JPH0442809A - Heat-resistant fibrous alumina having high surface area and its production - Google Patents

Heat-resistant fibrous alumina having high surface area and its production

Info

Publication number
JPH0442809A
JPH0442809A JP2148593A JP14859390A JPH0442809A JP H0442809 A JPH0442809 A JP H0442809A JP 2148593 A JP2148593 A JP 2148593A JP 14859390 A JP14859390 A JP 14859390A JP H0442809 A JPH0442809 A JP H0442809A
Authority
JP
Japan
Prior art keywords
alumina
surface area
fibrous
heat
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2148593A
Other languages
Japanese (ja)
Other versions
JP2930665B2 (en
Inventor
Masayasu Sato
真康 佐藤
Shinji Matsuura
松浦 慎次
Shiyuuji Tateishi
立石 修士
Akishi Ueno
晃史 上野
Noriyoshi Tsunoda
角田 範義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP2148593A priority Critical patent/JP2930665B2/en
Publication of JPH0442809A publication Critical patent/JPH0442809A/en
Application granted granted Critical
Publication of JP2930665B2 publication Critical patent/JP2930665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain thermally stable alumina having high specific surface area by atomizing a solution of alumina sol comprising fibrous aluminum hydroxide and burning. CONSTITUTION:Alumina sol comprising fibrous aluminum hydroxide is prepared. The alumina sol is atomized, instantly dried with air and burnt to give the title alumina having >=30m<2>/g specific surface area after burning at <=1,200 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱的に安定なアルミナおよびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermally stable alumina and a method for producing the same.

[従来の技術] ガスタービンの高温ガス発生用や自動車排ガス処理用に
利用される触媒には耐熱性が要求されている。これらの
触媒は通常、アルミナやシリカなどの耐熱性酸化物を担
体または一体型構造体上に被覆し、これに白金(Pi 
) 、パラジウム(Pd ) 、 ロジウム(Rh )
等の触媒成分を分散しであるが、その分散性は担体の表
面積に依存する。
[Prior Art] Catalysts used for generating high-temperature gas in gas turbines and for treating automobile exhaust gas are required to have heat resistance. These catalysts are typically coated with a refractory oxide such as alumina or silica on a support or monolithic structure, which is then coated with platinum (Pi).
), palladium (Pd), rhodium (Rh)
However, the dispersibility depends on the surface area of the carrier.

アルミナやシリカなどの耐熱性酸化物といえども1,0
00℃を超える高温下では反応時間の経過とともに表面
積の減少が激しく、その結果触媒成分の分散性が低下し
て触媒活性が劣化してしまう。高温下におけるアルミナ
の表面積減少は、α−アルミナへの結晶化時にアルミナ
表面にある細孔が閉塞するためと考えられる。従って、
アルミナの耐熱性を改善すれば、このような高温下にお
けるアルミナの表面積減少をある程度防止できると考え
られる。そのための方法として、アルミナにアルカリ土
類や希土類金属を添加をしてその結晶化温度を上昇させ
、高温で安定なアルミナにさせることが特開昭54−1
17387号公報等に記載されている。
Even heat-resistant oxides such as alumina and silica are 1.0
At high temperatures exceeding 00°C, the surface area decreases rapidly with the passage of reaction time, resulting in a decrease in the dispersibility of catalyst components and deterioration of catalyst activity. The decrease in the surface area of alumina at high temperatures is thought to be due to the pores on the alumina surface being clogged during crystallization into α-alumina. Therefore,
It is believed that by improving the heat resistance of alumina, it is possible to prevent the surface area of alumina from decreasing to some extent under such high temperatures. As a method for this purpose, it was proposed in JP-A-54-1 to increase the crystallization temperature of alumina by adding alkaline earth metals or rare earth metals to make alumina stable at high temperatures.
It is described in Publication No. 17387 and the like.

また、添加したアルカリ土類金属酸化物とアルミナを反
応させ、より耐熱性の優れたアルカリ土類金属のアルミ
ネートを生成させる研究も行なわれている。
Research is also being conducted to react an added alkaline earth metal oxide with alumina to produce an alkaline earth metal aluminate with better heat resistance.

[発明が解決しようとする課題] しかし上記のような添加物を加える事なく、アルミナの
みでその耐熱性を改善する方法が要望されていた。
[Problems to be Solved by the Invention] However, there has been a demand for a method of improving the heat resistance of alumina using only alumina without adding any of the above additives.

[課題を解決するための手段] アルミナの表面積は、アルミナ粉末を構成する微粒子表
面積の総和と考えられる。従って、高表面積アルミナを
作成するためには、構成するアルミナ粒子を微細なもの
にすればよい。しかし、微細な粒子の集合体は、粒子間
の接触面積も大きく、高温下では粒子間の反応が生じ、
より大きな粒子へと成長し、結局は表面積の減少となる
。そこで、微細な粒子の集合体でありながらお互いの接
触面積が小さいアルミナ粒子を作製すれば、耐熱性の優
れたアルミナ粉末を調整することができると考えられ、
本発明が開発された。
[Means for Solving the Problems] The surface area of alumina is considered to be the total surface area of the fine particles constituting the alumina powder. Therefore, in order to create alumina with a high surface area, the constituent alumina particles may be made fine. However, in aggregates of fine particles, the contact area between particles is large, and reactions between particles occur at high temperatures.
Growth into larger particles results in a decrease in surface area. Therefore, it is thought that if alumina particles, which are aggregates of fine particles but have a small contact area with each other, are made, it will be possible to prepare alumina powder with excellent heat resistance.
The present invention has been developed.

すなわち、本発明は耐熱性高表面積繊維状アルミナおよ
びその製造方法を提供するものであって、本発明の耐熱
性高表面積繊維状アルミナは、繊維状水酸化アルミニウ
ムからアルミナゾルを作製し、このゾル溶液を霧化して
空気または酸素と共に瞬時に乾燥、焼成してなることを
特徴とする。
That is, the present invention provides a heat-resistant, high-surface-area fibrous alumina and a method for producing the same. It is characterized by being atomized and instantly dried and fired with air or oxygen.

そして、かかる繊維状アルミナは、1,200℃以下で
焼成後、少なくとも30m2/gの比表面積を有するも
のである。
The fibrous alumina has a specific surface area of at least 30 m2/g after being fired at 1,200°C or less.

なお、繊維状水酸化アルミニウムをゾル化したゾル溶液
をそのまま乾燥、焼成したものは繊維状アルミナ粒子の
集合体とはなるが、繊維間の接触面積が大きく、高温下
では粒子成長が進行するため好ましくない。また、以下
に述べる如く、1.300℃以上の高温では表面積の減
少が著しい。
Note that if a sol solution of fibrous aluminum hydroxide is dried and fired as it is, it becomes an aggregate of fibrous alumina particles, but the contact area between the fibers is large and particle growth progresses at high temperatures. Undesirable. Furthermore, as described below, at high temperatures of 1.300° C. or higher, the surface area decreases significantly.

[作用コ 本発明で製造される耐熱性高表面積繊維状アルミナは、
接触面積の小さいアルミナ粒子として、繊維状のアルミ
ナが3次元的に入り組んだ、空隙率の大きな粒子となる
ため、耐熱性の優れたアルミナ粉末の調整が可能となる
[Function] The heat-resistant high surface area fibrous alumina produced by the present invention is
As alumina particles with a small contact area, fibrous alumina becomes particles with a three-dimensionally intricate structure and a high porosity, making it possible to prepare alumina powder with excellent heat resistance.

[実施例コ 実施例1 20gのアルミニウムイソプロポキシド(A I F)
400mjllを熱水に溶解させ、これに1rrlの硝
酸を添加した溶液を、85℃で1時間攪拌したのち室温
まで冷却した(溶液A)。
[Example 1 20g of aluminum isopropoxide (AIF)
A solution in which 400 mJll was dissolved in hot water and 1 rrl of nitric acid was added thereto was stirred at 85° C. for 1 hour and then cooled to room temperature (solution A).

次に、この溶液Aに約100mNの水を加えてゾル化し
た後、これを第1図に示す噴霧燃焼装置の溶液溜め1の
溶液導入口9より溶液溜め1に入れ、超音波発生機2に
より発生させた165MHzの超音波により霧化し、空
気または酸素導入口10より流量計3を通して1541
/winの流速で溶液溜め1に導入した酸素とともに、
600℃に保たれた電気炉4中のガラス管7よりなる反
応管中に導入し、瞬時に乾燥、焼結し、略球状のアルミ
ナ粒子とし、て反応管後部に設置した水中捕集器8によ
り捕集した。これを110℃で乾燥した後、500℃で
5時間焼成して小繊維状のアルミナ粉末を得た。なお電
気炉4には温度調整のための熱電対5およびサーモスタ
ット6を設けた。
Next, approximately 100 mN of water is added to this solution A to make it a sol, and then this is poured into the solution reservoir 1 from the solution inlet 9 of the solution reservoir 1 of the spray combustion apparatus shown in FIG. 1, and the ultrasonic generator 2 It is atomized by 165MHz ultrasonic waves generated by the air or oxygen inlet 10 and passed through the flowmeter 3 at 1541
With oxygen introduced into the solution reservoir 1 at a flow rate of /win,
The alumina particles are introduced into a reaction tube consisting of a glass tube 7 in an electric furnace 4 maintained at 600° C., and are instantly dried and sintered to form approximately spherical alumina particles. It was collected by. After drying this at 110°C, it was fired at 500°C for 5 hours to obtain a small fibrous alumina powder. Note that the electric furnace 4 was provided with a thermocouple 5 and a thermostat 6 for temperature adjustment.

実施例2 実施例1の酸素の代わりに空気を使用した以外は実施例
1と同様に行ない、小繊維状のアルミナ粉末を得た。
Example 2 A small fibrous alumina powder was obtained in the same manner as in Example 1 except that air was used instead of oxygen in Example 1.

比較例1 20gのアルミニウムイソプロポキシド(A I P)
を400mgの熱水に溶解させ、これに1r+dlの硝
酸を添加した溶液を、85℃で1時間攪拌したのち室温
まで冷却した(溶液A)。
Comparative Example 1 20g aluminum isopropoxide (AIP)
A solution obtained by dissolving 400 mg of hot water and adding 1 r+dl of nitric acid was stirred at 85° C. for 1 hour and then cooled to room temperature (solution A).

次に、この溶液Aに約100mNの水を加えてゾル化し
た溶液を110℃で乾燥した後、500℃で5時間焼成
して小繊維状のアルミナ粉末を得た。
Next, about 100 mN of water was added to this solution A to form a sol, and the solution was dried at 110°C, and then calcined at 500°C for 5 hours to obtain fibrillar alumina powder.

溶液Aの一部をピペットで採取しマイクログリラド上で
乾燥して透過型電子顕微鏡で観察した。
A portion of solution A was collected with a pipette, dried on a Microgrilad, and observed under a transmission electron microscope.

その顕微鏡写真図を第2図に示す。この溶液は直径10
0A、長さ1.0OOAの小繊維状の水酸化アルミニウ
ムから構成されていることが判る。
A microscopic photograph thereof is shown in Fig. 2. This solution has a diameter of 10
It can be seen that it is composed of small fibrous aluminum hydroxide with a diameter of 0A and a length of 1.0OOA.

実施例1および比較例1で得られた小繊維状のアルミナ
粉末を1,400℃までの種々の温度で5時間、空気中
で焼成し、その比表面積測定結果を第3図に示す。本発
明の小繊維状のアルミナ粉末は、1,300℃以上の高
温では表面積の減少は著しいが、1,200℃での焼成
では約50m2/gの高表面積を有していることが判る
The fibrillar alumina powders obtained in Example 1 and Comparative Example 1 were calcined in air at various temperatures up to 1,400° C. for 5 hours, and the results of specific surface area measurements are shown in FIG. It can be seen that the fine fibrous alumina powder of the present invention has a high surface area of about 50 m2/g when fired at 1,200°C, although the surface area decreases significantly at high temperatures of 1,300°C or higher.

実施例1で得られた小繊維状のアルミナ粉末を乾燥後、
500℃、1,200℃および1.400℃の温度で5
時間焼成したアルミナ粉末を透過型電子顕微鏡で観察し
た電子顕微鏡写真図を第4図に示す。1,200℃以下
の焼成では、アルミナ粒子は小繊維状アルミナの集合体
として存在するが、1,400℃では繊維状アルミナの
存在が見られず、いくつかのアルミナ球が溶融して粒子
成長していることが判る。
After drying the small fibrous alumina powder obtained in Example 1,
5 at temperatures of 500°C, 1,200°C and 1.400°C
FIG. 4 shows an electron micrograph of the time-sintered alumina powder observed with a transmission electron microscope. When fired at temperatures below 1,200°C, alumina particles exist as aggregates of small fibrous alumina, but at 1,400°C, no fibrous alumina is observed, and some alumina spheres melt and particle growth occurs. I can see that you are doing it.

実施例1で得られた小繊維状のアルミナ粉末を、500
℃、1,100℃、1,200”C11,300℃およ
び1,400℃の温度で5時間焼成したアルミナ粉末の
X線回折スペクトル図を第5図に示す。1,200℃以
下の焼成では、α−アルミナの生成は確認されず、回折
ピークは全てクーアルミナ、θ−アルミナであった。
The fine fibrous alumina powder obtained in Example 1 was
Figure 5 shows the X-ray diffraction spectra of alumina powder fired for 5 hours at temperatures of 11,300°C and 1,400°C. The formation of α-alumina was not confirmed, and the diffraction peaks were all co-alumina and θ-alumina.

1.300℃以上の焼成でα−アルミナの生成は確認さ
れ、回折ピークは全てδ−アルミナ、θ−アルミナであ
った。1,400℃ではα−アルミナの単一相になった
1. Generation of α-alumina was confirmed by firing at 300°C or higher, and all diffraction peaks were δ-alumina and θ-alumina. At 1,400°C, it became a single phase of α-alumina.

1.300℃以上での焼成における表面積の減少は、α
−アルミナへの結晶化時に生じる溶融と、それに伴う粒
子成長に起因することが判る。
1. The decrease in surface area during firing at temperatures above 300°C is α
- It can be seen that this is caused by the melting that occurs during crystallization into alumina and the accompanying particle growth.

実施例1で得られた小繊維状のアルミナ粉末を1.20
0℃で25時間まで焼成し、アルミナ比表面積の経時変
化を測定し、結果を第6図に示す。
The fine fibrous alumina powder obtained in Example 1 was
After firing at 0° C. for up to 25 hours, the change in alumina specific surface area over time was measured, and the results are shown in FIG.

10時間焼成までの比表面積の減少割合はかなり大きい
が、15時間以上の焼成ではほとんど減少が見られず、
30m2/gの略一定の値になることが判る。
The rate of decrease in specific surface area is quite large up to 10 hours of firing, but almost no decrease is seen after firing for 15 hours or more.
It can be seen that the value is approximately constant at 30 m2/g.

[発明の効果コ 本発明は、アルミナにアルカリ土類や希土類金属を添加
しなくても1,200℃で焼成後の比表面積が30m2
/g以上を有する熱的に安定なアルミナであることが判
る。
[Effects of the invention] The present invention has a specific surface area of 30 m2 after firing at 1,200°C without adding alkaline earth or rare earth metal to alumina.
It can be seen that it is a thermally stable alumina having a weight of 1.5% or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の耐熱性高表面積繊維状アルミナを製
造するための噴霧燃焼装置の概要を示す説明図、 第2図は、実施例1および比較例1で用いたアルミナゾ
ルを透過型電子顕微鏡で観察した電子顕微鏡写真図、 第3図は、実施例1および比較例1で得られた小繊維状
のアルミナ粉末を1.400℃までの種々の温度で5時
間、空気中で焼成した時の、温度と比表面積の関係図、 第4図は、実施例1で得られた小繊維状のアルミナ粉末
を乾燥後、500℃、1,200℃、1.400℃の各
温度で5時間焼成したアルミナ粉末を透過型電子顕微鏡
で観察した電子顕微鏡写真図、 第5図は、実施例1で得られた小繊維状のアルミナ粉末
を500℃、1,100℃、1,200℃、1,300
℃、1,400℃の各温度で5時間焼成したアルミナ粉
末のX線回折スペクトル図、および 第6図は、実施例1で得られた小繊維状のアルミナ粉末
を1,200℃で25時間まで焼成し、アルミナ比表面
積の経時変化を測定した図である。 1・・・溶液溜め、2・・・超音波発生機、3・・・流
量計、4・・・電気炉、5・・・熱電対、6・・・サー
モスタット、7・・・ガラス管、8・・・補集器、9・
・・溶液導入口、10・・・空気または酸素導入口。 出願人代理人 弁理士 鈴江武彦 メ゛大し べ ;A  、L  (@C)第3 図 第6 図 手 続 補 正 書 (方式) %式% 事件の表示 特願平2 148593号 発明の名称 耐熱性高表面積繊維状アルミナ およびその製造方法 3、補正をする者 事件との関係  特許出願人 キャタラーエ業株式会社 7、補正の内容 (1)明細書箱7頁2行目「その顕微鏡写真図」を「溶
液Aの粒子構造を示すその顕微鏡写真図」と訂正する。 (2) 同 第7頁14行目〜15行目「アルミナ粉末
を」を「アルミナ粉末の粒子構造を」と訂正する。 (3) 同 第9頁11行目〜13行目「アルミナゾル
を透過型電子顕微鏡で観察した電子顕微鏡写真図」を「
溶液Aの粒子構造を示した電子顕微鏡写真図」と訂正す
る。 (4) 同 第10頁1行目〜2行目「粉末を透過型電
子顕微鏡で観察した電子顕微鏡写真図」を「粉末の粒子
構造を示した電子顕微鏡写真図」と訂正する。 補正の対象
FIG. 1 is an explanatory diagram showing the outline of a spray combustion apparatus for producing heat-resistant, high-surface-area fibrous alumina of the present invention. FIG. Figure 3 is an electron micrograph observed with a microscope. The fibrillar alumina powder obtained in Example 1 and Comparative Example 1 was calcined in air at various temperatures up to 1.400°C for 5 hours. Figure 4 shows the relationship between temperature and specific surface area at 500°C, 1,200°C, and 1.400°C after drying the small fibrous alumina powder obtained in Example 1. An electron micrograph of time-calcined alumina powder observed with a transmission electron microscope. 1,300
The X-ray diffraction spectra of alumina powder calcined at temperatures of 1,400°C and 1,400°C for 5 hours, and FIG. FIG. 3 is a graph showing the change over time in the specific surface area of alumina after firing to a certain temperature. 1... Solution reservoir, 2... Ultrasonic generator, 3... Flow meter, 4... Electric furnace, 5... Thermocouple, 6... Thermostat, 7... Glass tube, 8... compensator, 9.
...Solution inlet, 10...Air or oxygen inlet. Applicant's representative Patent attorney Takehiko Suzue; A, L (@C) Figure 3 Figure 6 Procedural amendment (method) % formula % Indication of case Patent application No. 148593 Name of invention Heat resistance High surface area fibrous alumina and its manufacturing method 3, relationship with the case of the person making the amendment Patent applicant Cataler Engineering Co., Ltd. 7 Contents of the amendment (1) Specification box page 7, line 2, “Microscopic photograph thereof” was changed to “ "A microscopic photograph showing the particle structure of solution A." (2) On page 7, lines 14 and 15, "alumina powder" is corrected to "particle structure of alumina powder." (3) On page 9, lines 11 to 13, “electron micrograph of alumina sol observed with a transmission electron microscope” is changed to “
"An electron micrograph showing the particle structure of Solution A." (4) On page 10, lines 1 and 2, "electron micrograph of powder observed with a transmission electron microscope" is corrected to "electron micrograph showing the particle structure of powder." Target of correction

Claims (2)

【特許請求の範囲】[Claims] (1)繊維状水酸化アルミニウムより成るアルミナゾル
を霧化し、空気または酸素と共に瞬時に乾燥、焼成した
アルミナであって、1,200℃以下で焼成後、少なく
とも30m^2/gの比表面積を有することを特徴とす
る耐熱性高表面積繊維状アルミナ。
(1) Alumina made by atomizing alumina sol consisting of fibrous aluminum hydroxide, instantaneously drying and firing with air or oxygen, and having a specific surface area of at least 30m^2/g after firing at 1,200°C or less. A heat-resistant, high surface area fibrous alumina.
(2)繊維状水酸化アルミニウムからアルミナゾルを作
製し、該ゾル溶液を霧化して空気または酸素と共に瞬時
に乾燥、焼成することを特徴とする耐熱性高表面積繊維
状アルミナの製造方法。
(2) A method for producing heat-resistant, high-surface-area fibrous alumina, which comprises producing an alumina sol from fibrous aluminum hydroxide, atomizing the sol solution, and instantaneously drying and firing it with air or oxygen.
JP2148593A 1990-06-08 1990-06-08 Heat resistant high surface area fibrous alumina and method for producing the same Expired - Lifetime JP2930665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148593A JP2930665B2 (en) 1990-06-08 1990-06-08 Heat resistant high surface area fibrous alumina and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148593A JP2930665B2 (en) 1990-06-08 1990-06-08 Heat resistant high surface area fibrous alumina and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0442809A true JPH0442809A (en) 1992-02-13
JP2930665B2 JP2930665B2 (en) 1999-08-03

Family

ID=15456225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148593A Expired - Lifetime JP2930665B2 (en) 1990-06-08 1990-06-08 Heat resistant high surface area fibrous alumina and method for producing the same

Country Status (1)

Country Link
JP (1) JP2930665B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925592A (en) * 1995-10-04 1999-07-20 Katoh; Akira Process for preparing alumina carrier
JP2002370035A (en) * 2001-06-15 2002-12-24 Suzuki Motor Corp Exhaust cleaning catalyst and production method thereof
CN111009642A (en) * 2019-11-13 2020-04-14 浙江工业大学 Al2O3Face-coated LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
CN114887583A (en) * 2022-04-27 2022-08-12 北京科技大学 Mesoporous alumina loaded Cu 2 Preparation method of O adsorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925592A (en) * 1995-10-04 1999-07-20 Katoh; Akira Process for preparing alumina carrier
JP2002370035A (en) * 2001-06-15 2002-12-24 Suzuki Motor Corp Exhaust cleaning catalyst and production method thereof
JP4639536B2 (en) * 2001-06-15 2011-02-23 スズキ株式会社 Exhaust gas purification catalyst and method for producing the same
CN111009642A (en) * 2019-11-13 2020-04-14 浙江工业大学 Al2O3Face-coated LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
CN114887583A (en) * 2022-04-27 2022-08-12 北京科技大学 Mesoporous alumina loaded Cu 2 Preparation method of O adsorbent
CN114887583B (en) * 2022-04-27 2023-10-31 北京科技大学 Mesoporous alumina loaded Cu 2 Preparation method of O adsorbent

Also Published As

Publication number Publication date
JP2930665B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP6670386B2 (en) Methane oxidation catalyst
CN105948098B (en) A kind of spherical lanthana
JPS5810137B2 (en) Oxidation catalyst composition
Cuo et al. Spherical Al2O3-coated mullite fibrous ceramic membrane and its applications to high-efficiency gas filtration
JP6803176B2 (en) Method for manufacturing porous alumina particle material
JP5248054B2 (en) Method for producing spherical alumina particles
WO2009131118A1 (en) Composite oxide for catalyst for exhaust gas purification, process for producing the same, coating composition for catalyst for exhaust gas purification, and filter for diesel exhaust gas purification
JPH0442809A (en) Heat-resistant fibrous alumina having high surface area and its production
JP2001347167A (en) Exhaust gas cleaning catalyst
JP2004016838A (en) Catalyst for purifying exhaust gas, method for producing the catalyst, and method for using catalyst
JPS58207938A (en) Manufacture of fine ceramic particle
Chęcmanowski et al. High-temperature oxidation of FeCrAl alloy with alumina–silica–ceria coatings deposited by sol–gel method
JP6442277B2 (en) Gas separation membrane, gas separation material, and method for producing gas separation membrane
JP5564962B2 (en) Exhaust gas purification filter
JPS63242917A (en) Production of heat resistant alumina complex oxide
JP5984540B2 (en) Heat shielding material and method for manufacturing the same, and heat shielding film and method
JP4883241B2 (en) Method for producing catalyst material, catalyst material produced thereby, and catalyst body
JP6488128B2 (en) Porous membrane for forming gas separation membrane and method for producing porous membrane for forming gas separation membrane
CN105645993B (en) A kind of nanostructure corundum foam ceramic material and preparation method thereof
JPH0543344A (en) Production of alumina-based porous body
JPH01307449A (en) Waste gas purification catalyst
JPH0274527A (en) Production of fibrous or filmy substance of titanate having hollandite type structure
JP2570647B2 (en) Nitrogen oxide reduction catalyst and nitrogen oxide reduction method
JPH10195717A (en) Production of composite fiber
KR19990026199A (en) High temperature continuous catalyst powder and its manufacturing method