、屈折率プロファイルなどが大きく
影響され、生産性が低下することである。#に、多孔質
母材の成形性については、これが嵩密度に依存するので
調整がむずかしい。
The other one, regarding oxyhydrogen flame burners, is the location of the burner;
Depending on the flow rate ratio of fuel gas (H2) and auxiliary combustion gas (02),
The moldability, refractive index profile, etc. of the porous base material are greatly affected, resulting in a decrease in productivity. #: The moldability of the porous base material is difficult to adjust because it depends on the bulk density.

さらに他の一つは、高NAを期すべくコア用ガラスのド
ーパント濃度(屈折率高上用)を高めた場合、軟化点、
線膨張係数など、多孔質母材の物理的性質が変化するの
で、多孔質母材の成形性がより悪くなり、母材割れが起
こりやすいことである。したがって、良質の多孔質母材
を得る際の歩留りが低下する。
Another problem is that when the dopant concentration (for increasing the refractive index) of the core glass is increased in order to achieve a high NA, the softening point
Since the physical properties of the porous base material, such as the coefficient of linear expansion, change, the formability of the porous base material becomes worse and the base material is more likely to crack. Therefore, the yield in obtaining a good quality porous base material decreases.

本発明はこのような技術的課題に鑑み、適正な屈折率分
布、高NA、高度の生産性などを満足させて良品の歩留
りを高めることのできる石英系母材の製造方法を提供し
ようとするものである。
In view of these technical issues, the present invention seeks to provide a method for manufacturing a quartz-based base material that satisfies appropriate refractive index distribution, high NA, high productivity, etc., and can increase the yield of non-defective products. It is something.

1課題を解決するための手段J 本発明に係る石英系母材の製造方法は、所期の目的を達
成するため、たとえば、Ge(lla 、 TiCl4
、AICbのごとき屈折率高上用のドープ原料ガスと不
活性ガスとを含む透明ガラス化温度未満の加熱雰囲気内
において、S i02のみからなる未脱水の多孔質母材
中に前記屈折率高上用のドープ原料ガスを拡散させ、当
該ドープ原料ガスを多孔質母材中に含まれている水分お
よび/または酸素と反応させて、加水分解または酸化さ
せることを特徴とする。
1 Means for Solving the Problem J In order to achieve the intended purpose, the method for producing a quartz-based base material according to the present invention includes, for example, Ge(lla, TiCl4).
In a heated atmosphere below the transparent vitrification temperature containing a dope material gas for increasing the refractive index such as AICb and an inert gas, the above-mentioned refractive index increasing material is added to an undehydrated porous base material consisting only of Si02. It is characterized by diffusing the dope raw material gas for use in the porous base material, and reacting the dope raw material gas with moisture and/or oxygen contained in the porous base material to cause hydrolysis or oxidation.

「作用1 本発明方法の場合、S i02からなる未脱水の多孔質
母材を用いる。
Effect 1 In the method of the present invention, a non-dehydrated porous matrix made of Si02 is used.

この多孔質母材は、自明の通り、SiO7単体からなり
、水分、酸素を含んでいるほか、表面積が大きく、吸湿
性も有する。
As is obvious, this porous base material is made of SiO7 alone, contains moisture and oxygen, has a large surface area, and has hygroscopic properties.

このSiO2多孔質母材は、これの作製に際して、屈折
率プロファイルの調整を一切要しないので成形が容易で
あり、しかも、多孔質母材の物理的性質(軟化点、線膨
張係数)が変化しないから、母材割れの虞れがなく、生
産性もきわめて高い。
This SiO2 porous base material does not require any adjustment of the refractive index profile when producing it, so it is easy to mold, and the physical properties (softening point, coefficient of linear expansion) of the porous base material do not change. Therefore, there is no risk of base material cracking, and productivity is extremely high.

本発明方法の場合、屈折率高上用のトープ原料ガスと不
活性ガスとを含む透明ガラス化温度未満(500〜80
0℃)の加熱雰囲気内において、上記未脱水のSiO2
多孔質母材を処理する。
In the case of the method of the present invention, the transparent vitrification temperature (500 to 800
0°C) in a heated atmosphere, the undehydrated SiO2
Treat porous matrix.

すなわち、低温の上記雰囲気内において、未脱水のS 
i02多孔質母材中に屈折率高上用のドープ原料ガスを
拡散させるとともに、当該ドープ原料ガスを多孔質母材
中に含まれている水分、酸素などと反応させて加水分解
または酸化させる。
That is, in the above-mentioned atmosphere at low temperature, undehydrated S
i02 A dope raw material gas for increasing the refractive index is diffused into the porous base material, and the dope raw material gas is reacted with moisture, oxygen, etc. contained in the porous base material to be hydrolyzed or oxidized.

この際のドーパントは、屈折率高上用であればいずれで
もよく、これらの例としてGe、 AI、丁1などをあ
げることができる。
In this case, any dopant may be used as long as it increases the refractive index, and examples thereof include Ge, AI, and D1.

不活性ガスとしては、周知のAr、 He、 N2など
が任意に採用される。
As the inert gas, well-known Ar, He, N2, etc. are arbitrarily employed.

その−例として、屈折率高上用のドープ原料ガスをGe
Cl4 とし、これのキャリアガスとしてArを使用す
る。そして、SiO2多孔質母材がN20.02を十分
に含んでいるとき、低温の上記雰囲気内ではつぎの(1
)式の反応が生じて、SiO2多孔質母材中にGeO2
が生成される・ GeCl4+H20(0)−+GeO2+HC1+(C
12)””(1)この際のGeO2は、還元性あるいは
不活性ガス雰囲気内において、つぎの(2)式の反応に
よりGeOを生成する。
As an example, Ge
Cl4 and Ar is used as the carrier gas. When the SiO2 porous base material contains a sufficient amount of N20.02, the following (1
) reaction occurs, and GeO2 is formed in the SiO2 porous matrix.
is generated・GeCl4+H20(0)−+GeO2+HC1+(C
12)""(1) At this time, GeO2 is generated by the reaction of the following equation (2) in a reducing or inert gas atmosphere.

2Ge02→2GeO+0””(2) このGeOは蒸気圧が高く、透明ガラス化温度のような
高温域ではこれが揮散するので、SiO2多孔質母材中
にドープされがたいが、本発明方法での上記低温域では
GeOの揮散が殆ど生じない。
2Ge02 → 2GeO+0"" (2) This GeO has a high vapor pressure and evaporates in a high temperature range such as the transparent vitrification temperature, so it is difficult to dope into the SiO2 porous base material. At low temperatures, GeO hardly evaporates.

したがって、本発明方法の場合、SiO2多孔質母材中
にGeO2を十分にドープすることができる。
Therefore, in the case of the method of the present invention, GeO2 can be sufficiently doped into the SiO2 porous matrix.

かくて、GeO2がドープされたSiO2多孔質母材、
すなわち、SiO2−Ge02系の多孔質母材は、酸素
と不活性ガスとを含む透明ガラス化温度(1150〜1
350℃)の加熱雰囲気内において透明ガラス化される
が、この酸化性雰囲気内でのGeO2は、揮散すること
なく安定している。
Thus, a SiO2 porous matrix doped with GeO2,
That is, the SiO2-Ge02-based porous base material has a transparent vitrification temperature (1150 to 1
GeO2 is made into transparent glass in a heated atmosphere (350° C.), but GeO2 remains stable in this oxidizing atmosphere without volatilizing.

それゆえ、透明ガラス化時における多孔質母材は、Si
O2微粒子がGeO2を取りこみつつ溶融されてSiO
2  GeO2系のガラスとなり、所定分子のネットワ
ークを形成する。
Therefore, the porous base material during transparent vitrification is Si
O2 fine particles are melted while taking in GeO2 to form SiO
2 It becomes a GeO2-based glass and forms a network of predetermined molecules.

「実 施 例」 第1図は本発明方法の実施に用いられる電気炉を示した
ものである。
``Example'' FIG. 1 shows an electric furnace used to carry out the method of the present invention.

第1図において、電気炉11は、石英製の炉心管12と
炉心管12の外周に備えられたリング状のヒータ13.
とならなり、炉心管12の下部には、ガス供給系14が
接続されている。
In FIG. 1, an electric furnace 11 includes a core tube 12 made of quartz and a ring-shaped heater 13 provided around the outer circumference of the core tube 12.
A gas supply system 14 is connected to the lower part of the reactor core tube 12.

第1図において、多孔質母材15は、 SiO2(純シ
リカ)のみからなり、これは公知ないし周知の手段で作
製されたものである。
In FIG. 1, the porous base material 15 is made only of SiO2 (pure silica), and is produced by known or well-known means.

その−例として、多孔質母材15はVAD法により作製
され、その他側として、多孔質母材15は特願昭62−
21111153(特開昭64−56331号公報)の
泥漿鋳込成形法により作製される。
As an example, the porous base material 15 is manufactured by the VAD method, and on the other side, the porous base material 15 is manufactured by the patent application No.
It is manufactured by the slurry casting method of No. 21111153 (Japanese Unexamined Patent Publication No. 64-56331).

以下、第1図の電気炉11を用いた本発明方法の具体例
について詳述する。
Hereinafter, a specific example of the method of the present invention using the electric furnace 11 shown in FIG. 1 will be described in detail.

[具体例1] S i02多孔質母材15として、VAD法(ガラス原
料ガス:5iGla、キャリアガス:Ar)により作製
した外径70mraφのものを用いた。
[Specific Example 1] As the Si02 porous base material 15, one having an outer diameter of 70 mraφ and manufactured by a VAD method (frit gas: 5iGla, carrier gas: Ar) was used.

電気炉11の場合は、炉心管12内の中心部をヒータ1
3により透明ガラス化温度未満の温度(例:800℃)
に保持し、炉心管12内の上部(100℃以下)に多孔
質母材15をセットする。
In the case of the electric furnace 11, the center of the furnace tube 12 is connected to the heater 1.
3, the temperature is below the transparent vitrification temperature (e.g. 800°C)
The porous base material 15 is set in the upper part of the furnace core tube 12 (below 100° C.).

このようして準備を終えた後、Arによりバブリングし
たGeCl4を2立/層inの供給量でガス供給系14
から炉心管12内に供給し、かつ、炉心管12内の多孔
質母材15を回転させつつ150mm/winの速度で
下降させる。
After completing the preparation in this way, GeCl4 bubbled with Ar is supplied to the gas supply system 14 at a supply rate of 2 m/layer.
The porous base material 15 inside the furnace core tube 12 is rotated and lowered at a speed of 150 mm/win.

かかる電気炉11の炉心管12内では、前記(1)式に
よる反応が生じてGeO2が生成され、このGeO2が
S i02多孔質母材15中に拡散する。
In the furnace core tube 12 of the electric furnace 11, a reaction according to the above equation (1) occurs to generate GeO2, and this GeO2 diffuses into the SiO2 porous base material 15.

その後、多孔質母材15を炉心管12内の初期位置まで
上昇させ、かつ、ガス供給系14から炉心管12内にA
r、 N2のごとき不活性ガスを供給して、炉心管12
内に残存しているGeC1aを炉心管12外へ排除する
Thereafter, the porous base material 15 is raised to the initial position within the furnace tube 12, and A
r, an inert gas such as N2 is supplied to the reactor core tube 12.
GeC1a remaining inside the reactor core tube 12 is removed to the outside.

つぎに、電気炉11の炉心管12内をヒータ13により
透明ガラス化温度(例: 1350℃)に昇温させた後
、ガス供給系14から炉心管12内に0.2文/win
のHeと 1文/組nの02とを供給し、かつ、炉心管
12内の多孔質母材15を回転させつつ250mm/w
inの速度で再度下降させて、当該多孔質母材15をそ
の下端より順次透明ガラス化する。
Next, after heating the inside of the furnace core tube 12 of the electric furnace 11 to a transparent vitrification temperature (e.g. 1350° C.) using the heater 13, 0.2 sentences/win is supplied into the furnace core tube 12 from the gas supply system 14.
of He and 02 of 1 sentence/set n, and while rotating the porous base material 15 in the furnace tube 12, the heating rate was 250 mm/w.
The porous base material 15 is lowered again at a speed of 1.5 in to transparently vitrify the porous base material 15 sequentially from its lower end.

かくて得られた透明ガラス母材は、5iO2微粒子がG
eO2を取りこみつつ溶融された5iO2−Ge02系
のものである。
The thus obtained transparent glass base material has 5iO2 fine particles of G
It is a 5iO2-Ge02 system that is melted while incorporating eO2.

この透明ガラス母材の外径は30mmφであり、これに
は気泡、クラックなどがみられない。
The outer diameter of this transparent glass base material was 30 mmφ, and no bubbles, cracks, etc. were observed therein.

上記透明ガラス母材の外径を加熱延伸手段によリ18量
mφに引き落した後、その母材外周に公知ないし周知の
OVD法を介して外径27■lφのクラッド用ガラスを
形成し、イメージファイバ用母材とした。
After the outer diameter of the transparent glass base material was reduced to 18 mφ by heating and stretching means, a cladding glass having an outer diameter of 27 lφ was formed on the outer periphery of the base material by a known or well-known OVD method. , used as a base material for image fiber.

この際のクラッド用ガラスは、フッ素(F)とホウ素(
B)とを含んだドープト石英からなる。
In this case, the cladding glass contains fluorine (F) and boron (
It is made of doped quartz containing B).

かかるイメージファイバ用母材のコア用ガラス(ゲルマ
ニウムドープト石英)につき、その屈折率分布を測定し
たところ、第2図(A)のごとき明確なSI型を呈し、
石英に対する比屈折率が2zであった。
When the refractive index distribution of the core glass (germanium-doped quartz) of the image fiber base material was measured, it exhibited a clear SI type as shown in FIG. 2(A).
The relative refractive index with respect to quartz was 2z.

これは、フッ素、ホウ素ドープト石英からなるクラッド
用ガラスの比屈折率が、石英に対し1%であるので、コ
ア用ガラス/クラッド用ガラスの比屈折率差は3zにな
る。
This is because the relative refractive index of the cladding glass made of fluorine- and boron-doped quartz is 1% relative to quartz, so the relative refractive index difference between the core glass and the cladding glass is 3z.

上記イメージファイバ用母材を用い、公知ないし周知の
手段で画素数: 10000のイメージファイバを作製
したところ、第3図(A)のごとき屈折率分布をもつイ
メージファイバが得られた。
When an image fiber having a pixel count of 10,000 was produced using the above-mentioned image fiber base material by known or well-known means, an image fiber having a refractive index distribution as shown in FIG. 3(A) was obtained.

このイメージファイバは、長さ20m以上における各画
素の実効コア径が1002であり、クロストークもなく
、鮮明な画像が得られた。
This image fiber had an effective core diameter of 1002 for each pixel over a length of 20 m or more, and a clear image was obtained without crosstalk.

[具体例2] SiO2多孔質母材15として、特願昭82−2119
53(特開昭84−58331号公報)の泥漿鋳込成形
法により作製したものを用いた。
[Specific Example 2] As SiO2 porous base material 15, Japanese Patent Application No. 82-2119
53 (Japanese Unexamined Patent Publication No. 84-58331) manufactured by the slurry casting method was used.

この際の泥漿鋳込成形法は、上記公知技術に準じて以下
のように実施した。
The slurry casting method at this time was carried out as follows according to the above-mentioned known technique.

はじめ、SiO2粉末を800℃、1時間で予備焼結し
、かつ、これを粉砕して粒径分布をそろえ、つぎに、粒
径のそろった400gのSiO2粉末にBOO+IfL
の純水を加えてS i02粉末の分散液をつくり、しか
る後、吸水性を有する内径40+u+φ、外径18抛m
φ、長さ300mmの成形型内に上記分散液を入れて泥
漿鋳込みする。
First, SiO2 powder was pre-sintered at 800℃ for 1 hour, and this was crushed to make the particle size distribution uniform. Next, 400g of SiO2 powder with uniform particle size was mixed with BOO+IfL.
A dispersion of Si02 powder is prepared by adding pure water of
The dispersion was poured into a mold having a diameter of 300 mm and slurry casting.

この状態で時間の経過を待つと、上記分散液中の水分が
吸水性の成形型により大部分脱水されるので、この時点
で成形型内の成形体すなわち多孔質母材を取り出し、そ
の後、当該多孔質母材を80℃に保持された乾燥器内に
入れ、含有水分が10〜20%になるまで、これを乾燥
する。
If you wait for time to pass in this state, most of the water in the dispersion liquid will be dehydrated by the water-absorbing mold. The porous base material is placed in a dryer maintained at 80° C. and dried until the moisture content becomes 10 to 20%.

以下は具体例1に準じ、多孔質母材への屈折率高上用ド
ーパントのドーピング、多孔質母材の透明ガラス化、透
明ガラス母材の加熱延伸、イメージファイバ母材の作製
(透明ガラス母材外周へのクラッド用ガラスの形成)、
イメージファイバの作製など、これら各工程を実施して
イメージファイバを作製するが、この具体例2において
、多孔質母材15に屈折率高上用ドーパントをドープす
るとき、600℃に保持された炉心管12内にTlC1
a を供給して、多孔質母材15中にTiO2を拡散さ
せる。
The following steps are carried out in accordance with Example 1: doping a porous base material with a dopant for increasing the refractive index, making the porous base material transparent, vitrifying the porous base material, heating and stretching the transparent glass base material, and producing an image fiber base material (transparent glass base material). (formation of cladding glass on the outer periphery of the material),
The image fiber is manufactured by carrying out each of these steps such as manufacturing the image fiber. In this specific example 2, when doping the porous base material 15 with the dopant for increasing the refractive index, the core maintained at 600°C TlC1 in tube 12
a to diffuse TiO2 into the porous base material 15.

具体例2におけるその他の技術的事項は、具体例1と実
質的に同じである。
Other technical matters in Example 2 are substantially the same as in Example 1.

具体例2でのイメージファイバ用母材は、コア用ガラス
の屈折率分布が第2図(A)のごとき明確なSI型を呈
し、このイメージファイバ用母材を用いて作製した画素
数: 10000のイメージファイバも、第3図(A)
のごとき屈折率分布を呈していたので、当該イメージフ
ァイバは、長さ20m以上における各画素の実効コア径
が10ozと良好で、クロストークもなく、画像が鮮明
であった。
In the image fiber base material in Example 2, the refractive index distribution of the core glass exhibits a clear SI type as shown in FIG. 2 (A), and the number of pixels produced using this image fiber base material: 10,000. The image fiber of Figure 3 (A)
Since the image fiber had a refractive index distribution as follows, the image fiber had a good effective core diameter of 10 oz for each pixel over a length of 20 m or more, had no crosstalk, and had a clear image.

「発明の効果1 以上説明した通り、本発明方法は、所定の温度に保持さ
れた所定の雰囲気内において、未脱水のS i02多孔
質母材中に屈折率高上用のドープ原料ガスを拡散させ、
当該ドープ原料ガスを多孔質母材中に含まれている水分
、酸素などと反応させて加水分解または酸化させるから
、多孔質母材の製造条件が緩和されるのはもちろん、多
孔質母材へのドーピングにおいて、明確なSI型、高N
A化をはかるための高濃度ドーピングが適切かつ効率よ
く行なえ、さらに、母材の透明ガラス化時、ドーパント
が揮散することもない。
“Effect of the Invention 1 As explained above, the method of the present invention diffuses a dope material gas for increasing the refractive index into an undehydrated Si02 porous base material in a predetermined atmosphere maintained at a predetermined temperature. let me,
Since the dope raw material gas is reacted with moisture, oxygen, etc. contained in the porous base material to be hydrolyzed or oxidized, the manufacturing conditions for the porous base material are eased, and the production conditions for the porous base material are eased. in the doping of the well-defined SI type, high N
High-concentration doping for achieving A conversion can be performed appropriately and efficiently, and furthermore, the dopant does not volatilize when the base material is made into transparent glass.

ゆえに、本発明方法によるとき、石英系母材の良品少留
りを高めることができ、ひいては1石英系母材のコスト
タウンをはかることができる。
Therefore, when using the method of the present invention, it is possible to increase the number of non-defective products of the quartz-based base material, and it is also possible to reduce the cost of the quartz-based base material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を略示した説明図、第2
図(A) (B)は石英系母材の屈折率分布図第3図(
A)(B)はイメージファイバの屈折率分布図である。 11・・・・電気炉 12・・・・炉心管 13・・・・ヒータ 14・・・・・・ガス供給系 15・・・・・・多孔質母材
FIG. 1 is an explanatory diagram schematically showing an embodiment of the method of the present invention, and FIG.
Figures (A) and (B) are the refractive index distribution diagrams of the quartz base material in Figure 3 (
A) and (B) are refractive index distribution diagrams of the image fiber. 11... Electric furnace 12... Furnace tube 13... Heater 14... Gas supply system 15... Porous base material

Claims (1)

【特許請求の範囲】[Claims] 屈折率高上用のドープ原料ガスと不活性ガスとを含む透
明ガラス化温度未満の加熱雰囲気内において、SiO_
2のみからなる未脱水の多孔質母材中に前記屈折率高上
用のドープ原料ガスを拡散させ、当該ドープ原料ガスを
多孔質母材中に含まれている水分および/または酸素と
反応させて、加水分解または酸化させることを特徴とす
る石英系母材の製造方法。
SiO_
Diffusion of the dope raw material gas for increasing the refractive index into an undehydrated porous base material consisting of only 2, and causing the dope raw material gas to react with moisture and/or oxygen contained in the porous base material. A method for producing a quartz-based base material, which comprises hydrolyzing or oxidizing the quartz base material.
JP15111390A 1990-06-08 1990-06-08 Production of quartz-based preform Pending JPH0442820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15111390A JPH0442820A (en) 1990-06-08 1990-06-08 Production of quartz-based preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15111390A JPH0442820A (en) 1990-06-08 1990-06-08 Production of quartz-based preform

Publications (1)

Publication Number Publication Date
JPH0442820A true JPH0442820A (en) 1992-02-13

Family

ID=15511642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15111390A Pending JPH0442820A (en) 1990-06-08 1990-06-08 Production of quartz-based preform

Country Status (1)

Country Link
JP (1) JPH0442820A (en)

Similar Documents

Publication Publication Date Title
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
JPH0196039A (en) Production of optical fiber preform
WO2019142878A1 (en) Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber
JPH0380740B2 (en)
JP4079204B2 (en) Quartz glass tube for optical fiber preform and manufacturing method thereof
JP2612871B2 (en) Method of manufacturing graded-in-desk type optical fiber preform
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
JPH0442820A (en) Production of quartz-based preform
JPS6131324A (en) Production of base material for optical fiber
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH0239458B2 (en)
JPH0463365B2 (en)
JP2965235B2 (en) Method for producing porous glass preform for optical fiber
JPH0791081B2 (en) Method for manufacturing glass base material for single mode fiber
JPH0551542B2 (en)
JP2831842B2 (en) Manufacturing method of optical fiber base material
JPS62191434A (en) Production of parent material for optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPS6140843A (en) Optical fiber
JPH0436101B2 (en)
JPS63285128A (en) Production of optical fiber preform
JPH0791082B2 (en) Method and apparatus for manufacturing optical fiber preform
JPS6243934B2 (en)
JPS60145927A (en) Production of base material for optical fiber